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were permitted unrestricted access to source materials and participants. Further-

more, they have with humility and some courage attempted to document what

emerges as a complex accounting of the purposes of science, technology, and

public funding in a challenging new area of human endeavor.
Some classical historians may deplore the short lapse of time between the

actual events and the historical narration of them. Others may boggle at the

mass of full documentary sources with which the Project Mercury historians

have had to cope. There are offsetting advantages, however. The very freshness

of the events and accessibility of their participants have made possible the writing

of a most useful treatise of lasting historical value. Future historians may rewrite

this history of Project Mercury for their own age, but they will indeed be thank-

ful to their predecessors of the NASA historical program for providing them with
the basic data as well as the view of what this pioneering venture in the Space

Age meant to its participants and to contemporary historians.

M_.LVm KRANZBERG

Case Institute o[ Technology

Chairman, NASA Historical

Advisory Committee

Members:

Lloyd V. Berkner, Graduate Research Center o[ the Southwest

James L. Cate, University o[ Chicago
A. Hunter Dupree, University o[ Cali[ornia at Berkeley

Wood Gray, George Washington University
Lawrence Kavanau, North American Aviation, Inc.

Marvin W. McFarland, Library o[ Congress

Paul P. Van Riper, Cornell University
Alan T. Waterman, National Academy o[ Sciences

vI



FOREWORD

HEN the Congress created the National Aeronautics and Space Admin-
istration in ! 958, it charged NASA with the responsibility "to contribute

materially to the expansion of human knowledge of phenomena
in the atmosphere and space" and "provide for the widest practicable and appro-
priate dissemination of information concerning its activities and the results thereof."
NASA wisely interpreted this mandate to include responsibility for documenting
the epochal progress of which it is the focus. The result has been the development
of a historical program by NASA as unprecedented as the task of extending man's
mobility beyond his planet. This volume is not only NASA's accounting of its
obligation to disseminate information to our current generation of Americans.
It also fulfills, as do all of NASA's future-oriented scientific-technological activities,
the further obligation to document the present as the heritage of the future.

The wide-ranging NASA history program includes chronicles of day-to-day

space activities; specialized studies of particular fields within space science and
technology; accounts of NASA's efforts in organization and management, where
its innovations, while less known to the public than its more spectacular space
shots, have also been of great significance; narratives of the growth and expan-
sion of the space centers throughout the country, which represent in microcosm
many aspects of NASA's total effort; program histories, tracing the successes--
and failures--of the various projects that mark man's progress into the Space
Age; and a history of NASA itself, incorporating in general terms the major
problems and challenges, and the responses thereto, of our entire civilian space
effort. The volume presented here is a program history, the first in a series telling

of NASA's pioneering steps into the Space Age. It deals with the first American
manned-spaceflight program : Project Mercury.

Although some academicians might protest that this is "official" history, it is
official only in the fact that it has been prepared and published with the support
and cooperation of NASA. It is not "official" history in the sense of presenting a
point of view supposedly that of NASA officialdom--if anyone could determine
what the "point of view" of such a complex organism might be. Certainly,
the authors were allowed to pursue their task with the fullest freedom and in
accordance with the highest scholarly standards of the history profession. The)'
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PREFACE

ANKIND in the past few ),ears has sailed on one of its greatest adventures,
the exploration of near space. Men have cast off their physical and mental

moorings to Earth, and a few have learned to live in balance with their gravisphere
and above their atmosphere. Transgressing old laws of terrestrial navigation

and amending newer laws of aerodynamics, man has combined the experience

gained from aviation and rocket techno|o_" with the science of celestial mechanics,

thus to accomplish for the first time manned orbital circumnavigation. The initial

American voyages in this new epic of exploration and discovery were products of

Project Mercury, an intensive national program mobilizing creative science and

technology to orbit and retrieve a manned Earth satellite.

This book is an attempt to describe the origins, preparation, and nature of

America's first achievements in manned space flight. Neither a history of the

National Aeronautics and Space Administration (NASA) nor a comparative

study of the competition in space between the United States and the Soviet Union,
this narrative spans the basic events in the managerial and technological history of

Project Mercury.
The authors have no illusions that this single volume is complete or "definitive"

(if any work of history ever can be). Writing only a few years after the events

described, we inescapably suffer from short perspective, but perhaps our scholarly

myopia is balanced by our having had access to a multitude of still-dustless docu-

ments and to most of the main participants in Project Mercury. Within obvious

limitations of chronology and the sensitivities of persons still active in the conquest

of space, we have tried to make this narrative as comprehensive and accurate as

possible in one volume.
Already Project Mercury has come to be regarded as a single episode in the

history of flight and of the United States. Rather, it was many episodes, many

people, many days of inspiration, frustration, and elation. Journalists and other

contemporary observers have written millions of words, taken thousands of photo-

graphs, and produced hundreds of reports, official and otherwise, on the origins,

development, failures, successes, and significance of this country's first efforts in

the manned exploration of space. The foremost image of Mercury emerging from

its mountainous publicity was that of seven selected test pilots called "astronauts."
Central as were their roles and critical as were their risks in the individual manned

flights, the astronauts themselves did not design, develop, or decide the means and
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endsof theoverallprogram. Thousandsof engineers,scientists,technicians, and

administrators, as well as the seven astronauts, cooperated to fulfill Mercury's goals,

and this program history tries to blend and balance the personal, social, and tech-

nical facets of the project as it progressed.

Endeavoring to keep fickle human memories accurate in an age that moves

incredibly fast in too many directions, we have sought to answer unanswered ques-

tions, to answer some questions that had not been asked, and even perhaps to pose

some questions that cannot be answered yet. Written under sponsorship of NASA

at its Manned Spacecraft Center (MSC) with principal reliance on a contract
with the University of Houston, this study is, in the legal sense of the Space Act

of 1958, an "official" history of Project MercuD'. But NASA and its Historical

Advisor)" Committee have wisely recognized that history should be written, taught,

and finally judged by historians, and that the ultimate responsibility for historical

generalizations and interpretations should rest with the authors. Accordingly,

while we have trod circumspectly in places, we have been encouraged to arrive at

historical judgments judiciously and independently. Thus there actually is no

"official" NASA or MSC viewpoint on what happened. More details and

acknowledgments on the historiography behind this work are to be found in the

Note on Sources and Selected Bibliography at the end of the volume.

The organization and division of labor imposed on the narrative conforms to

its chronology, to three genres of historical literature, and to the thesis that Project

Mercury, from its inception in the fall of 1958, was preeminently an engineering,

rather than a scientific, enterprise.

Part One, entitled "Research," could be called "origins" or "antecedents."

This section on the long and complex "prehistory" of Project Mercury follows

essentially a topical organization and might be seen as part of the external history

of applied science. Emphasizing the contributions of indMdual minds and small

groups of experimentalists, Part One recounts primarily progress in rocketry and

research in space medicine, aerodynamics, and thermodynamics from the end of
the Second World War to the inception of the first United States manned satellite

project. The focus is on the evolutionary roles of the military services and the

National Advisory Committee for Aeronautics, organizational nucleus of NASA.

Part Two, "Development," assumes with reason that all of the basic and most

of the applied research necessary for undertaking a manned ballistic satellite proj-

ect had been completed by October 1958. Thus the so-called research and devel-

opment, or "R and D," phase of Mercury is mostly, if not entirely, "D" and corre-

sponds to a relatively new professional interest, the history of technology. Part

Two is a study of corporate technolog3" in the crowded period during which the
concurrent teamwork of previously' diverse organizations drove toward placing a
man in orbit around Earth.

For most people directly involved in Mercury, the dramatic "space race"

aspect of the project was secondary to the accomplishment of an almost incredibly

complex managerial and technological endeavor. Yet the historian cannot ignore

XII

i
_|
_i!| !:



PREFACE

the broadly political and social context surrounding all of the organizing, con-

tracting, innovating, manufacturing, training, and testing before the time in 1961

when men first rocketed into space. Costs, schedules, and "quality control"--the

range of procedures designed to ensure reliability during space vehicle manufac-

turing and preparation for flight--were far less dramatic than the flights them-

selves. But the NASA Space Task Group, primarily responsible for the

development of Mercury, had an exciting life of its own as it evolved into the

Manned Spacecraft Center. The Mercury team was much larger than the

Space Task Group, or even than NASA, but the focus in Part Two on tile field

managers of the project should be meaningful for anyone wishing insight into

the enormity and intricacy of modern government-managed technological

programs.

Part Three, entitled "Operations," describes the fulfillment of Project Mercury

and the only part of the program witnessed by most contemporary obsen,ers.

This section begins with the successful suborbital flig,:: of Astronaut Alan B.

Shepard, Jr., in May 1961; proceeds through the completion of the orbital

qualification of the Mercury spacecraft and the Atlas rocket; and ends with the

four manned orbital missions, stretching from three to 22 circuits of Earth, in

1962 and 1963. Part Three is allied with a heroic tradition, the history of

exploration and discovery.

Cosmonaut Yuri A. Gagarin first made a space flight around Earth on

April 12, 1961, and four months later Gherman Titov's 17-orbit flight pushed

the U.S.S.R. still further ahead in the cold war space competition. With American

technological prestige damaged in the court of world opinion, the United States

responded after Shepard's suborbital ride, when President John F. Kennedy

proposed and an eager Congress agreed to make Mercury the first phase of an

epochal national venture in the manned exploration of the Earth-Moon system.

Although the Soviet Union succeeded in orbiting more space travelers, for

longer periods, and sooner than the United States, Project Mercury still appears

magnificently successful. It cost more money and took more time than originally

expected, but no precaution was overlooked and no astronaut was lost. And as

the "space race" broadened into the "space olympics," Mercury evolved from a

"dead-end" endeavor, pointed solely at achieving orbital flight and recovery, into

a prerequisite course in what was needed to reach and return from the Moon.

If Mercury was not all that it might have been, it was certainly more than

it originally was supposed to be. Less than three and a half years after its incep-

tion, its prime objectives were attained with the three-orbit flight of Astronaut

John H. Glenn, Jr. In all, the Mercury astronauts flew two ballistic, parabolic

flights into space and four orbital missions. Each flight went almost as well as

planned, thereby substantialIy enlarging man's knowledge of near space, of his

psychophysiological behavior beyond Earth's atmosphere, and of the impending

requirements for cislunar travel. By June 12, 1963, when James E. Webb, the

second NASA Administrator, announced its termination, Project Mercury had
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become the focal point of the American people's vicarious journey into space, the
first rung on a ladder leading to the Moon, and perhaps beyond.

This volume, therefore, represents an effort to lift out of anonymity, where
so much of mankind's technological progress lies buried, the odyssey of the men

who developed the means for escaping our age-old habitat. We hope to enlarge
man's knowledge of himself by recording who did what, when, and where to
achieve the confidence and provide the machines for space flight. We have aimed

to supply a reference to the past, a benchmark for the present, and a source for
future scholarship. Later historians will write about Gemini and Apollo, and
about Ranger, Mariner, and other projects in space exploration by men of our
times. But like students of Mercury, present and future, they must begin with
an accurate record of technological achievement. In time, perhaps, Project
Mercury may deserve more, because it was both an effect of and a cause for the

faith, vision, and prowess necessary to explore space.

This history of Project Mercury is, in more than the usual sense, drawn from
the memory of many of the primary participants in the program. They pro-
vided much of the documentation upon which this narrative is based, and some
150 of them have commented upon all or parts of a review edition before

publication. They are not responsible, however, for the selection, organization,
or interpretations of facts as here presented. If errors persist in this account,
the fault lies solely with the authors.

A different emphasis might have been pursued in this history--perhaps, for
instance, more on the management of manned space programs. But Project
Mercury per se is the focus herein, and as history it is meant to be read con-
secutively. In the launching of this history, the endorsement and support of the
late Hugh L. Dryden, Deputy Administrator of NASA (1958-1965); Chan-
cellor George L. Simpson of the University of Georgia System, former Assistant
Deputy Administrator (1962-1965); and Robert R. Gilruth, Director of the
Manned Spacecraft Center, proved instrumental. Whatever value this volume
may have in reflecting the broader concerns of NASA Headquarters results

largely from the contributions of Eugene M. Emme, the NASA Historian, and
Frank W. Anderson, the Deputy NASA Historian. They have minutely read
and criticized the draft manuscripts and coordinated the details of publication.

Paul E. Purser, Special Assistant to the Director, Manned Spacecraft Center,

and Allen J. Going, Chairman, Department of History, University of Houston,

have read various phases of the draft work and suggested improvements at every

step. Sigman Byrd and Pamela C. Johnson worked with the authors as editorial
and research assistants in its formative stages. Ivan D. Ertel made the final index

and basic selection of illustrations. Sally D. Gates made many invaluable edi-

torial suggestions and comments, typed several "final" drafts, and administratively
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coordinated the review edition with the numerous readers. Geri A. Vanderoef

typed many of the early manuscripts in the constant revision process.

Among those NASA field center historians and monitors who have been most

helpful are David S. Akens of the Marshall Space Flight Center; Alfred Rosenthal

of the Goddard Space Flight Center; Robert A. Lindemann and Francis E.

Jarrett, Jr., of the Kennedy Space Center; Manley Hood and John B. Talmadge
of the Ames Research Center; Lyndell L. Manley of the Lewis Research Center;

and Robert W. Mulac of the Langley Research Center.

Government--particularly Air Force--and industrial historians, librarians,
and archivists too numerous to mention offered courteous assistance on many

aspects of Project Mercury. William D. Putnam, Office of Manned Space Flight

and formerly of the Air Force Space Systems Division; Max Rosenberg of the
Air Force Historical Liaison Office; Charles V. Eppley, Air Force Flight Test

Center; Marvin E. Hintz, Air Force Arnold Engineering Development Center;

Green Peyton of the Air Force School of Aerospace Medicine; Michael Witunski

of the McDonnell Aircraft Corporation; Ralph B. Oakley of North American

Aviation; and Louis Canter of General Dynamics/Astronautics deserve special

mention and thanks.

At the Manned Spacecraft Center, the Public Affairs Office, under Paul P.

Haney and Albert M. Chop, provided documentation, contract support, and

many hours of critical reading; the Technical Library, through the efforts oI

Retha Shirkey, furnished literature; and the Technical Information Division's

Robert W. Fricke helped immeasurably in securing documentation.
Countless others also should be mentioned for their aid on specific questions,

but most of them have been credited in the citations.

]anuary 1966

L.S.S.

J.M.G.
C.C.A.
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The Lure, the Lock, the Key

(TO 1958)

HE yearning of men to escape the confines of their Earth and to travel to
the heavens is older than the history of mankind itself. Religion, mythology,

and literature reaching back thousands of years are sprinkled with references to

magic carpets, flying horses, flaming aerial chariots, and winged gods2 Although

"science fiction" is a descriptive term of recent vintage, the fictional literature of

space travel dates at least from the second century A.D. Around the year 160 the

Greek savant Lucian of Samosata wrote satirically about an imaginary journey

to the Moon, "a great countrie in the aire, like to a shining island," as Elizabethan

scholars translated his description 1500 years later. Carried to the Moon by a

giant waterspout, Menippus, Lucian's hero, returns to Earth in an equally distinc-

tive manner: The angry gods simply have Mercury take hold of his right ear and

deposit him on the ground. Lucian established a tradition of space-travel fiction,

and generations of later storytellers spawned numerous fantasies in which by some

miraculous means--such as a flight of wild lunar swans in a seventeenth-century

tale by Francis Godwin or a cannon shot in Jules Verne's classic account of a

Moon voyage (1865-1870)--earthlings are transported beyond the confines of

their world and into space.-"

But apparently the first suggestion, fictional or otherwise, for an artificial

manned satellite of Earth is to be found in a short novel called "The Brick Moon,"

written in 1869 by the American Edward Everett Hale and originally serialized

in the Atlantic Monthly. Although, like most of his contemporaries, Hale had

only a vague notion of where Earth's atmosphere ended and where space began,
he did realize that somewhere the "aire" became the "aether," and he also under-

stood the mechanics of putting a satellite into an Earth orbit:

If from the surface of the earth, by a gigantic peashooter, you could shoot a pea
upward . . . ; if you drove it so fast and far that when its power of ascent
was exhausted, and it should fall, it should clear the earth . . . ; if you had
given it sufficient power to get it half way round the earth without touching,
that pea would clear the earth forever. It would continue to rotate.., with
the impulse with which it had first cleared our atmosphere and attraction.

3



Dord's mid-19th century illustration,

"'A Voyage to the Moon," captured

man's age-old dream o[ lifting himsel[

off Earth and venturing out toward

our celestial neighbors, the Moon, the

Sun, the planets, and even the stars.

The action o/ c_'ntripetal forces as adz,anccd by Isaac Newton: "'That by means of

centripetal forces the planets may be retained in certain orbits, we may easily under-

stand, if we consider the motions of projectiles; for a stone that is projected is by the

pressure of its own weight forced out of the rectilinear path, which by the initial

projection alone it should have

pursued, and made to describe a

curved line in the air; and through

that crooked wayis at last brought

down to the ground; and the

greater the velocity is with which

it is projected, the farther it goes

before it falls to the earth. We

may therefore suppose the velocity
to be so increased, that it would

describe an arc of 1, 2, 5, 10, 100,

1,000 miles before it arrived at

earth, till at last, exceeding the

limits o[ the earth, it should pa_s

into space without touching it."

4
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THE LURE, THE LOCK, THE KEY

In Hale's story a group of industrious New Englanders construct a 200-foot-diam-

eter brick sphere, which, carrying 37 people, is prematurely hurled into an orbit
4000 miles from Earth by two huge flywheels? Less than a hundred years later,

Hale's own country would undertake a more modest and more practicable scheme

for a manned satellite in Project Mercury.

Centuries before Hale wrote about an orbiting manned sphere, Nicolaus Coper-

nicus, Johannes Kepler, Galileo Galilei, and other astronomers had helped put

the solar system in order, with the Sun in the center and the various planets,

spherical and of different sizes, orbiting elliptically around it. Isaac Newton had

established the basic principles of gravitation and mechanics governing reaction

propulsion and spatial navigation.' Thus it was possible for Hale and his fellow-

fictionists to think at least half seriously about, and to describe in fairly accurate

detail, such adventures as orbiting Earth and its Moon and voyaging to Venus.

Most flight enthusiasts in the nineteenth century, however, were absorbed with

the problems of flight within the atmosphere, with conveyance from one place to

another on Earth. This preoccupation with atmospheric transport, which would

continue until the mid-twentieth century, in many ways retarded interest in rocketry

and space travel. But the development and refinement of aeronautics in the

twentieth century was both a product of and a stimulant to man's determination

to fly ever higher and faster, to travel as far from his Earth as he could. Atmos-

pheric flight, in terms of both motivation and technology, was a necessary prelude

to the exploration of near and outer space. In a sense, therefore, man's journey

along the highway to space, leading to such astronautical achievements as Project

Mercury, began in the dense forest of his atmosphere, with feats in aeronautics.

CONQUEST OF THE AIR

Man first ventured aloft in balloons in the 1780_, and in the next century

gliders also bore human passengers on the air. By 1900 a host of theoreticians

and inventors in Europe and the United States were steadily expanding their

knowledge and capability beyond the flying of balloons and gliders and into the

complexities of machineborne flight. The essentials of the airplane--wings,

rudders, engine, and propeller--already were well known, but what had not

been done was to balance and steer a heavier-than-air flying machine.

On December 8, 1903, Samuel Pierpont Langley, a renowned astrophysicist

and Secretary of the Smithsonian Institution, tried for the second time to fly his

manned "aerodrome," a glider fitted with a small internal combustion engine,

by catapulting it from a houseboat on the Potomac River. The much-publicized

experiment, financed largely by the United States War Department, ended in

failure when the machine plunged, with pilot-engineer Charles M. Manley, into

the cold water. _ The undeserved wave of ridicule and charges of waste that

followed Langley's failure obscured what happened nine days later at Kitty

Hawk, North Carolina. There two erstwhile bicycle mechanics from Dayton,
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Ohio, Wilbur and Orville Wright, carried out "the first [flight] in the history of

the world in which a machine carrying a man had raised itself by its own power

into the air in full flight, had sailed forward without reduction of speed, and

had finally landed at a point as high as that from which it started." c Although

few people realized it at the time, practicable heavier-than-air flight had become

a reality.

The United States Army purchased the first military airplane, a Wright Flyer,

in 1908. But when Europe plunged into general war in 1914, competitive

nationalism--drawing on the talents of scientists like Ernst Mach in Vienna, Lud-

wig Prandtl in German),, and Osborne Reynolds in Great Britain, and of inventors

like the Frenchmen Louis Bleriot and Gabriel Voisin--had accelerated European

flight technology well beyond that of the United States.' In 1915, after several

vears of agitation for a Government-financed "national aeronautical laboratory"

like those already set up in the major European countries, Congress took the first

step to regain the leadership in aeronautics that the United States had lost after

1908. By an amendment attached to a naval appropriation bill, Congress estab-

lished an Advisory Committee for Aeronautics "to supervise and direct the scien-

tific study of the problems of flight, with a view to their practical solution."
President Woodrow Wilson, who at first had feared that the creation of such an

organization might reflect on official American neutrality, appointed the stipulated

12 unsalaried members to the "Main Committee," as the policymaking body of

the new organization came to be called. At its first meeting, the Main Com-

mittee changed the name of the organization to National Advisor T Committee

for Aeronautics, and shortly "NACA" began making surveys of the state of

aeronautical research and facilities in the country. During the First World War

it aided significantly in the formulation of national policy on such critical problems

as the cross-licensing of patents and aircraft production. NACA did not have

its own research facilities, however, until 1920, when it opened the Langley

Memorial Aeronautical Laboratory, named after the "aerodrome" pioneer, at
Langley Field, Virginia. _

In the 1920s and 1930s aeronautical science and aviation technology con-

tinued to advance, as the various cross-country flights, around-the-world flights,

and the most celebrated of all aerial voyages, Charles A. Lindbergh's nonstop

flight in 1927 from New York to Paris, demonstrated. During these decades

NACA brought the United States worldwide leadership in aeronautical science.

Concentrating its research in aerodynamics and aerodynamic loads, with lesser

attention to structural materials and powerplants, NACA worked closely with

the Army and Navy laboratories, with the National Bureau of Standards, and

with the young and struggling aircraft industry to enlarge the theory and tech-

nolog T of flight2 The reputation for originality and thorough research that

NACA quietly built in the interwar period would continue to grow until 1958,

when the organization would metamorphose into a glamorous new space agency,

the likes of which might have frightened the early NACA stalwarts.
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Aviation

Man's liberation/rom the sur/ace o/Earth

began at Kitty Hawk, N.C., on Decem-
ber 17, 1903, when Orville and Wilbur

Wright made the world's first controlled,

powered flights in a heavier-than-air ma-

chine (above). At last it was within man's

grasp to use Earth's atmosphere as a

means o/transportation. There was much
to learn; in the United States the National

Advisory Committee /or Aeronautics pio-
neered aeronautical research in the I920s.

Early wind tunnel research at Langley

Memorial Aeronautical Laboratory (right)

culminated in the [amous NACA cowling

and the [amily o/NACA wing shapes that

would dominate several generations o/air-

cra# [rom the 1920s into the 1940s. And

aviation finally came o/ age in world

opinion with the epochal solo [light [rom
New York to Paris by Charle_ E. Lind-

bergh, May 20-21, 1927. Lindbergh and

his plane, the "Spirit o/ St. Louis," are

shown (below, right) visiting the Washing-

ton Navy Yard on june I1, 1927.
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Over the years NACA acquired a highly competent staff of "research engi-

neers" and technicians at its Langley laboratory.'" Young aeronautical and

mechanical engineers just leaving college were drawn to NACA by the intellectual

independence characterizing the agency, by the opportunity to do important work
and see their names on regularly published technical papers, and by the superior

wind tunnels and other research equipment increasingly available at the Virginia

site. NACA experimenters made discoveries leading to such major innovations

in aircraft design as the smooth cowling for radial engines, wing fillets to cut down

on wing-fuselage interference, engine nacelles mounted in the wings of multi-

engine craft, and retractable landing gear. This and other research led to the
continual reduction of aerodynamic drag on aircraft shapes and consequent in-

creases in speed and overall performance."

The steady improvement of aircraft design and performance benefited com-
mercial as well as military aviation. Airlines for passenger, mail, and freight

transport, established in the previous decade both in the United States and

Europe, expanded rapidly in the depression years of the thirties. In the year
1937 more than a million passengers flew on airlines in the United States alone. 1-_

At the same time, advances in speed, altitude, and distance, together with

numerous innovations in flight engineering and instrumentation, presaged the

arrival of the airplane as a decisive military weapon2 _

Yet NACA remained small and inconspicuous; as late as the summer of 1939

its total complement was 523 people, of whom only 278 were engaged in research

activities. Its budget for that fiscal year was $4,600,0007' The prevailing mood

of the American public throughout the thirties was reflected in the neutrality

legislation passed in the last half of the decade, in niggardly defense appropriations,

and in the preoccupation of the Roosevelt administration with the domestic aspects

of the Great Depression. Without greatly increased appropriations from Con-

gress, the military was held back in its efforts to acquire more and better aerial

weapons. Without a military market for its products, the American aircraft

industry proceeded cautiously and slowly in the design and manufacture of
airframes and powerplants. And in the face of the restricted needs of industry

and the armed services and severly limited appropriations, NACA kept its efforts

focused where it could acquire the greatest quantity of knowledge for the smallest

expenditure of funds and manpower--in aerodynamics.

As Europe moved nearer to war, however, the Roosevelt administration, Con-

gress, and the public at large showed more interest in an expanded military establish-

ment, including military aviation. Leading figures like Lindbergh and Vannevar

Bush, president of the Carnegie Institution and chairman of the Main Committee,

warned of the remarkable gains in aviation being made in other countries, espe-

cially in Nazi Germany.'" While the United States may have retained its aero-

dynamics research lead, the Germans, drawing, in part from the published findings

of NACA, by 1939 had temporarily outstripped this country in aeronautical

development.

1
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After the outbreak of war in Europe, NACA eventually secured authoriza-

tion and funding to increase its program across the board, including a much

enlarged effort in propulsion and structural materials research. A new aero-
nautical laboratory, named after physicist Joseph S. Ames of Johns Hopkins

University, former chairman of the Main Committee, was constructed beginning

in 1940 on land adjacent to the Navy installation at Moffett Field, California, 40
miles south of San Francisco. The next year, on a site next to the municipal airport

at Cleveland, NACA broke ground for still another laboratory, to be devoted

primarily to engine research. In later years the Cleveland facility would be

named the Lewis Flight Propulsion Laboratory, after George W. Lewis, for

28 years NACA's Director of ResearchY:
Some nine months before Pearl Harbor, Chairman Bush of NACA appointed

a Special Committee on Jet Propulsion, headed by former Main Committeeman
William F. Durand of Stanford University, and including such leaders in aero-
nautical science as Theodore yon K,4,rm_in of the California Institute of Tech-

nology and Hugh L. Dryden of the National Bureau of Standards. 1; Until then

NACA, the military services, and the aircraft industry had given little attention

to jet propulsion. There had been little active disagreement with the conclusion

reached in 1923 by Edgar Buckingham of the Bureau of Standards: "Propulsion

by the reaction of a simple jet cannot complete, in an)' respect, with air screw

propulsion at such flying speeds as are now in prospect." _ By i941, however,

Germany had flown turbojets, and her researchers were working intensively on the

development of an operational jet-propelled interceptor. In Britain the propul-

sion scientist Frank Whittle had designed and built a gas-turbine engine and had

flown a turbojet-powered aircraft.
Faced with the prospect of European-developed aircraft that could reach

flight regimes in excess of 400 miles per hour and operational altitudes of about

40,000 feet, NACA gradually authorized more and more research on jet power-

plants for the Army Air Forces and the Navy. Most of the NACA research

effort during the war, however, went to "quick fixes," improving or "cleaning up"

military aircraft already produced by aircraft companies, rather than to the more

fundamental problems of aircraft design, construction, and propulslonJ" So,

understandably and predictably, during the Second World War, Germany was first

to put into operation military aircraft driven by jet powerplants, as well as rocket-
powered interceptors that could fly at 590 miles per hour and climb to 40,000

feet in two and a half minutes."-" The German jets and rocket planes came into

the war too late to have any effect on its outcome, but the new aircraft caused

consternation among American aeronautical scientists and military planners.
The Second World War saw, in the words of NACA Chairman Jerome C.

Hunsaker, "the end to the development of the airplane as conceived by Wilbur

and Orville Wright." -"_ Propeller-driven aircraft advanced far beyond their

original reconnaissance and tactical uses and became integral instruments of

strategic warfare. The development of the atomic bomb meant a multifold
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increasein thefirepowerof aircraft,butwellbeforethesingleB-29droppedthe
singlefive-tonbombon Hiroshima,long-rangebomberfleetscarrying conven-

tional TNT explosives and incendiaries had radically altered the nature of war. -"-_

The frantic race in military technology developing in the postwar years between

the United States and the Soviet Union produced a remarkable acceleration in the

evolution of the airplane. Jet-propelled interceptors, increasingly rakish in

appearance by comparison with their staid propeller-driven ancestors, flew ever

faster, higher, and farther2 a Following the recommendations of a series of blue-

ribbon scientific advisory groups, the Defense Department and the newly inde-

pendent Air Force made the Strategic Air Command, with its thousands of huge

manned bombers, the first line of American defense in the late forties and early

fifties2 _ To many people the intercontinental bomber, carrying fission and (after

1954) hydrogen-fusion weapons, capable of circumnavigating the globe nonstop

with mid-air refueling, looked like the "ultimate weapon" men had sought since

the beginning of human conflict.

Working under the incessant demands of the cold-war years, NACA continued

to pioneer in applied aeronautical research. By 1946 the NACA staff had grown

to about 6800, its annual budget was in the vicinity of $40 million, and its facilities
were valued at more than $200 million. Although Chairman Hunsaker and

others on the Main Committee felt that NACA's principal mission should be inquiry
into the fundamentals of aeronautics, the military servkes and the aircraft industry

continued to rely on NACA as a problem-soMng agency. The pressure for "quick

fixes" persisted as the Korean War intensified requirements for work on specific

aircraft problems. ='_

The outstanding general impediment to aeronautical progress, however, con-

tinued to be the so-called "sonic barrier," a region near the speed of sound

(approximately 750 miles per hour at sea level, 660 miles per hour above 40,000

feet) wherein an aircraft encounters compressibility phenomena in fluid dynamics,

or the "piling up" ot air molecules. A serious technical obstacle to high-speed

research in the postwar years was the choking effect experienced in wind tunnels

during attempts to simulate flight conditions in the transonic range (600-800

miles per hour). A wind tunnel constructed at Langley employing the slotted-

throat principle to overcome the choking phenomenon did not begin operation

until 1951, and a series of NACA and Air Force supersonic tunnels, authorized

by Congress under the Unitary Plan Act of 1949, was not completed until the

mid-fifties2 c NACA investigators had to use other methods for extensive tran-

sonic research. One was a falling-body technique, in which airplane models

equipped with radio-telemetry apparatus were dropped from bombers at high

altitudes. Another was the firing of small solid-propellant rockets to gather data

on various aerodynamic shapes accelerated past mach 1, the speed of sound. Many

of these tests supported military missile studies. The rocket firings were carried

out at the Pilotless Aircraft Research Station, a facility set up by the Langley labora-

tory on Wallops Island, off the Virginia coast, in the spring of 1945. The Pilot-
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less Aircraft Research Division at Langley, until the early fifties headed by Robert

R. Gilruth, conducted the NACA program of aerodynamic research with rocket-
launched models. -°'

The most celebrated part of the postwar aeronautical research effort in the

United States, however, was the NACA-military work with rocket-propelled air-

craft. In 1943, Langley aerodynamicist John Stack and Robert J. Woods of the

Bell Aircraft Corporation, realizing that propeller-driven aircraft had about
reached their performance limits, suggested the development of a special airplane

for research in the problems of transonic and supersonic flight. The next year,

the Army Air Forces, the Navy, and NACA inaugurated a program for the con-

struction and operation of such an airplane, to be propelled by a liquid-fueled

rocket engine. Built by Bell and eventually known as the X-I, the plane was

powered by a 6000-pound-thrust rocket burning liquid oxygen and a mixture of
alcohol and distilled water. On October 14, 1947, above Edwards Air Force Base

in southern California, the X-1 dropped from the underside of its B-29 carrier

plane at 35,000 feet and began climbing. A few seconds later the pilot of the

small, bullet-shaped craft, Air Force Captain Charles E. Yeager, became the first
man officially to fly faster than the speed of sound in level or climbing flight. -"s

The X-1 was the first of a line of generally successful rocket research airplanes.

In November 1953 the Navy's D-558-II, built by the Douglas Aircraft Company

and piloted by A. Scott Crossfield of NACA, broke math 2, twice sonic speed; but

this record stood only until the next month, when Yeager flew the new Bell X-IA

to mach 2.5, or approximately 1612 miles per hour. The following summer Major

Arthur Murray of the Air Force pushed the X-1A to a new altitude record of

90,000 feet above the Mojave Desert test complex consisting of Edwards Air Force

Base and NACA's High Speed Flight Station. These spectacular research flights,

besides banishing the myth that aircraft could not fly past the "sonic barrier,"

affected the design and performance of tactical military aircraft? _ In the early

fifties, the Air Force and the aircraft industry, profiting from the mountain of

NACA research data, were preparing to inaugurate the new "century series" of

supersonic jet interceptors? ° And representatives of NACA, the Air Force, and

the Navy Bureau of Aeronautics already were planning a new experimental rocket

plane, the X-15, to employ the most powerful rocket aircraft motor ever developed

and to fly to an altitude of 50 miles, the very edge of space.

Thus less than a decade after the end of the Second World War, airplanes--

jet-powered and rocket-propelled--had virtually finished exploring the sensible

atmosphere, the region below 80,000 or 90,000 feet. Much work remained for

aeronautical scientists and engineers in such areas as airflow, turbulence, engines,

and fuels, but researchers in NACA, the military, and the aircraft industry

approached the thorniest problems in aeronautics with a confidence grounded in

50 years of progress. Man's facility in atmospheric flight and his adjustment to

the airplane seemed complete. Pilots had mastered some of the most complex

moving machines ever contrived, and passengers sat comfortably and safely in

11
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The [amous research aircra[t series is shown above: in tf_e center, ttle Douglas X-3;

lower le[t, the Bell X-IA; continuing le[t to right, the Douglas D-558-I, the Convair

XF-92A, the Bell X-5, the Douglas D-558-II, and the Northrop X-4. In the photo

below, the X-15 is shown as it drops away [rom its mother B-52 and starts its own

57,000-lb.-thru._t enginc to begin another o[ its highly ._uccess[ut research flights.
......... i
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pressurized cabins on high-altitude airliners featuring an unprecedented com-

bination of speed and luxury. It appeared that man at last had accomplished

what the ancients had dreamed of--conquest of the air.

THE HIGHWAY TO SPACE

Space flight, however, was something else. While in one sense, atmospheric

flight was the first step toward space flight, extra-atmospheric transport involves

much more than a logical extension of aviation technology. The airplane,

powered either by a reciprocating or a jet engine, is a creature and a captive of

the atmosphere, because either powerplant depends on air--more properly,

oxygen--for its operation, and in space there is no air. But the rocket, unlike

the gas turbine, puIsejet, ramjet, or piston engine, needs no air. It carries

everything needed for propulsion within itseIf--its own fuel and some form of

oxidizer, commonly liquid oxygen, to burn the fuel. So the rocket engine operates

independently of its environment; in fact, its efficiency increases as it climbs away

from the frictional density of the lower atmosphere to the thin air of the strato-

sphere and into the airlessness of space. '_1

Yet even the rocket research airplanes were a long way from spacecraft.

Although some of these vehicles provided data on the use of reaction controls

for steering in the near vacuum of the upper atmosphere, they were designed to

produce considerable aerodynamic lift for control within the lower atmosphere;

and, in terms of the mass to be accelerated, their powerplants burned too briefly

and produced too little thrust to counterbalance the oppressive force of gravity.

Fulfillment of the age-old desire to travel to the heavens, even realization of

Hale's nineteenth-century concept of a manned sphere circling Earth in lower

space, would have to await the development of rockets big enough to boost

thousands of pounds and to break the lock of gravity.

.\lthough black-powder rockets, invented by the Chinese, had been used for

centuries for festive and military purposes, not until the late nineteenth and early

twentieth centuries did imaginative individuals in various parts of the world

begin seriously to consider the liquid-fueled rocket as a vehicle for spatial convey-

ance. The history of liquid-fueled rocketry, and thus of manned space flight,

is closely linked to the pioneering careers of three men--the Russian Konstantin

Eduardovich Tsiolkovsky (1857-1935), the American Robert Hutchings God-

dard (1882-1945), and the German-Romanian Hermann Oberth (1894- ).

Tsiolkovsky, for most of his life an obscure teacher of mathematics, authored

a series of remarkable technical essays on such subjects as reaction propulsion with

liquid-propellant rockets, attainable velocities, fuel compositions, and oxygen

supply and air purification for space travelers. He also wrote what apparently

was the first technical discussion of an artificial Earth satellite. 3_ Although vir-

tually unknown in the West at the time of his death, in 1935, Tsiolkovsky was

honored by the Soviets and had helped establish a long Russian tradition of
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astronautics. This tradition helps to account for the U.S.S.R.'s advances with

rocket-assisted airplane takeoffs and small meteorological rockets of the 1930s

and her space achievements of the 1950s and 1960s. _

In terms of experimentation, Goddard, professor of physics at Clark University,

was by far the most important of the rocket pioneersJ' As early as 1914 he

secured a patent for a small liquid-fueled rocket engine. Six years later he

published a highly technical paper on the potential uses of a rocket with such

an engine for studying atmospheric conditions at altitudes from 20 to 50 miles.

Toward the end of the paper he mentioned the possibility of firing a rocket

containing a powder charge that could be exploded on the Moon. "It remains

only to perform certain necessary preliminary experiments before an apparatus

can be constructed that will carry recording instruments to any desired altitude,"
he concluded? _

Goddard's life for the next 20 years was devoted to making those "necessary

preliminary experiments." Working in the 1920s in Massachusetts with financial

support from various sources and in the New Mexico desert with Guggenheim

Foundation funds during the succeeding decade, Goddard compiled an amazing

list of "firsts" in rocketry. Among other things, he carried out the first recorded

launching of a liquid-propellant rocket (March I6, 1926), adapted the gyro-

scope to guide rockets, installed movable deflector vanes in a rocket exhaust nozzle

for stability and steering, patented a design for a multistage rocket, developed

fuel pumps for liquid-rocket motors, experimented with self-cooling and variable-

thrust motors, and developed automatically deployed parachutes for recovering

his instrumented rockets. Finally, he was the first of the early rocket enthusiasts

to go beyond theory and design into the realm of "systems engineering"--the

complex and hand-dirtying business of making airframes, fuel pumps, valves,

and guidance devices compatible, and of doing all the other things necessary to

make a rocket fly. Goddard put rocket theory into practice, as his 214 patents
attest. 36

Goddard clearly deserves the fame that has attached to his name in recent

years, but in many ways he was more inventor than scientist. He deliberately

worked in lonely obscurity, jealously patented virtually all of his innovations, and

usually refused to share his findings with others. Consequently his work was
not as valuable as it might have been to such of his contemporaries as the young

rocket buffs who formed the American Rocket Society in the early thirties and

vainly sought his counselY

Goddard's disdain for team research prompted his refusal to work with the

California Institute of Technology Rocket Research Project, instigated in 1936

by the renowned yon K,6rm_n, then director of the Guggenheim Aeronautical

Laboratory at CalTech. The CalTech group undertook research in the funda-

mentals of high-ahitude sounding rockets, including thermodynamics, the prin-

ciples of reaction, fuels, thrust measurements, and nozzle shapes. Beginning in
1939 the Guggenheim Laboratory, under the first Federal contract for rocket
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From theory through laboratory

demonstration through design,

construction, test [light, and use o[

payload, Robert H. Goddard must

rank as the U.S. pioneer in mod-

ern rocketry. The [amous photo

at the right shows Goddard beside

his first success[ul liquid-[uel

rocket, flown 3larch 16, 1926.

Years later, in the spring o[ 1941,

he had progressed to larger, more

complex models, like the one

shown below in his workshop at

Mescalero Ranch, Roswell,

N. Mex., with his assistants. In

December 1944, Goddard sent this

photo to his long-time bene[actor

Harry F. Guggenheim with the

comment, "'It is practically identi-

cal with the German V-2 rocket."
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research, carried out studies and experiments for the Army Air Forces, especially
on rocket-assisted takeoffs for aircraft. These takeoff rockets were called JATO

(for "Jet-A_isted Take-Off") units, because, as one of the CalTech scientists
recalled, "the word 'rocket' was of such bad repute that [we] felt it advisable

to drop the use of the word. It did not return to our vocabulary until several

years later .... " _ In t944, with the Guggenheim Laboratory working in-

tently on Army and Navy contracts for JATO units and small bombardment

rockets, the Rocket Research Project was reorganized as the Jet Propulsion

Laboratory. :_
In the 1920s and 1930s interest in rocketry and space exploration became

firmly rooted in Europe, although the rapid expansion of aviation technology

occupied the attention of most fllght-minded Europeans. Societies of rocket

theorists and experimenters, mostly privately sponsored, were established in sev-

eral European countries¢ _ The most important of these groups was the Society

for Space Travel (Verein [iir Raumschiffahrt), founded in Germany but having
members in other countries. The "'V[R," as its founders called it, gained much

of its impetus from the writings of Oberth, who in 1923, as a young mathematician,

published his classic treatise on space travel, The Rocket into Interplanetary Space.

A substantial portion of this small book was devoted to a detailed description

of the mechanics of putting into orbit a satellite of Earth."

Spurred by Oberth's theoretleal arguments, the Germans in the V[R in the

early thirties conducted numerous static fMngs of rocket engines and launched
a number of small rockets. Meanwhile the German Arm),, on the assumpticn

that rocketry could become an extension of long-range artillery and because the

construction of rockets was not prohibited by the Treaty of Versailles, had inau-

gurated a modest rocket development program in 1931, employing several of the

V[R members. One of these was a 21-year-old engineer named Wernher von

Braun, who later became the civilian head of the army's rocket research group.

In 1933 the new Nazi regime placed all rocket experimentation, including that

being done by the rest of the V[R, under strict government controld-"

The story of German achievements in military rocketry during the late thirties

and early forties at Peenemuende, the vast military research installation on the

Baltic Sea, is well known. 4a Knowing Goddard's work only through his pub-

lished findings, the German experimenters contrived and elaborated on nearly

all of the American's patented technical innovations, including gyroscopic con-

trols, parachutes for rocket recovery, and movable deflector vanes in the exhaust.

The rocket specialists at Peenemuende were trying to create the first large, long-

range milita D" rocket. By 1943, after numerous frustrations, the), had their

"big rocket," 46 feet long by 11_ feet in diameter, weighing 34,000 pounds

when fueled, and producing 69,100 pounds of thrust from a single engine con-

suming liquid oxygen and a mixture of alcohol and water. Called A sembly-4

(A 4) by the Peenemuende group, the rocket had a range of nearly 200 miles

and a maximum velocity of about 3500 miles per hour, and was controlled by its
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gyroscope and exhaust deflector vanes, sometimes supplemented by radio con-

trol. ;' When Major General Walter Dornberger, commander of the army works

at Peenemuende, pronounced the A-4 operational in 1944, Joseph Goebbels'

propaganda machine christened it Vergeltungswaffe zwei (Vengeance Weapon

No. 2), or "V-2." j_ But for the space-travel devotees at Peenemuende the rocket

remained the A-4, a step in the climb toward space.

Although the total military effect of the 3745 V-2s fired at targets on the

Continent and in England was slight, this supersonic ballistic mis_.ile threw a long

shadow over the future of human society. As the Western Allies and the Soviets

swept into Germany, they both sought to confiscate the elements of the German

rocket program in the form of records, hardware, and people. Peenemuende

was within the Russian zone of occupation, but before the arrival of the Soviet

forces von Braun and most of the other engineers and technicians fled westward

with a portion of their technical data. The Americans also captured the under-

ground V-2 factory in the Harz Mountains; 100 partially assembled V-2s were

quickly dismantled and sent to the United States. Ultimately yon Braun and

about 125 other German rocket specialists reached this country under "Project

Paperclip," carried out by the United States ArmyY

The Soviets captured no more than a handful of top Peenemuende engineers

and administrators. "This is absolutely intolerable," protested Josef Stalin to

Hcrmann Oberth with key oo?icials

o[ the Army Ballistic Missile Agen-

cy at Huntsville, Ala., in 1956.

Counterclockwise [rom the felt:

Maj. Gen. H. N. To]toy, com-

manding general o[ ABMA, who

organized Project Paperclip;

Ernst Stuhlinger; Oberth; Wern-
her yon Braun, Director, Develop-

ment Operations Division; and

Eberhard Recs, Deputy Directorj

Development Operations Division.
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Lieutenant CoI0neI G. A. Tokaty, one of his rocket experts. "We defeated the

Nazi armies; we occupied Berlin and Peenemuende; but the Americans got the

rocket engineers." 4r The Russians did obtain a windfall, however, in the form

of hundreds of technicians and rank-and-file engineers, the Peenemuende labora-

tories and assembly plant, and lists of component suppliers. From those suppliers

located in the Russian zone the Soviets secured enough parts to reactivate the

manufacture of V-2s. The captured technicians and engineers were transported

to the Soviet Union, where the Russian rocket specialists systematically drained

them of the technical information the)" possessed but did not permit them to

participate directly in the burgeoning postwar Soviet rocket development

program. 4"

During the war Russian rocket developers, like their American counterparts,

had concentrated on JATO and small bombardment rockets. "Backward

though they were often said to be in matters of technology," observed James

Phinney Baxter right after the war, "it was the Russians who in 1941 first em-

ployed rockets on a major scale. They achieved a notable success, and made

more use of the rocket as a ground-to-ground weapon than an)' other com-

batant." 4_ In the postwar years the Soviets quickly turned to the development

of large liquid-propellant rockets. Lacking an armada of intercontinental

bombers carrying atomic warheads, such as the United States possessed, they

envisioned "trans-Atlantic rockets" as "an effective straightjacket for that noisy

shopkeeper Harry Truman," to use Stalin's words? ° Consequently the U.S.S.R.

undertook to build a long-range military rocket )'ears before nuclear weaponry

actually became practicable for rockets; indeed, even before the Soviets had

perfected an atomic device for delivery by aircraft.

The U_S.S.R. began exploration of the upper atmosphere with captured

V-2s in the fall of 1947. Within two ),ears, however, Soviet production was

underway on a single-stage rocket called the T-l, an improved version of the
V-2. The first rocket divisions of the Soviet Armed Forces were instituted in

1950 or 1951. Probably in 1954, development work began on a multistage rocket

to be used both as a weapon and as a Vehicle for space exploration. And in the

spring of 1956 Communist Party Chairman Nikita Khrushchev warned that

"soon" Russian rockets carrying thermonuclear warheads would be able to hit

any target on Earth? 1

POSTWAR AMERICAN ROCKETRY

Meanwhile the United States, convinced of the long-term superiority of her

intercontinental bombers, pursued national security by means of airpower. The

extremely heavy weight of atomic warheads meant that they would have to be

delivered by large bombers, or by a much bigger rocket than anyone in the mili-

tary was willing to ask Congress to fund. Despite the early postwar warnings of

General Henry H. Arnold and others, for whom the V-2 experience was prophetic,
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the Truman administration and Congress listened to conservative military men
and civilian scientists who felt that until at least 1965 manned bombers, supple-
mented by air-breathing guided missiles evolving from the German V-l, should
be the principal American "deterrent force." "_-_Just after the war former NACA
Chairman Bush, then Director of the Office of Scientific Research and Develop-
ment, had expressed the prevailing mood in a much-quoted (and perhaps much-
regretted) piece of testimony before a Congressional committee : "There has been
a great deal said about a 3000-mile high-angle rocket. In my opinion, such a
thing is impossible today and will be impossible for many years .... I wish
the American public would leave that out of their thinking." 23

The United States developed guided missiles for air-to-air, air-to-surface,
and surface-to-air interception uses and as tactical surface-to-surface weapons.
Rocket motors, using both liquid and solid fuels, gradually replaced jet propul-

sion systems, but short-range defensive missiles remained advanced enough for most
tastes until the late 1950s2'

As for scientific research in the upper atmosphere, the backlog of V-2s put
together by the United States Army from captured components would do in the
early postwar years. From April 1946 to October 1951, 66 V-2s were fired at the
Army's White Sands Proving Grounds, New Mexico, in the most extensive
rocket and upper-atmospheric research program to that time. The Army Ord-
nance Department, the Air Force, the Air Force Cambridge Research Center,
the General Electric Company, various scientific institutions, universities, and
government agencies, and the Naval Research Laboratory participated in the
White Sands V-2 program. Virtually all the rockets were heavily instrumented,
and many of them carried plant life and animals. V-2s carried monkeys aloft
on four occasions; telemetry data transmitted from the rockets showed no ill effects
on the primates until each was killed in the crash. The most memorable launch-
ing at White Sands, however, came on February 24, 1949, when a V-2 boosted
a WAC Corporal rocket developed by the Jet Propulsion Laboratory 244 miles
into space and to a speed of 5510 miles per hour, the greatest altitude and velocity
yet attained by a man-made object. A year and a half later, a V-2--WAC
Corporal combination rose from Cape Canaveral, Florida, in the first launch at
the Air Force's newly activated Long Range Proving Ground? _

By the late forties, with the supply of V-2s rapidly disappearing, work had
begun on more reliable and efficient research rockets. The most durable of these

indigenous projectiles proved to be the Aerobee, designed as a sounding rocket
by the Applied Physics Laboratory of Johns Hopkins University and financed by
the Office of Naval Research. With a peak altitude of about 80 miles, the
Aerobee served as a reliable tool for upper-atmospheric research until the late
1950sY The Naval Research Laboratory designed the Viking, a long, sllm high-
altitude sounding rocket, manufactured by the Glenn L. Martin Company of Balti-
more. In August 1951 the Viking bettered its own altitude record for a single-stage

rocket, reaching 136 miles from a White Sands launch. In the fifties, instrumenta-
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Launch o[ the record-setting U.S. Army--let

_ Propulsion Laboratory Bumper WAC (V-2

first stage and WAC/CorporaI second stage)

[rom White Sands Proving Ground, N. Mex.

The first Bumper-WAC launch occurred on

May 13, 1948. On February 24, 1949, the

two-stage rocket reached its record altitude o[

244 miles and speed o[ 5150 miles per hour.

tion carried in Aerobees and Vikings extended knowledge of the atmosphere to

I50 miles, provided photographs of Earth's curvature and cloud cover, and gave
some information on the Sun and cosmic radiation? _

In 1955 the Viking was chosen as the first stage and an improved Aerobee as

the second stage for a new; three-stage rocket to be used in Project Vanguard,

which was to orbit an instrumented research satellite as part of the American con-

tribution to the International Geophysical Year. The decision to use the Viking

and the "Aerobee-Hi" in this country's first effort to launch an unmanned scien-

tific satellite illustrates the basic dichotomy in thought and practice governing

postwar rocket development in the United States: After the expenditure of the

V-2s, scientific activity should employ relatively inexpensive sounding rockets

with small thrusts. Larger, higher-thrust, and more expensive rockets to be used

as space launchers must await a specific military requirement. Such a policy

meant that the Soviet Union, early fostering the ballistic missile as an intercon-

tinental delivery system, might have a proven long-range rocket before the United

States; the Seviets might also, if they chose, launch larger satellites sooner than

this country.

By 1951, three sizable military rockets were under development in the United
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States. One, an Air Force project for an intercontinental ramjet-booster rocket

combination called the Navaho, took many twists and turns before ending in mid-

1957. After 11 years and $680 million, the Air Force, lacking funds for further

development, canceled the Navaho enterprise. Technologically, however, Nav-

aho proved a worthwhile investment; its booster-engine configuration, for exam-

ple, became the basic design later used in various rockets# _ The two other rocket

projects being financed by the military in the early fifties were ultimately successful,

both as weapons systems and as space boosters.

REDSTONE AND ATLAS

After the creation of a separate Air Force in 1947, the Army had continued

rocket development, operating on the same assumption behind the German Army's

research in the 1930s--that rocketry was basically an extension of artillery. In

June 1950, Army Ordnance moved its team of 130 German rocket scientists and

engineers from Fort Bliss at E1 Paso to the Army's Redstone Arsenal at Huntsville,

Alabama, along with some 800 military and General Electric employees. Headed

by Wernher von Braun, who later became chief of the Guided Missile Develop-

ment Division at Redstone Arsenal, the Army group began design studies on a
liquid-fueled battlefield missile called the Hermes C1, a modified V-2. Soon

the Huntsville engineers changed the design of the Hermes, which had been

planned for a 500-mile range, to a 200-mile rocket capable of high mobility for

field deployment. The Rocketdyne DMsion of North American Aviation modi-

fied the Navaho booster engine for the new weapon, and in 1952 the Army bom-

bardment rocket was officially named "Redstone." .;0

Always the favorite of the yon Braun group working for the Army, the Red-

stone was a direct descendant of the V-2. The Redstone's liquid-fueled engine

burned alcohol and liquid oxygen and produced about 75,000 pounds of thrust.

Nearly 70 feet long and slightly under 6 feet in diameter, the battlefield missile

had a speed at burnout, the point of propellant exhaustion, of 3800 miles per hour.

For guidance it utilized an all-inertial system featuring a gyroscopically stabilized

platform, computers, a programmed flight path taped into the rocket before

launch, and the iactivation of the steering mechanism by signals in flight. For con-

trol during powered ascent the Redstone depended cn tail fins with movable

rudders and refractory carbon vanes mounted in the rocket exhaust. The prime

contract for the manufacture of Redstone test rockets went to the Chrysler Cor-

poration. In August 1953 a Redstone fabricated at the Huntsville arsenal made

a partially successful maiden flight of only 8000 yards from the military's missile

range at Cape Canaveral, Florida. During the next five years, 37 Redstones

were fired to test structure, engine performance, guidance and control, tracking,
and telemetry. _°

The second successful military rocket being developed in 1951 was an Air

Force project, the Atlas. The long history of the Atlas, the first American inter-
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continental ballistic missile (ICBM),':' began early in 1946, when the Air Materiel

Command of the Army Air Forces awarded a study contract for a long-range

missile to Consolidated Vultee Aircraft Corporation (Convair), of San Diego.

By mid-year a team of Convair engineers, headed by Karel J. Bossart, had com-

pleted a design for "a sort of Americanized V-2," called "HIROC," or Project
MX-774. Bossart and associates proposed a technique basically new to American

rocketry (although patented by Goddard and tried on some German V-2s)--con-

trolling the rocket by swiveling the engines, using hydraulic actuators responding

to commands from the autopilot and gyroscope. This technique was the pre-

cursor of the gimbaled engine method employed to control the Atlas and other later

rockets. In 1947, the Truman administration and the equally economy-

minded Republican 80th Congress confronted the Air Force with the choice of

having funds slashed for its intercontinental manned bombers and interceptors or

cutting back on some of its advanced weapons designs. Just as the first MX-774

test vehicle was nearing completion, the Air Force notified Convair that the

project was canceled. The Convair engineers used the remainder of their con-

tract funds for static firings at Point Loma, California, and for three partially
successful test launches at White Sands, the last on December 2, 19485'-"

From 1947 until early 1951 there was no American project for an interconti-
nental ballistic missile. The Soviet Union exploded her first atomic device in

1949, ending the United States' postwar monopoly on nuclear weapons. Presi-

dent Harry S. Truman quickly ordered the development of hydrogen-fusion

warheads on a priority basis. The coming of the war in Korea the next ),ear

shook American self-confidence still further. The economy program instituted

by Secretary of Defense Louis Johnson ended, and the milital-y budget, including

appropriations for weapons research, zoomed upward. The Arm)' began its work

leading to the Redstone, while the Air Force resumed its efforts to develop an

intercontinental military rocket. In January 1951 the Air Materiel Command

awarded Convair a new contract for Project MX-1593, to which Karel Bossart

and his engineering group gave the name "Project Atlas." _.3 Yet the pace of

the military rocket program remained deliberate, its funding conservative.

A series of events beginning in late 1952 altered this cautious approach. On

November 1, at Eniwetok Atoll in the Pacific, the Atomic Energy Commission

detonated the world's first thermonuclear explosion, the harbinger of the hydrogen

bomb. The device weighed about 60,000 pounds, certainly a much greater

weight than was practicable for a ballistic missile payload. The next year,
however, as a result of a recommendation by a Department of Defense stud),

group, Trevor Gardner, assistant to the Secretary of the Air Force, set up a
Strategic Missiles Evaluation Committee to investigate the status of Air Force

long-range missiles. The committee, composed of nuclear scientists and missile

experts, was headed by the famous mathematician John von Neumann. Spe-

cifically, Gardner asked the committee to make a prediction regarding weight as

opposed to yield in nuclear payloads for some six or seven years hence. The
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evaluation group, familiarly known as the "Teapot Committee," concluded that

shortly it would be possible to build smaller, lighter, and more powerful hydrogen-
fusion warheads. This in turn would make it possible to reduce the size of

rocket nose cones and propellant loads and, with a vastly greater yield from the

thermonuclear explosion, to eliminate the need for precise missile accuracy. _"

In February 1954 both the Strategic Missiles Evaluation Committee and the

Rand Corporation, the Air Force-sponsored research agency, submitted formal

reports predicting smaller nuclear warheads and urging that the Air Force give

its highest priority to work on long-range ballistic missiles.
Between 1945 and 1953 the yield of heavy fission weapons had increased sub-

stantially from the 20-kiloton bomb dropped on Hiroshima. Now, according

to the Air Force's scientific advisers, lighter, more compact, and much more

powerful hydrogen warheads could soon be realized. These judgments "com-

pletely changed the picture regarding the ballistic missile," explained General
Bernard A. Schriever, who later came to head the Air Force ballistic missile

development program, "because from then on we could consider a relatively low

weight package for payload purposes." _ This was the fateful "thermonuclear

breakthrough."
Late in March 1964 the Air Research and Development Command organized

a special missile command agency, originally called the Western Development
Division but renamed Air Force Ballistic Missile Division on June 1, 1957. Its

first headquarters was in Inglewood, California; its first commander, Brigadier
General Schriever. The Convair big rocket project gained new life in the winter

of 1954-55, when the Western Development Division awarded its first long-terna

contract for fabrication of an ICBM. The awarding of the contract came in an

atmosphere of mounting crisis and urgency. The Soviets had exploded their
own thermonuclear device in 1953, and intelligence data from various sources

indicated that they also were working on ICBMs to carry uranium and hydrogen

warheads. Thus the Atlas project became a highest-priority "crash" program,
with the Air Force and its contractors and subcontractors working against the

fearsome possibility of thermonuclear blackmail5 _'

Rejecting the Army-arsenal concept, whereby research and development and

some fabrication took place in Government facilities, the Air Force left the great

bulk of the engineering task to Convair and its a_ociate contractors? 7 For close
technical and administrative direction the Air Force turned to the newly formed

Ramo-Wooldridge Corporation, a private missile research firm, which established

a subsidiary initially called the Guided Missiles Research Division, later Space

Technology Laboratories (STL). With headquarters in Los Angeles, the firm

was to oversee the systems engineering of the Air Force ICBM program. ';s

In November 1955, STL's directional responsibilities broadened to include

work on a new Air Force rocket, the intermediate-range (1800-mile) Thor,

hastily designed by the Douglas Aircraft Company to serve as a stopgap nuclear
deterrent until the intercontinental Atlas became operational. At the same time
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Military missiles o[ the 1950s provided both the technology and thc first-generation
boosters [or the nascent space program. The Air Force's Naz'aho (te[t) was a

tong-range cruise missile o_,ertakcn by the onrush o[ technology; though it was canceled

as a pro)ect, it had pioneered the dez'eIopment o[ large rocket engines and guidance

systems. The Atlas missile (center) had a hectic on-and-off career in the early I950s

but became the first operational ICBM and the major "'large" boost vehicle [or manned

and unmanned space missions in the first decade o[ the space age. Thor (right), the

sturdy, reliable baby o[ the Atlas technology, served an interim military role as an

operational 1RBM and a longer and more illustrious role as the workhorsc booster o[

the first decade o[ payloads [or military and nonmilitary space projects. Shown here

with an Able second stage, it accepted a eariety o[ second stages and payloads.
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Charles E. Wilson, Secretary of Defense in the Eisenhower administration, gave

the Army and Navy joint responsibility for developing the Jupiter, another

intermediate-range ballistic missile (IRBM), the engineering task for which went

to the Army rocketmen at Redstone Arsenal. To expedite Jupiter development,

the Army on February 1, 1956, established at Huntsville a Ballistic Missile Agency,
to which Wernher yon Braun and his Guided Missile Development Division were

transferred. Later that year Wilson issued his controversial "roles and missions"

memorandum, confirming Air Force jurisdiction over the operational deployment

of intercontinental missiles, assigning to the Air Force sole jurisdiction over

land-based intermediate-range weapons, restricting Army operations to weapons

with ranges of up to 200 miles, and assigning ship-based IRBM's to the Navy.

Partly as a result of this directive, but mainly because of the difficulty of handling

liquid propellants at sea, the Navy withdrew from the Jupiter program and
focused its interest on the Polaris, a solid-propellant rocket designed for launching

from a submarine, c'

As it developed after 1954, the Air Force ballistic missile development pro-

gram, proceeding under the highest national priority and the pressure of Soviet

missilery, featured a departure from customary progressive practice in weapons

management. The label for the new, self-conscious management technique

adopted by the Air Force Ballistic Missile Division-Space Technology Laboratories

team was "concurrency." Translated simply, concurrency meant "the simulta-

neous completion of all necessary actions to produce and deploy a weapon sys-

tem." _0 But in practice the management task--involving parallel advances in

research, design, testing, and manufacture of vehicles and components, design and

construction of test facilities, testing of components and systems, expansion and

creation of industrial facilities, and the building of launch sites--seemed over-

whelmingly complex. At the beginning of 1956 the job of contriving one ICBM,

the Atlas, was complicated by the decision to begin work on the Thor and on the

Titan I, a longer-range, higher-thrust, "second generation" ICBM. n

The basic problem areas in the development of the Atlas included structure,

propulsion, guidance, and thermodynamics. Convair attacked the structural

problem by coming up with an entirely different kind of airframe. The Atlas

airframe principle, nicknamed the "gas bag," entailed using stainless steel sections

thinner than paper as the structural material, with rigidity achieved through helium

pressurization to a differential of between 25 and 60 pounds per square inch. The

pressurized tank innovation led to a substantial reduction in the ratio between

structure and total weight; the empty weight of the Atlas airframe was less than

two percent of the propellant weight. Yet the Atlas, like an automobile tire or a

football, could absorb very heavy structural loads7 -_

For the Atlas powerplant the Air Force contracted with the Rocketdyne Divi-
sion of North American Aviation. The thermonuclear breakthrough meant that

the original five-engine configuration planned for the Atlas could be scrapped in

favor of a smaller, three-engine design. Thus Rocketdyne could contrive a unique
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side-by-side arrangement for the two booster and one sustainer engines conceived

by Convair, making it possible to fire simultaneously all three engines, plus the

small vernier engines mounted on the airframe, at takeoff. The technique of

igniting the boosters and sustainer on the ground gave the Atlas two distinct

advantages: ignition of the second stage in the upper atmosphere was avoided,

and firing the sustainer at takeoff meant that smaller engines could be used. The

booster engines produced 154,000 pounds of thrust each; the sustainer engine,
57,000 pounds; and the two verniers, 1000 pounds each. The propellant for

the boosters, sustainer, and verniers consisted of liquid oxygen and a hydrocarbon

mixture called RP-1. The basic fuel and oxidizer were brought together by an

intricate network of lines, valves, and often-troublesome turbopumps, which fed

the propellant into the Atlas combustion chambers at a rate of about 1500 pounds

per second. The thrust of the "one and one-half stage" Atlas powerplant, over

360,000 pounds, was equivalent to about five times the horsepower generated by

the turbines of Hoover Dam or the pull of 1600 steam locomotives, z3

The Atlas looked rather fat alongside the Army Redstone, the Thor, or the

more powerful Titan. The length of the Atlas with its original Mark II blunt

nose cone was nearly 76 feet; its diameter at the fuel-tank section was 10 feet, at

its base, 16 feet. Its weight when fueled was around 260,000 pounds. Its speed

at burnout was in the vicinity of 16,000 miles per hour, and it had an original

design range of 6300 miles, later increased to 9000 miles. 7_

The prototype Atlas "A" had no operating guidance system. The Atlases

"B" through "D" employed a radio-inertial guidance system, wherein transmit-

ters on the rocket sensed aerodynamic forces acting on the missile and sent radio

readings to a computer on the ground, which calculated the Atlas' position, speed,

and direction. Radio signals were then sent to the rocket and fed through its

inertial autopilot to gimbaI the booster and sustainer engines and establish the

Atlas' correct trajectory. After the jettisoning of the outboard booster engines,

the sustainer carried the Atlas to the desired velocity before cutting off, while the

vernier engines continued in operation to maintain precise direction and velocity.

At vernier cutoff the missile began its unguided ballistic trajectory. A few moments

later the nose cone separated from the rest of the rocket and continued on a high

arc before plunging into the atmosphere. Radio-inertial guidance, the system

used on the Atlas D and in Project Mercury, had the advantage of employing a

ground computer that could be as big as desired, thus removing part of the nag-

ging Atlas weight problem.'2

By the mid-1950s the smaller thermonuclear warhead predicted by the Teapot

Committee was imminent, so that the 360,000-pound thrust of the Atlas was

plenty of energy to boost a payload of a ton and a half, over the 6300-mile range.

But while nose-cone size ceased to be a problem, the dilemma of how to keep the

ICBM's destructive package from burning up as it dropped into the ever-thickening

atmosphere at 25 times the speed of sound remained. At such speeds even the

thin atmosphere 60 to 80 miles up generates tremendous frictional heat, which
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increases rapidly as an object penetrates the denser lower air. The temperature

in front of the nose-cone surface ultimately may become hotter than the surface of

the Sun. The atmospheric entry temperatures of the intermediate-range Thor,

Jupiter, and Polaris were lower than those of the Atlas, but even for these smaller-

thrust vehicles the matter of payload protection was acute. '_'

In the mid-fifties the "reentr 3" problem" looked like the hardest puzzle to solve

and the farthest from solution, not only for the missile experts but also for those

who dreamed of sending a man into space and bringing him back. As von

K{trm_n observed in his partially autobiographical history of aerodynamic thought,

published in 1954:

Any rocket returning from space travel enters the atmosphere with tremendous
speed. At such speeds, probably even in the thinnest air, the surface would be
heated beyond the temperature endurable by any known material. This prob-
lem of the temperature barrier is much more formidable than the problem of
the sonic barrier57

Years of concerted research by the military services, NACA, the Jet Propulsion

Laboratory, and other organizations would be necessary before crews at Cape

Canaveral, either preparing a missile shot or the launching of a manned space-
craft, could confidently expect to get their payload back through the atmosphere
unharmed.

The American ballistic missile program of the 1950s produced some remark-

able managerial and engineering achievements. Eventually the United States

would deploy reliable ICBMs in larger numbers than the Soviet Union. Yet

the fact remains that the Russians first developed such an awesome weapon, first

tested it successfully, and first converted their larger ICBM for space uses. _s Thus

American missile developers fell short of what had to be their immediate goal--

keeping ahead or at least abreast of the Soviets in advanced weaponry. Bureau-

cratic delays, proliferation of committees, divided responsibility, interservice

rivalry, sacrificial attachment to a balanced budget, excessive waste and duplica-

tion, even for a "crash" program--these were some of the criticisms that missile

contractors, military men, scientists, and knowledgeable politicians lodged against

the Defense Department and the Truman and Eisenhower administrations. From

1953 to 1957, Secretaries of Defense Wilson and Neil H. McElroy presided over

11 major organizational changes pertaining directly to the missile program. TM

"It was just like putting a nickel in a slot machine," recalled J. H. Kindelberger,

chairman of the board of North American Aviation, on the difficulty of getting a

decision from the plethora of Pentagon committees. "You pull the handle and

you get a lemon and you put another one in. You have to get three or four

of them in a row and hold them there long enough for them to say 'Yes.' It takes a

lot of nickels and a lot of time." 80 And even Schriever, certainly not one to be

critical of the pace of missile development, admitted that "in retrospect you might

say that we could have moved a little faster." st
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SPUTNIKS AND SOuL-SEARCHING

On August 26, 1957, Tass, the official Soviet news agency, announced that the

U.S.S.R. had successfully launched over its full design range a "super long

distance intercontinental multistage ballistic rocket," probably a vehicle employing

the improved V--2, the T-l, as an upper stage and a booster rocket with a thrust

of over 400,000 pounds the T 3. s: In the furor in the West following the Russian

announcement an American general allegedly exclaimed, "We captured the wrong
Germans." s,_

Then, on October 4, the Soviets used apparently the same ICBM to blast

into orbit the first artificial Earth satellite, a bundle of instruments weighing about

184 pounds called Sputnik, a combination of words meaning "fellow-traveler of

the Earth." A month later Soviet scientists and rocket engineers sent into high

elliptical orbit a heavily instrumented capsule, Sputnik II, weighing .some 1120
pounds and carrying a dog named Laika.

The Russian ICBM shot in August had given new urgency to the missile

competition and had prompted journalists to begin talking about the "missile

gap." The Sputnik launches of the fall opened up a new phase of the Soviet-

American technological and ideological struggle, and caused more chagrin,

consternation, and indignant soul-searching in the United States than an}, episode

since Pearl Harbor. Now there was a "space race" in addition to an "arms

race," and it was manifest that at least for the time being there was a "space lag"

to add to the ostensible missile gap.

After the first Sputnik went into orbit, President Dwight D. Eisenhower

reminded the critics of his administration that, unlike ballistic missile development,

"our satellite program has never been conducted as a race with other nations." s`
As far as the Soviet Union was concerned, however, there had been a satellite

race for at least two and perhaps four years before the Sputniks. There was

probably a Soviet parallel to the highly secret studies carried out in the immediate

postwar years by the Rand Corporation for the Air Force and by the Navy Bureau

of Aeronautics on the feasibility and military applicability of instrumented Earth
satellites. _ As late as 1952, however, Albert E. Lombard, scientific adviser in

the Department of the Air Force, reported that "intelligence information on Soviet

progress, although fragmentary, has given no indication on Soviet activity in this

field." s_. Late the next },ear, President A. N. Nesmeyanov of the Soviet Academy

of Sciences proclaimed that "Science has reached a state when it is feasible to

send a stratoplane to the Moon, to create an artificial satellite of the Earth. ''8;

A torrent of Soviet books and articles on rockets, satellites, and interplanetary

travel followed the Nesmeyanov statement.

In August 1955, a few days after the White House announced that the United

States would launch a series of "small, unmanned, earth-circling satellites" during

the 18-month International Geophysical Year, beginning July 1, 1957, Soviet

aeronautical and astronautical expert Leonid Sedov remarked that the U.S.S.R.
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would also send up satellites and that they would be larger than the announced

American scientific payloads. Most Americans complacently tossed off Sedov's

claim as another example of Russian t)raggadocio? s The formal announcement

of the Ru_ian space intentions came at the Barcelona Geophysical Year Con-

ference in 1956. And in June 1957 the Soviet press advertised the radio fre-

quency on which the first Russian satellite would transmit signals. By the end of

the summer a few American Sovietologists were predicting freely that the U.S.S.R.

would attempt a satellite launching soon, and they were somewhat surprised that

the shot did not occur on September 17, 1957, the centennial of the birth of

Tsiolkovsk.v. _''

American embarrassment reached its apex and American technological

prestige its nadir just over a month after Sputnik II. :ks the Senate Preparedness

Subcommittee, headed by Lyndon B. Johnson, began an investigation of the

nation's satellite and missile activities, Americans turned their attention to Cape

Canaveral. There, according to White House Press Secretary James C. Hagert},

scientists and engineers from the Nav;tl Research Laboratory and its industrial

contractors would attempt to put in orbit a grapefruit-sized package of instru-

ments as part of Project Vanguard, the American International Geophysical Year

satellite effort. In reality the Vanguard group was planning only to use a test

satellite in the first launch of all three active stages of the research rocket. To

their dismay swarms of newsmen descended on Cape Canaveral to watch what the

public regarded as this country's effort to get into the space race. On December 6,

before a national television audience, the Vanguard first stage exploded and the

rest of the rocket collapsed into the wet sand surrounding the launch stand. "_

In the face of the fact that "they" orbited satellites before "we" did, together

with the apparent complacency of official Washington, the Vanguard blowup

took on disastrous proportions. McElroy had become Secretary of Defense on

October 9, after Wilson's resignation. In mid-November he had authorized the

Army Ballistic Missile Agency at Redstone Arsenal to revive "Project Orbiter."

This was a scheme for using a Redstone with upper stages to orbit an instrumented

satellite. It had been proposed jointly by the Office of Naval Research and the

Army in 1954 1955 but overruled in the Defense Department in favor of the

Naval Research Laboratory's Vanguard proposal, based on the Viking and Aero-

bee. 9_ Now Wernher yon Braun and company hurriedly converted their Jupiter C

reentry test vehicle, an elongated Redstone topped bv clustered solid-propellant

upper stages developed by the Jet Propulsion Laboratory, into a satellite launcher. °-'

On January 31, 1958, just 84 days after .McElroy's go-ahead signal, and

carrying satellite instruments developed for Project Vanguard by University of

Iowa physicist James A. \ran Allen, a Jupiter C (renamed Juno I by the yon

Braun team) boosted into orbit Evplorer I, the first American satellite. The

total weight of the pencil-shaped pavload was about 31 pounds, 18 pounds of

which consisted of instruments. Following a high elliptical orbit, Explorer I

transmitted data revealing the existence of a deep zone of radiation girdling
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Vanguard was the one nonmilitary

launch cchicle o/the cart), space pro-

gram. More or tess a descendant

o/ the Viking rocket, the Vanguard

rocket was important in its own right

and for its legacy o[ contributions to
NASA's Delta launch vehicle that

would follow. Also the program

built the Minitrack tracking network,

which was to have a long, [ruit/uI

part to play in the space program.

Earth, dubbed the "Van Allen belt." The following March 17, the much-

maligned Vanguard finally accomplished its purpose, lifting a scientific payload

weighing a little over 3 pounds into an orbit that was expected to keep the satellite

up from 200 to 1000 years. Vanguard I proved what geophysicists had long sus-

pected, that Earth is not a perfect sphere but is slightly pear-shaped, bulging in the

aqueous southern hemisphere. Explorer III, with an instrumented weight of

18_ pounds, was fired into orbit by a Jupiter C nine days later. But in May a

mammoth Soviet rocket launched a satellite with the then staggering weight o[

nearly 3000 pounds, some 56 times as hea_3" as the combined weight of the three

American satellite payloads. °_

Clearly, rockets that could accelerate such bulky unmanned satellites to orbital

velocity could also send a man into space. And it seemed safe to assume that the

Soviet politicians, scientists, and military leaders, capitalizing on their lead in

propulsion systems, had precisely such a feat in mind. When the one-and-one-

half-ton Sputnik III shot into orbit, the Atlas, star of the American missile drive,

viewed not only as the preeminent weapon of the next decade but also as a highly

promising space rocket, was still in its qualifitation flight program. Plagued by
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turbopump problems and fuel sloshing, so far it had made only two successful test

flights, out of four attempts? 4
Yet American military planners remained confident that the Atlas finally

would become a reliable missile. It must if the United States was not to fall

perilously behind in the frenzied competition with the Soviets, if the missile gap
was not to widen. And what of the advocates of manned space flight, the

ambitious individuals on the fringes of the scientific community, NACA, and the

military services--people who saw the Atlas, not the frail Vanguard or the

Jupiter C, as holding the key to space? They also kept their hopes high.
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Exploring the Human Factor

(1948-x958)

HE development of the large liquid-fueled rocket made the dazzling prospect
of manned flight beyond Earth's atmosphere and into the vacuum of space

increasingly feasible from the standpoint of propulsion. By 1950, however, only
instrumented sounding rockets, fired to ever higher altitudes in both the United
States and the Soviet Union, had reached into space before falling earthward.
Although a number of these experimental shots carried living organisms--every-

thing from fungus spores to monkeys in the United States, mainly dogs in the
U.S.S.R.--the data acquired from telemetry and from occasional recovery of
rocket nose cones had not shown conclusively how long organisms could live in
_pace, or indeed whether man could survive at all outside the protective confines
of his atmosphere. Scientists still were hesitant to predict how a human being
would behave under conditions to be encountered in space flight. Thus while

space flight became technologically practicable, physiologically and psychologically
it remained an enigma.

In the earl)' 1950s an acceleration of efforts in upper-atmospheric and space
medical research accompanied the quickened pace of rocket development in this
country and in the Soviet Union. During the next few years medical specialists,
profiting from substantial progress in telemetering clinical data, learned a great
deal about what a man could expect when he went into the forbidding arena of
space? Much of the confidence with which the engineers of Project Mercury

in 1958 approached the job of putting a man into orbit and recovering him
stemmed from the findings of hundreds of studies made in previous years on the
human factors in space flight.,

Since the National Advisory Committee for Aeronautics was interested almost

exclusively in the technology of flight, research in the medical problems of space
flight, like aviation medicine in previous decades, was the province primarily of

the military services and of some civilian research organizations receiving funds

from the military. Of the three services, the United States Air Force, rich in

background in aeromedical research and assuming that space medicine was but an
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extension of aviation medicine, undertook most of the early inquiry into the psycho-

physiological problems of extra-atmospheric flight.

BEGINNINGS OF SPACE MEDICINE

After the Second World War the Air Force acquired the talents of a number

of scientists who had done much remarkable research on the medical aspects of

high-speed, high-altitude airplane flight for Germany's Luftwaffe. -_ Most of these

German physicians, physiologists, and psychologists were brought to the expanding

Aeromedical Laboratory at Wright-Patterson Air Force Base, near Dayton, Ohio.

Six of the more prominent German aeromedical specialists, Hubertus Strughold,

Hans-Georg Clamann, Konrad Buettner, Siegfried J. Gerathewoht, and the broth-

ers Fritz and Heinz Haber, were assigned as research physicians to the Air Force

School of Aviation Medicine, located on the scrub prairies of south central Texas

at Randolph Air Force Base, outside San Antonio. The commandant of the

school was Colonel Harry G. Armstrong, author of the classic text in aviation

medicine. 3 While heavily instrumented V-2s lumbered upward from White

Sands and plastic research balloons lifted seeds, mice, hamsters, fruit flies, and

other specimens into the upper atmosphere, Armstrong and his associates were

already considering the medical implications of flight by man into the hostile

space environment.

In November 1948, Armstrong organized at Randolph a panel discussion on

the "Aeromedical Problems of Space Travel." Featuring papers by Strughold

and Heinz Haber and commentary by six well-known scientists from universities

and the military, the symposium perhaps marked the beginning of formal, aca-

demic inquiry into the medical hazards of extra-atmospheric flight. Before this

epochal gathering ended, Strughold had resolved the contradiction inherent in the

title of the symposium by emphatically using the term "space medicine." 4

The following February, Armstrong set up the world's first Department of

Space Medicine, headed by Strughold and including the Habers and Konrad
Buettner? In November I951, at San Antonio, the School of Aviation Medicine

and the privately financed Lovelace Foundation for Medical Research at Albu-

querque, New Mexico, sponsored a symposium discreetly entitled "Physics and

Medicine of the Upper Atmosphere." It was still not respectable to speak plainly

of space flight within the Air Force, which only that year had cautiously reactivated

its intercontinental ballistic missile project and remained sensitive to "Buck

Rogers" epithets from members of Congress and the taxpaying public. A good

portion of the material presented by the 44 speakers at the 1951 symposium, how-

ever, covered the nature of space, the mechanics of space flight, and the medical

difficulties of sending a man beyond the sensible and breathable atmospheref'

It was at this meeting that Strughold, later to acquire a reputation as the

"father of space vnedicine," put forth what is perhaps his most notable contribu-

tion-the concept of "aeropause," a region of "space-equivalent conditions" or
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An important bridge [rom aviation medicine to space medicine was this chart by

Hubertus Strughold in 1951. It related altitudes at which human Junctional borders

occur with the altitudes at which the various physical characteristics o/space occur.

"atmospheric space equivalence." Strughold pointed out that while many astron-

omers, astrophysicists, and meteorologists set the boundary between the atmos-

phere and space at about 600 miles from Earth, the biological conditions of

space begin much lower, at about 50,000 feet. Anoxia is encountered at 50,000

feet, the boiling point of body fluids at 63,000 feet, the necessity for carrying

all respiratory oxygen within a manned compartment at 80,000 feet, meteoroids

at 75 miles, and the darkness of the space "void" at 100 miles. Above 100 miles

the atmosphere is imperceptible to the flyer. "What we call upper atmosphere

in the physical sense," said Strughold, "must be considered--in terms of biology--

as space in its total form." Hence manned ballistic or orbital flight at an altitude

of 100 miles would be, for all practical purposes, space flight/

The rocket-powered research airplanes of the postwar years, beginning with

the X-l, the first manned vehicle to surpass the speed of sound, took American

test pilots well into the region of space equivalence. On August 26, 1954, when

Major Arthur Murray of the Air Force pushed the Bell X-IA to an altitude of
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90,000 feet, he was above 90 percent of the sensible atmosphere. Two years

later, in the more powerful Bell X-2, Air Force Captain Iven Kincheloe climbed

to 126,000 feet, "a space-equivalent flight to a very high degree." _ The X-15,

still on the drawing boards in the mid-fifties, was being designed to rocket its

pilot to an altitude of 50 miles at nearly seven times the speed of sound. And

human-factors research in the X-15 project, involving the development and test-

ing of a new full-pressure flying suit, centrifuge conditioning to high acceleration

forces, and telemetering a wide range of physiological data in flight, would con-

tribute substantially to medical planning for space travel. 9

ZERO G

At peak speed and altitude an X-15 flight was supposed to afford about five

minutes of "weightlessness" or "zero g." This is the effect created when a ve-

hicle is balanced between centrifugal and centripetal forces--when the gravita-

tional pull of Earth and other heavenly bodies is exactly balanced by the inertial

character of the vehicle's motion. Weightlessness is undoubtedly the most fas-

cinating medical characteristic of space flight, and it aroused the most speculation

among aviation physicians in the late forties and early fifties. To be sure, ap-

proximations of zero g were not totally new human experiences; a common illus-

tration of the sensation is the sudden partial lightening of the body in a rapidly

descending elevator. But the necessity to function at zero g--to eat and drink,

to eliminate body wastes, to operate the spacecraft controls--was a new require-

ment and presented new problems for the aeromedical teams.

Flight physicians were almost unanimous in expressing forebodings about

the effect of weightlessness on man's physical and mental performance. Some

feared that the body organs depended on sustained gravity and would not function

if deprived of the customary gravitational force. Others worried over the com-

bined effects of acceleration, weightlessness, and the heavy deceleration during

atmospheric entry. Still other experts were concerned especially about perception

and equilibrium. For example, Heinz Haber and Otto Gauer, another _migr6

German physician who joined the Air Force aeromedical program, noted that

the brain receives signals on the position, direction, and support of the body from

four mechanisms--pressure on the nerves and organs, muscle tone, posture, and

the labyrinth of the inner ear. They theorized that these four mechanisms might

give conflicting signals in the weightless state and that such disturbances "may

deeply affect the autonomic nervous functions and ultimately produce a very

severe sensation of succumbence associated with an absolute incapacity to act." _o

The basic difficulty retarding the study of weightlessness was the impossibility

of duplicating the exact condition on Earth. The X-15, considered by many

in the mid-fifties to be the penultimate step to manned orbital flight, progressed

slowly and would fly too late to shed much light on the problem of zero g for

Project Mercur)'. By the fall of 1958, however, when the newly formed National
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Aeronautics and Space Administration undertook to orbit a manned satellite,
American aeromedical researchers had been studying the gravity-free condition

intensively for some eight years.

The best but most expensive device for zero-g experimentation was the sound-

ing rocket. For several years, beginning with the V-2 firings from White Sands,

parachutes for nose cones containing rocket-launched animals invariably failed

to open and the subjects were killed on impact. The first successful recovery
came in September 1951, when an instrumented monkey and 11 mice survived

an Aerobee launch to 236,000 feet from Holloman Air Force Base, New Mexico.

The last of three Aerobee shots at Holloman, in May 1952, like the previous

experiments, carried a camera on board to photograph two mice and two monkeys

under acceleration, weightlessness, and deceleration. An Air Force aeromedical

team, headed by James P. Henry, a physician who later would direct the Mercury

animal program, and young Captain David G. Simons, found no adverse effects
on the animals, n

For the next six years the priority military ballistic missile program almost

monopolized rocket development in the United States. Medical experimentation

employing live test subjects launched to high altitudes by rockets came to a virtual

standstill. By contrast, during the same period from 1952 to 1957, researchers in
the Soviet Union carried out numerous animal rocket flights, with dogs of the

Pavlovian sort being their favorite passengers. By late 1957, when the Soviets

sent the dog Laika into orbit aboard Sputnik II, the peak altitude of their vertical

launches of animals was nearly 300 miles, and the Russian scientists had perfected

a technique for catapulting animals from nose cones and recovering them with

parachutes. Apparently the Russians also were able to measure a wider range of

physiological reactions than their American counterparts, a-"

During the six-year hiatus in animal rocket experimentation in this country,

investigators had to resort to the aircraft, "the oldest aeromedical laboratory," for

studying the weightless phenomenon2 '_ In 1950, Fritz and Heinz Haber, of the
Air Force School of Aviation Medicine, had considered various ways of simulating

zero g for medical experiments. Discarding the free fall and the elevator ride, the

Habers concluded that the best technique involved an airplane flight along a

vertical parabola, or "Keplerian trajectory." If properly executed, such a ma-

neuver could provide as much as 35 seconds of zero g and a somewhat longer period

of subgravity, a condition wherein the body is under only partial gravitational

stress24 During the summer and fail of 1951 test pilots A. Scott Crossfield of
NACA and Charles E. Yeager of the Air Force tried out the technique, flying a

number of Keplerian trajectories in jet interceptors. Up to 20 seconds of weight-
lessness resulted from some of these flights. Crossfield reported initial "befuddle-

ment" during zero g but no serious loss of muscle coordination, while Yeager

described a sensation of falling and in one instance of spinning and feeling "lost

in space." The latter sensation the physicians and psychologists called
"disorientation." _
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The Habers' technique and these early experiments with it represented a
promising beginning, but as one Air Force aeromedical specialist pointed out,

"The results of these flights were inconclusive in many respects." 7,; An enor-

mous amount of work remained before students of weightlessness could do much

generalizing about this greatest anomaly of space flight.

In 1953 a small group comprising the Space Biology Branch of the Aero-

medical Field Laboratory at Holloman Air Force Base inaugurated an ambitious

program of parabolic flights to continue the investigations of weightless flight that

had halted with the termination of the Aerobee animal launches in the spring of

1952. Supervised by Major David G. Simons, a physician who acted as test sub-

ject on many occasions, the Holloman studies for two years utilized T-33 and F-89
jet aircraft. Late in 1955, after Captain Grover J. D. Schock came to the field

laboratory as task scientist, the standard tool for zero g research became the F-94C,

which offered a longer parabola than other aircraft and thus a longer period of

weightlessness. In the summer of 1958 the Air Force canceled all zero-g research

at Holloman, and the coterie of scientists broke up. Colonel John P. Stapp, head

of the field laboratory, and Simons went elsewhere, while Schock turned his atten-

tion to other research projects2 _

For three years before the termination of the Holloman flight program, stu-

dents of zero g at the School of Aviation Medicine had duplicated and even sur-

passed the investigations being carried out in New Mexico. Although sponsored

by the Department of Space Medicine, the program carried out at Randolph Air
Force Base was actually directed by Siegfried Gerathewohl, who was not a member

of the department. Gerathewohl and his colleagues began their studies with the

T-33 jet trainer, but like their counterparts in New Mexico, they soon turned to

the superior F-94C. Major Herbert D. Stallings, a Randolph physician, esti-

mated that by April 1958 he had flown more than 4000 zero-g trajectories and
compiled about 37 hours of weightless flight. _

Gerathewohl, Simons, Schock, and the other scientists at Randolph and Hollo-

man tried to get as great a variety of information as possible during the 30 to 40

seconds of weightle_ness and subgravity produced by the F-94C flights. They

carried out numerous eye-hand coordination tests, for example, wherein a subject

tried to make crosses in a pattern or hit a target with a metal stylus. Subjects
usually missed their mark in the first moments of zero g or subgravity, but most of

them improved their performance with their cumulative experience. The Air

Force scientists also studied eating and drinking, bladder function, and disorienta-

tion after awakening during weightlessness; the functions at zero g of various
animals, espedally cats, whose vestibular organs had been removed; and the

phenomenon called the "oculo-agravic illusion," wherein luminous objects seen

in the dark appear to move upward during weightlexsness2 _

At the Wright Air Development Center, in Ohio, a team of researchers headed

by Major Edward L. Brown picked up the experimental program discontinued at

Holloman in mid-1958, except that they used the relatively slow, propeller-driven
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C-131 transport in their studies. A parabola in a C-131 gave only 10 to 15 sec-

onds of weightlessness, but the spacious interior of the cargo carrier made it possible

to observe the reactions of several subjects simultaneously, including their coordi-

nation and locomotion and even their ability to walk along the ceiling while wearing

shoes with magnetic soles. -"°

In general the aeromedical specialists at Randolph, Holloman, and Wright-

Patterson--as well as those in more modest programs at the Navy School of

Aviation Medicine, Pensacola, Florida, and at the NACA Lewis Flight Propulsion

Laboratory in Cleveland--found that the principal problems of weightless flight

seemed solvable. Eating and drinking at zero g were not troublesome when

squeeze bottles and tubes were used, and urination presented no real difficulty.

Some subjects suffered nausea, disorientation, loss of coordination, and other

disturbances, but the majority reported that after they adjusted to the condition

they found it "pleasant" and had a feeling of "well-being." -"_ As early as 1955,

Simons concluded that weightlessness produced no abnormalities with regard to
heart rate and arterial and venous blood pressure, while Henry, Simons' colleague

in the Aerobee animal experiments, prophesied, "In the skilled pilot weightlessness

will probably have very little significance." 2., And in 1959, about a year after

Project Mercury got underway, Gerathewohl remarked that "the majority of

flying personnel enjoy the exposure to the subgravity state in our controlled

experiments. We have reason to believe that even longer periods of absolute

weightlessness can be tolerated if the crew is properly conditioned and equipped." 2a

MULTIPLE G

Another problem perplexing aeromedical experts as the era of space flight

neared was the effect on the human body of the heavy acceleration and decelera-

tion forces, called "g loads," building up during rocket-propelled flights into space

at speeds far greater than those yet experienced by man. Many" fighter pilots in
the Second World War had suffered momentary pain and blurred vision during

"redout," when blood pooled in the head and eyes during an outside loop, or
"blackout," when the heart suddenly" could not pump enough blood to the head

region as an airplane pulled out of a steep dive. Acceleration of a vehicle into

space and the deceleration accompanying its return to the atmosphere would

subject a man to g loads several times the normal accelerative force of gravity.

In other words, for parts of a space mission a man would come to "weigh" several

times what he normally did on Earth; a severe strain would be imposed on his

body organs.
At the Aeromedical Field Laboratory in New Mexico, Harald J. von Beckh,

a physician who had immigrated from Germany by way of the Instituto Nacional

de Medicina Aeron_.utica in Buenos Aires, was especially concerned about the

ability of a space traveler to tolerate the high deceleration forces of atmospheric

entry after several hours of weightlessness. In the last few months before such
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research ended at Holloman, von Beckh inquired into the relationship between

zero g and the multiplication of g. He added a steep downward spiral to the

level, weightless portion of the Keplerian trajectory in order to impose heavy

g loads on a test subject immediately after a half minute or so of weightlessness.

After a number of these parabolic-spiral flights, he reported pessimistically,

"Alternation of weightlessness and acceleration results in a decrease of acceleration

tolerance and of the efficiency of physiologic recovery mechanisms . . . Because
there is a decreased acceleration tolerance," he warned, "every effort must be
made to reduce G loads to a minimum." "-'

Throughout the 1950s a substantial number of aeromedical experts concerned

themselves with acceleration-deceleration loads per se, not necessarily in connection

with the gravity-free state. Research on g forces reached back for decades, to

the primitive period of aviation medicine. The state of knowledge with regard

to the physiology of acceleration-deceleration was still hazy and fluid in the early

fifties, although for at least 25 years aviation physicians ill Europe and the United

States had been studying blackout, redout, impact forces, and other effects of

high g in aircraft. -"_ The V-2 and Aerobee animal rocket shots also had added

to research data on the problem. But until the X-15 was ready, researchers had

about exhausted the airplane as a tool for studying g loads, and from 1952 to

1958 experimentation with animal-carrying rockets was suspended in the United

States. Consequently American scientists had to turn to two devices on the

ground- the rocket-powered impact sled, used for studying the immediate onset

of g loads, and the centrifuge, where the slower buildup of g could be simulated--

to enlarge what they knew about the limits of human endurance of heavy
acceleration and deceleration.

On December 10, 1954, Lieutenant Colonel John P. Stapp of the Aeromedical

Field Laboratory gave an amazing demonstration of a man's ability to withstand

immediate impact forces. Stapp rode a rocket-driven impact sled on the 3550-foot

HolIoman research track to a velocity of 937 feet per second and received an

impact force of 35 to 40 g for a fraction of a second as the sled slammed to a

halt in a water trough. :_' In February 1957 a chimpanzee rocketed down the

track, now 5000 feet long, braked to a stop, and survived a load of some 247 g for

a millisecond, with a rate of onset of 16,000 g per second. And i5 months later,

on the 120-foot "daisy track" at Holloman, Captain Eli L. Beeding, seated upright

and facing backward, experienced the highest deceleration peak yet recorded on

a human being- -83 g for .04 of a second, with 3826 g per second as the calculated

rate of onset. Afterward Beeding, recovering from shock and various minor

injuries, judged that 83 g represented about the limit of human tolerance for
deceleration. -"_

Such studies of deceleration were not directed primarily toward space missions

but rather toward the problem of survival after ejection from or crashes in

high-performance aircraft. The Holloman sled runs of the fifties, however, did

broaden considerably the available data on the absolute limits of man's ability
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to endure multiples of g. And, perhaps more important, the New Mexico experi-

ments in biodynamics were directly applicable to the problem of high g forces

resulting from the uncushioned impact of a spacecraft on water or land. Stapp

reasoned that a properly restrained, aft-facing human being could withstand a

land impact of some 80 knots (135 feet per second) in a spacecraft if the g forces

were applied transversely, or through the body, and if the spacecraft did not

collapse on him. -"'_
The centrifuge, the other laboratory tool used by students of acceleration-

deceleration patterns, became increasingly useful in the fifties. The basic feature

of the centrifuge was a large mechanical arm with a man-carrying gondola or

platform mounted on the end, within which a test subject would be rotated at

high angular velocities. Centrifuge experiments had more immediate pertinence

to space medicine than impact sled tests, because on the "wheel" investigators

could duplicate the relatively gradual buildup of g forces encountered during

the launch and reentry portions of ballistic, orbital, or interplanetary flight. In

the fifties, centrifuges existed at several places in the United States. The best-

known and most used were at the Navy's Aviation Medical Acceleration Labora-

tory, Johnsville, Pennsylvania, and at the Aeromedical Laboratory at Wright-

Patterson Air Force Base. During the decade, researchers at Johnsville, Wright-

Patterson, and elsewhere simulated a wide variety of acceleration and deceleration

profiles, using an almost equally wide variety of body positions and support systems,

to compile an impressive quantity of data on the reactions of potential space

pilots to hea_) _g forces. "_
Just after the Second World War, Otto Gauer and Heinz Haber, who had

conducted centrifuge experiments for the German Air Force, proposed a series

of acceleration patterns, ranging from 3 g for 9_ minutes to 10 g for 2 minutes,

all of which would be tolerable for a space pilotY Then, in 1952, E. R. Ballinger,

leader of the research program at Wright-Patterson, conducted one of the earliest

series of centrifuge tests directed expressly toward the problem of g forces in

space flight. Ballinger found that 3 g applied transversely would be the ideal

takeoff pattern from the physiological standpoint, but he realized that the rocket

burning time and velocity for such a pattern would be insufficient to propel a

spacecraft out of the atmosphere. Consequently he and his associates subjected

men to gradually increasing g loads, building to peaks of 10 g for something

over two minutes. Chest pain, shortness of breath, and occasional loss of con-

sciousness were the symptoms of those subjected to the higher g loads. The tests

led Ballinger to the conclusion that 8 g represented the acceleration safety limit for

a space passenger. 3_

Data gained from the first Soviet and American instrumented satellites of late

1957 and early 1958 showed that the atmosphere reached considerably farther

out than scientists previously had realized. Until these disclosures aeromedical

experts had assumed that the deceleration, or backward acceleration, forces of

reentry, producing what was graphically described as an "eyeballs out" sensation,
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would be much greater than the acceleration during the ascent, or "eyeballs in,"

phase of the mission. Proceeding on this assumption, a team of physiologists

from the Army, Navy, and Air Force had used the 50-foot centrifuge at the Navy's

Johnsville installation to study the anticipated high reentry g buildup, exposing

five chimpanzees to a peak of 40 g for one minute. Post-run examinations of

the primates showed internal injuries, including heart malfunctions. It appeared

that prolonged subjection to high g might be severely injurious or perhaps even
fatal to a man. 3-_

The tests conducted by Ballinger at Wright-Patterson and the interservice

experiments with the chimpanzees on the Na W centrifuge featured frontward

(eyeballs-in) application of g loads during the launch profile, backward applica-

tion (eyeballs-out) during the reentl)' simulation, and the use of rather elaborate

restraint straps and basic aircraft bucket seats as a support system. The problem

of determining optinmm body position and support was vigorously attacked by

biodynamicists during 1957 and 1958. A series of especially careful studies on

the Wright Air Development Center centrifuge indicated that when the subject

was positioned so that the g forces were applied transversely and backward to the

center of rotation, breathing became easier. Acceleration-deceleration patterns of

12 g for 4 seconds, 8 g for 4i seconds, and 5 g for 2 minutes were endured with-

out great difficulty by practically all the volunteer subjects, some having even

higher tolerance limits. Results of runs on the Johnsville centrifuge with the sub-

jects in an aft-facing position for both acceleration and deceleration patterns also

appeared favorable. '_

The students of g forces tried various support devices in the late fifties in

their search for ways to increase human tolerance to acceleration and deceleration

loads. One specialist in the Wright-Patterson centrifuge group came up with

a suit of interwoven nylon and cotton material, reinforced by nylon belting,

and attached to the pilot scat at six places to absorb the g loads and distribute

them more evenly over the entire body. Later, Wright-Patterson scientists using

a nylon netting arrangement in conjunction with a contour couch were able to

expose several men to a peak of 16.5 g for several seconds without any discoverable

adverse effects. Other Air Force specialists experimented with subjects partially

enclosed in a "rigid envelope," actually a plaster cast, as protection against both

g-load buildup and impact forces. And yon Beckh, whose concern with the

weightlessness-deceleration puzzle led him to experiment with anti-g techniques,

developed a device called "multl-directlonal g protection," a compartment that

turned automatically to ensure that the g forces were always applied transversely

on its occupant. Von Beckh's invention was used to protect a rat that went

along on Beeding's record sled run in 1958, and a modified compartment carried

three mice on a Thor-Able rocket launch the same year. Results in both experi-

ments were encouraging.'_

Navy scientists were especially interested in water immersion as a means of

minimizing g loads. Researchers in Germany, Canada, and the United States
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had experimented with water-lined flying suits and submersion in water tanks,

beginning in the 1930s. Specialists had carried out sporadic biodynamic tests
with immersed rabbits and mice in the late forties at the Navy School of Aviation

Medicine and, after the giant centrifuge began operation in 1952, in Johnsville. 3_

In 1956, R. Flanagan Gray, a physician at the Johnsville laboratory, designed

an aluminum centrifuge capsule that could be filled with water and was large

enough to hold a man. After some initial troubles installing the contraption on

the centrifuge and perfecting an emergency automatic flushing mechanism, the

"Iron Maiden," as it was rather inaccurately nicknamed, went into use. In

March 1958, Gray, immersed to his ribs in a bathtub-like device developed at the

Mayo Clinic during the Second World War, had endured 16 g of headward (head

to feet) acceleration. Then, the next year, Gray enclosed himself in the Iron

Maiden and, positioned backward to the center of rotation and immersed in

water above the top of his head, held his breath during the 25-second pattern

to withstand a peak of 31 g transverse acceleration for five seconds. This perform-

ance with the water-filled aluminum capsule established a new record for tolerance

of centrifuge g loads._

Nylon netting, multidirectional positioning, and water immersion were all

promising methods for combating g forces and expanding human endurance lim-

its. But netting had a troublesome tendency to bounce the subject forward as

the g forces diminished, while directional positioning and water-immersion ap-

paratus required more space and welgtfft_i-rUw-giald be available in a small, rela-

tively light spacecraft? 7 And considering the thrust limitations of the Thor, the

Atlas, or the somewhat larger Titan ICBM, a small spacecraft was the only feasible

design for an American manned satellite in 1958.

At the inception of the NASA manned satellite project, in the fall of 1958, the

apparent solution to the problem of body support was an anti-g contrivance devel-

oped not by biodynamicists but by a group of practicing aerodynamicists in NACA's

Pilotless Aircraft Research DMsion, part of the Langley Aeronautical Laboratory

in Virginia. Maxime A. Faget, William M. Bland, Jr., Jack C. Heberlig, and a

few other NACA engineers had designed an extremely strong and lightweight

couch, made of fiber glass, which could be contoured to fit the body dimensions of

a particular man. In the spring of 1958, technicians and shopmen at Langley

molded the first of a series of test-model contour couches. The following July a

group from Langley went to the Aviation Medical Acceleration Laboratory at

Johnsville to try out their couch on the Navy's big centrifuge, as

The Navy biodynamicists and the NACA engineers experimented with the

couch and various body positions in an effort to amplify ag-load tolerance. The

couch made at Langley had been molded to fit the physical dimensions of Robert
A. Champine, one of the foremost NACA test pilots. Champine rode the Johns-

ville centrifuge to a peak of 12 g on July 99, then departed for a conference on

the Pacific Coast. The next day Navy Lieutenant Carter C. Collins volunteered

to test the couch. Since his frame was smaller than Champine's, the Johnsville
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Mercury

_ _ _ One o[ the most critical design and [easibility

...... problems in the early days o[ Mercury was

- /" ---_2_._-:_.-=_--_-- '\ -- ........ whether the astronaut could be sa[elv re-

' _ _-_'_7_ strained and supported through the succession

_ .... _"-- - o[ vibration levels, g [orces, weightlessness,

_""_5 "" and more g [orces that would occur in space

.... _'_ ......... -- flight. Langley laboratory engineers con-

-- _ ceived the contour couch (le[t) in 1958, and

refined it enough to try a model (below) in

..... _>'__ 1959.
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Couch

A/ter the couch concept /lad been devised,

therc was the problem o[ a system to provide

the contradictory combination o/ restraint,

cushioning, and support. An early couch o[

nylon netting (right) was ruled out because

it bounced the occupant [orward as g/orces

diminished. The final choice was fiber glass

cast to the contour o/each astronaut (below)

and equipped with restraining straps.
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experts had to pack foam-rubber padding into the recesses of the fiber-glass bed.

Collins then climbed into the centrifuge gondola and seated himself in the couch,

the back angle of which was set forward 10 degrees. The 4000-horsepower cen-

trifuge motor whirled the gondola progressively faster. On the first run the loads

reached a peak of 12 g. Five more runs pushed the peak to 18 g. Then, on the

sixth try, using a grunting technique to avoid blackout and chest pains, Collins

withstood a peak of 20.7 g, applied transversely for a duration of six seconds.

Later that day, Gray, inventor of the Iron Maiden, rode the centrifuge with the

contour couch and also endured a 20-g peak. The acceleration patterns to which

Collins and Gray were exposed corresponded to a reentry angle of 7.5 degrees.

At that time the optimum reentry angle being considered for a manned satellite,

1.5 degrees, theoretically would expose the spacecraft passenger to only 9 g.'_

The NACA engineers, already working overtime on designs for a manned

orbital capsule, were elated. It seemed that the), finally had an effective anti-g

device that was small enough and light enough to fit into a one-ton ballistic cap-

sule the), had in mind for the initial manned space ventureW They had, in fact,

made a major contribution to the protection of a space rider from sustained high

g forces, although they did not fully realize as yet that body angles were more

significant features of the couch than its contoured support.

The procedure ultimately used for protecting the Mercury astronauts from the

g loads of acceleration to orbital velocity and deceleration during reentry repre-

sented a combination of the advantages gained from man), experiments by military

and other specialists in flight physiology, as well as from the ingenuity of the aero-

nautical engineers in NACA and NASA. Although the idea of using a hammock

either for the basic support or in combination with the contour couch was peren-

nially attractive to the human-factors experts in Project Mercury, all Mercury

astronauts sat in essentially the same couch designed by Faget and his coworkers

in the spring of 1958. But added to this basic technique were restraining straps,

a semi-supine posture, frontward application of acceleration loads, and the reversal

of the spacecraft attitude during orbit to permit frontward imposition of reentry

loads as well. The final elements in the NACA-NASA campaign to minimize

the effects of insertion-reentry g buildups was the use as astronauts of experienced

test pilots provided by the military services. During the centrifuge experiments

of the fifties such men had consistently proved capable of withstanding higher g

forces than nonpilots.

ENVIRONMENTAL CONTROL

High-altitude atmospheric flight had necessitated much work related to two

serious physiological problems of space flight--air supply and the pressure re-

quired for breathing in space. Research on these problems in the United States

stretched back to 1918, when the Army began operation of a decompression

chamber at Hazelhurst Field, Long Island. In the early 1930s the civilian aviator
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Wiley Post wore a pressure suit, looking like a deep-sea diver's outfit, for high-

altitude flying. By the early fifties the typical jet pilot breathed pure oxygen for

hours in an artificially pressurized cabin while wearing a pressurized flying suit

as an extra protection in case of cabin decompressionJ 1

Air compression, however, is not practicable above 80,000 feet. Travel out-

side the breathable atmosphere, whether into space or to the bottom of the sea,

necessitates living inside a hermetically sealed compartment, a completely airtight

ecological system in which carbon dioxide exhaled by the traveler is constantly

replaced by an onboard supply of pure oxygen or some combination approximat-

ing the nitrogen-oxygen composition at sea level. In this area of space flight

research--space cabin environment--the Air Force achieved preeminence in the

early fifties with the development of the first sealed space cabin.

The sealed space cabin had two essential precursors. One was the sealed

gondola for stratospheric ballooning, used by the Swiss twins Auguste and Jean

Piccard in several flights to altitudes of around 10 miles in the 1930s and in the

Explorer H ascent of 1935, which carried Army experimenters Orvil A. Anderson
and A. W. Stevens to 72,335 feet and set a record that stood for 20 years? -_
The other was the closed underwater environment of the bathysphere, used for

many years in deep-sea exploration, and of the submarine. In the fifties, Air
Force research on the sealed space cabin paralleled similar work by Navy scientists

on an environmental control system for the new atomic-powered submarines,

which were being designed to remain totally submerged for months? '_

In 1952, Fritz Haber, of the Air Force School of Aviation Medicine, drew

blueprints for a sealed chamber to be used for space medicine research; at the

urging of Hubertus Strughold the Air Force let a contract for its construction.

The Guardite Company of Chicago delivered a completed cabin in the summer

of 1954." "Nobody took notice of a 'sealed cabin,' " recalled Strughold. "We
had to have a name that would attract attention to our work. So I named it the

'Space Cabin Simulator.' "' '_

The cabin provided about 100 cubic feet of lMng space, room enough for

an ordinary aircraft seat and a panel of lights, switches, and displays to test the

psychological reactions of the subject. It had systems for air conditioning, oxygen

supply and carbon dioxide absorption, urine distillation, and the recycling of the

distilled urine together with air moisture to provide water pure enough to drink.

Cabin pressure was maintained constantly at a level equivalent to an altitude of

18,000 to 25,000 feetJ _

The space cabin simulator received its first national publicity in March 1956,

when Airman D. F. Smith spent 24 hours in the chamber at San Antonio, per-

forming a number of tasks for psychological monitoring and wearing instrumenta-
tion to record his heart action, temperature, and respiration rate. During the

next two years, Lieutenant Colonel George R. Steinkamp, Captain Julian Ward,

and George T. Hauty, who had charge of the simulations, gradually increased the

duration of'the tests. On Februar_ ' 16, 1958, four and a half months after
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Sputnik I and after seven days in the sealed chamber, Airman Donald F. Farrell

stepped out to be greeted by a crowd of newsmen and by Senator Lyndon B.

Johnson. Ill this, the most famous experiment ever run in the original space

cabin simulator, Farrell had spent his week completely isolated in an environment

that duplicated life inside a spacecraft in every respect except the weightless
condition?:

The Farrell experiment provided no unexpected physiological data. But

Hauty, chiefly interested in the psychological portion of the sinmlation, reported

that the daily log kept by Farrell showed a deterioration from good spirits to "the

seemingly abrupt onset of frank hostility." Farrell's mental condition "reached

the point of becoming the single conceivable reason for a premature termination

of the flight." Hauty noted that Farrell's proficiency at tasks assigned to him

also deteriorated severely as the experiment progressed. '_

The psychological data from the early space cabin simulator tests, as well as

observation of subjects in the isolation chamber at Wright-Patterson Air Force

Base, were not encouraging. Major Charles A. Berry, an Air Force physician

who later would work closely with the astronauts in Project Mercury, perhaps

expres._cd the consensus among space medicine investigators by 1958: "The psy-

chological problems presented by the exposure of man to an isolated, uncomfort-

able void seem to be more formidable th;m the physiological problems." "'

MATTER FROM SPACE

Even after enclosing himself in a sealed cabin and adjusting to prolonged isola-

tion, the first man in space ran the danger of being killed by decompression if

his cabin were punctured by one of the myriad meteoroids, ranging in size from

less than a millimeter up to several meters, that constantly bombard Earth's

atmosphere. "_'_ Impact with a meteoroid, even one the size of a BB shot, con-

ceivably could put a hole in the structure of a spacecraft and cause death to its

occupant through either gradual or explosive cabin decompression.

In the forties and early fifties scientists varied widely in their guesses as to

the probability of meteoroid impact. Fletcher G. Watson, a Harvard University

astronomer, predicted in I946 that at least one of every 25 space ships going

to the Moon would be destroyed by collision with ;t meteoroid. Two years later

George Grimminger, a mathematician with the Rand Corporation, estimated

that a spacecraft with an exposed area of 1000 square feet would be hit by a

particle with a diameter of _ millimeter only about once every 15 years. As
late as 1951, however, Fred L. Whipple of Harvard, one of the principal American

authorities on meteoroids, was rather pessimistic about the chances of avoiding

meteoroid penetration and suggested thick shielding on the spacecraft to guard

against structural damage. _'

The early instrumented satellites sent up by the Soviet Union and the United

States did much to dispel the fears of the space flight enthusiasts about meteoroids.
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The AmericansatelliteExplorer I, launched in January 1958, recorded only

seven hits by micrometeoroids--particles considerably less than a millimeter in

diameter--during the first month of its orbital life. Apparently none of these

pieces of matter penetrated the satellite's outer skin. Data from the much larger

Russian Sputnik III, sent into orbit in May 1958, indicated that an orbiting space-

craft with a surface of 1000 square meters (10,760 square feet) would be hit

by a meteoroid weighing at least one gram only once every 14,000 hours. And

Explorer VI, orbited by the United States in the late summer of 1959, encountered

meteoroid dust particles only 28 times during the first two days it was in orbit?"-

These data prompted a human-factors specialist for one of the major aerospace
firms to conclude that for low orbital missions in a manned spacecraft "the danger

from meteorite [sic] penetration is minor to negligible in comparison to the other

hazards of such flights." :'_ Nevertheless, Project Mercury astronauts would wear

a full-pressure suit, a closed ecological system in itself, so that if cabin decompres-
sion occurred each astronaut could live until his space capsule could be brought
back to Earth.

SPACE RADIATION

In addition to weightlessness, g loads, air, water, and food supply, isolation,

and meteoroids, the problems of space flight included protecting the passenger

from different kinds of electromagnetic radiation found above the atmosphere.

Of the varieties of radiations in space the most mysterious is cosmic radiation,

the source of which presents one of the grandest puzzles in nuclear astrophysics.

Some of this radiation possibly comes from the Sun, but the preponderance of

the cosmic rays bombarding Earth's atmosphere evidently originates outside

the solar system--thus the term "cosmic" radiation. High-energy cosmic ray

primaries--subatomic particles, of which about 90 percent are protons of hydrogen

and helium--slam into the atmosphere at velocities approaching the speed of

light. Fifteen to 25 miles above Earth, the cosmic ray primaries collide with

atoms and molecules in the thickening atmosphere, are broken up, and are con-

verted into lower-energy rays called secondaries. Above 25 miles the atmosphere

becomes too thin to absorb the cosmic ray primaries; since they are capable of

penetrating a thick lead wall, it was futile to try to shield a spacecraft pilot com-

pletely. So in the early 1950s medical researchers, assuming that a space pilot

would be exposed to some cosmic radiation, approached the problem primarily

from the angle of establishing how large a dose a human being could tolerate. '_'

As with weightlessness and g-load research, the best postwar device for study-

ing cosmic radiation was the instrumented sounding rocket. But the last of the

rocket experiments with primates occurred in May 1952. From that time until
animal rocket shots resumed in 1958, the only upper-atmospheric research rockets

fired in the country were occasional Aerobees, launched by the Air Force to alti-

tudes of about 150 miles. '_'_ These shots, carrying only instruments, brought back

a modicum of data on cosmic rays. The prime instrument fox" cosmic ray re-
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search from 1952 to 1958 was the oldest vehicle for human flight, the balloon.

The postwar development of sturdier, larger, polyethylene balloons to replace

rubber aerostats made possible higher and higher ascents with increasingly heavier

loads. At the same time the expansion of balloon technology', Ieading to an in-

creasing number of giant, shiny spheres floating over the United States, multiplied

reports of and popular interest in "Unidentified Flying Objects." :_

In the balloon-borne space radiation experiments of the fifties, the Navy carried

out some notable manned ascents into the stratosphere. On November 8, 1956,

for example, Lieutenant Commandei, s Malcolm D. Ross and M. L. Lewis, as

part of the Navy's Strato-Lat) program of manned ascents from northern latitudes,

reached 76,000 feet, then an altitude record. Less than a year later Ross and

Lewis sat in their cramped sealed gondola as their huge polyethylene balloon

ascended to nearly 86,000 feet. And in late June 1958 the same two Navy

aerostation veterans remained in the 70,000-80,000-foot region for almost 35
hours, n_

The Navy also pioneered in the use of ba]loon-launched rockets (rockoons).

The first successful rockoon launch occurred in August 1952 when, from a ship

off the coast of Greenland, a University of Iowa team headed by physicist James A.
Van Allen sent up a balloon from which a rocket ignited at 70,000 feet and climbed

to an altitude of nearly 40 miles. The Navy did most of its upper-atmospheric

research, however, with instrumented balloon flights carrying small organisms and

insects. In May 1954, for example, General Mills, Incorporated, under contract

to the Office of Naval Research, launched a polyethylene balloon, with a capacity of

3 million cubic feet, that carried cosmic ray emulsions--plates designed for record-

ing the tracks of ionizing particles- to an altitude of 115,000 feet. Five years

later, from Sioux Falls, South Dakota, Raven Industries launched an Office of

Naval Research balloon biological package to a record altitude of 148,000 feet. "_

The center of Air Force balloon research in the early 1950s was the Aero-

medical Field Laboratory in New Mexico. From July 2 l, 1950, when Air Force

personnel launched the first polyethylene balloon at Holloman Air Force Base, to

December 18, 1958, the scientists at the field laboratory sent up 1000 research

balloons, although only a small number of these ascents were designed expressly
for cosmic ray study. In 1953 the Holloman researchers moved most of their

balloon experiments to the northern United States, in the higher geomagnetic lati-

tudes, where they could obtain increased exposure to cosmic ray primaries. Dur-

ing the next year they sent aloft a collection of radish seeds on a series of flights,

compiling some 251 hours of exposure of the seeds above 80,000 feet. Monkeys,

mice, rats, hamsters, and rabbits also drifted upward in balloons launched by
Winzen Research, Incorporated, as a Holloman contractor, from Sault Ste. Marie,

Michigan. The most interesting effect observed among the various test subjects

was a striking increase in the number of gray, hairs on black mice exposed to the
high altitudes. _

The first solo manned ascent into the stratosphere was also principally an under-
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taking of the field laboratory at Holloman. In 1956 field laboratory experimenters

inaugurated Project Manhigh, a series of flights from northern sites using Winzen

balloons, to test man's ability to live for prolonged periods in a sealed-cabin
environment like that inside a spacecraft and to gather new data on cosmic radia-

tion. David Simons, head of the Space Biology Branch at Holloman, was project

officer for the Manhigh ascents. The initial flight, from Fleming Field, Minne-

sota, took place on June 2, 1957. Captain Joseph W. Kittinger stayed aloft inside

his sealed gondola for nearly seven hours, breathing pure oxygen, making visual

observations, and talking frequently with John P. Stapp, the flight surgeon, and

other physicians on the ground. Kittinger spent two hours above 92,000 feet;

his maximum altitude during the flight was 96,000 feetf '°

About nine weeks later Simons himself entered the space equivalent region,

suspended in a sealed capsule below a 3-million-cubic-foot polyethylene balloon
launched from an open-face mine near Crosby, Minnesota. Simons exceeded

Kittinger's mark for both duration and altitude, staying aloft 32 hours and remain-

ing at 101,000 feet for about 5 hours. Simons was the first man in history to see

the Sun set and then rise again from the edge of space. In the Manhigh II gon-

dola he spent more time than anyone before him looking upward at the blackness of

space and outward at the white and blue layers of the atmosphere. "The capsule

seemed like a welcome window permitting a fabulous view and precious oppor-

tunities, not a prison or an enclosure," he related after the flightf '1

In October 1958 an excessive temperature rise in the capsule forced a prema-
ture termination of the third Manhigh flight, carr'ying Lieutenant Clifton M.

McCluref'-" Yet McCIure's ascent, together with those of Kittinger and Simons,

proved the workability of the sealed cabin for sustaining human life where "the

environment is as hostile and very nearly as different in appearance as one would

expect to observe from a satellite." _ The environmental control system of the

Manhigh capsule and the instrumentation for physiological telemetering were

strikingly similar to those later used in the Mercury spacecraft.

With regard to cosmic radiation, however, the Manhigh flights, like numerous
rocket, balloon, and laboratory experiments of previous and succeeding years,

returned data that were either negative or inconclusive. During the Manhigh II
ascent two containers of bread mold were attached to the underside of the capsule,

and Simons wore emulsion plates on his arms and chest to measure cosmic ray

penetration. The plates did show indications of several hits by so-called "heaw"

primaries--cosmic ray particles made up of nuclear particles heavier than are found

in hydrogen or helium--but years later the skin in the area of the plates revealed
no effects of radiation. _

All these experiments left most scientists as reluctant to speculate about the

hazards from cosmic rays in flight as they had been in the early fifties. Simons

felt that in manned orbital flights following roughly equatorial orbits, where the

spacecraft remained within the protective shielding of Earth's magnetic fields, the

spacecraft pilot would be in no danger from cosmic radiation. Yet he remained
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troubled by the possibility that a solar flare, a sudden burst of energy from the Sun,

might precipitate a great increase in cosmic ray intensity during a space mission.

About a twentyfold multiplication of cosmic radiation accompanied a solar flare
of February 1956. Simons' concern with solar flares led him to the conclusion

that continuous voice contact between ground stations and the space pilot would
be essential, as well as stepped-up efforts to predict the flares? _

All proponents of manned space flight were alarmed when information trans-

mitted from the first three Explorer satellites, launched during the first half of
1958, disclosed the existence of a huge envelope of radiation beyond the iono-

sphere. Evidently consisting of protons and electrons trapped in Earth's magnetic

field, the radiation layer begins about 400 miles out in space and doubles in
intensity about every 60 miles before tapering away about 1200 miles from Earth.

This discover), was the first "Van Allen belt," named after James A. Van Allen,

United States director of the International Geophysical Year radiation experi-
ments. The Pioneer IH probe, launched in December 1958, failed to reach

escape velocity, but it did reveal that the radiation zone consisted not of one belt

but of two at least--an inner belt of high-energy particles and an outer belt of

less energetic particles. Two earlier Pioneer shots, in October and November,

had shown that while the radiation zone was several thousand miles deep, it did

not extend into space indefinitely, c'z Quite obviously, the doughnut-shaped
Van Allen belts would pose a serious threat for manned travel in high orbits

or interplanetary voyages. In the early manned ventures into space, however, a

spacecraft could be placed in an orbit 100 to 150 miles from Earth, high enough

to be free of atmospheric frictional drag, yet low enough to stay under the
Van Allen radiation. 67

The radiation hazards of space flight also include solar radiation. Solar heat,

ultraviolet rays, and x-rays all become much more intense beyond the diffusive

atmosphere of Earth, but they can be adequately counteracted by space cabin

insulation, shielding, refractive paint, and other techniques. Advanced space

missions may subject astronauts to dangers from other kinds of radiation, such

as the radiation belts surrounding other planets or the radioactivity produced by

a spacecraft with a nuclear powerplant? _

A REASON FOR RESEARCH

During 1958, scientistsand engineers,both militaryand civilian,talkedmore

openly than they had in previous years about radiation dosages, meteoroid

penetration,weightlessness,and the other anomalies of space travel. They re-

ceived a considerably more respectful hearing. What made members of the

Congress and Americans in general responsive to such discussions and interested

in past research and future plans for space exploration were the ever-larger

scientific satellites launched by the Soviet Union, beginning October 4, 1957. In

the midst of the nationalistic humiliation following the Sputniks, not only space
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rocketry, but also medical research with rockets received an invaluable boost. In

May, 1958, Air Force physicians sent mice aIong on three reentry' tests of the Able

ablation nose cone for the Thor. Then, the following December and in May, 1959,

the Navy School of Aviation Medicine dispatched monkeys, sea-urchin eggs and

sperm, molds, tissues, and seeds on two test firings of the Jupiter intermediate-

range missile, carried out by the Army Ballistic Missile Agency5 _

The new focus on space, the new curiosity about what went on beyond the

atmosphere, the determination to "catch up" in the space race--these sentiments

redounded to the benefit of those Americans who had been trying to solve the

biological and technological puzzles of manned space flight long before there

was a space race. Their principal stimulus was not international prestige or

the drive for technological supremacy; it was a desire to discover the undiscovered,

to probe into the unknown. And they beIieved that wherever man's instruments

went, man should follow. The proponents of manned space flight in the United
States could be found in several locations--in the military,, in some universities,

in the aerospace industry, even in the Congress. But an especially zealous con-

tingent worked for NACA. Ultimately its members would become the engineering

and managerial nucleus of the American program to rocket a man into orbit

around Earth and bring him back.
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Aeronautics to Astronautics: NACA Research

(1952--1957)

lITTLE known outside the military services and the aircraft industry, the
National Advisory Committee for Aeronautics by the early 1950s had far

outgrown its name and could look back on nearly four decades filled with land-
mark contributions to military and civilian aeronautics. NACA had matured
much beyond its original "advisory" capacity, had established three national labo-

ratories, and had become perhaps the world's foremost aeronautical research
organization. Drag-reducing engine cowlings, wing fillets, retractable landing
gear, thin swept wings, and new fuselage shapes for supersonic aircraft--these
were only a few of the numerous innovations leading to improved airplane per-
formance that were wholly or partially attributable to the agency. NACA had
pioneered in institutionalized team research--"big science," as opposed to the
"little science" of individual researchers working alone or in small academic
groups--and over the years such activity had paid off handsomely for the Nation?
NACA's relative importance in the totality of American aeronautics had declined
after the Second World War with the enormous increase in military research
and development programs, but NACA did not exaggerate when it asserted that
practically every airplane aloft reflected some aspect of its research achievements.

The contributions of NACA in aeronautics were spectacular, but regarding the
inchoate discipline of astronautics, especially rocket propulsion research, the
agency, Iike the rest of the country, was skeptical, conservative, reticent. The
prevailing prewar attitude within NACA toward rocket technology was expressed
in 1940 by Jerome C. Hunsaker, then a member and later chairman of NACA's
Main Committee. Discussing an Army Air Corps contract with the California

Institute of Technology for rocket research in relation to current NACA work

on the deicing of aircraft windshields, Hunsaker said to Theodore yon K(trm_n of

CalTech, "You can have the Buck Rogers job." -"

In the early postwar years the leaders of NACA viewed rocket experimentation,

such _s the program beginning in 1945 at the Pilotless Aircraft Research Sta-
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tion, on Wallops Island, Virginia, as essentially a tool for aerodynamics research

furthering the progress of supersonic flight within the atmosphere. NACA's an-

nual report for 1948, for example, mentioned the heating rates generated on the

noses of the V-2s then being fired at White Sands, but discussed the problem of
structural heating only in the context of aircraft. '_

At the request of the military services, the Langley, Lewis, and Ames labora-

tories did study the theoretical performance of missiles, the operation of rocket

engines, the composition of rocket fuels, and automatic control arrangements
for supersonic guided missiles and aircraft. But such research accounted for

only a small percentage of the total NACA workload and budgetary allotments.

The annual budget cuts suffered by NACA, beginning in 1949 and reaching a
high point in 1954 when the agency received only a little more than half its

request, perhaps intensified the scientific conservatism of the NACA leaders,

while the Korean War once again shifted most NACA laboratory work to the

"cleaning up" of military aircraft? It was in this climate of declining support

for flight research in 1953 that NACA Director Hugh L. Dryden, who less than

ten years later would be helping manage a manned lunar-landing program, wrote,

"I am reasonably sure that travel to the moon will not occur in my lifetime .... " _

NACA MovEs TOWARD SPACE

In the early 1950s, however, as a full-fledged program to develop large ballistic

missiles got underway and as the rocket research airplanes reached higher into the

stratosphere, NACA began to consider the prospect of space flight and what

contributions the organization could make in this new area of inquiry. On
June 24, 1952, the Committee on Aerodynamics, the most influential of NACA's

various technical committees, met at Wallops Island. Toward the end of the

meeting, committee member Robert J. Woods, the highly respected designer of

"X" aircraft for the Bell Aircraft Corporation, suggested that since various groups

and agencies were considering proposals for sending manned and unmanned

vehicles into the upper atmosphere, NACA should set up a study group on "space
flight and associated problems." To Woods, NACA _vas the logical agency to

conduct research in spacecraft stability and control; such work would be a proper
extension of current NACA activity, After some discussion the other members

of the committee approved Woods' suggestion. They formally resolved that

NACA should intensify its research on flight at altitudes between 12 and 50

miles and at speeds of mach 4 through 10, and "devote a modest effort to prob-
lems associated with unmanned and manned flight at altitudes from 50 miles

to infinity and at speeds from Mach number 10 to the velocity of escape from

the earth's gravity," On July 14 the NACA Executive Committee, the govern-

ing body of NACA, composed of practically all the members of the Main Com-

mittee, approved a slightly revised version of this resolution. _

Less than a month after the action of the Executive Committee, Henry J. E.
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Reid, Director of the Langley Aeronautical Laboratory, appointed Clinton E.

Brown, Charles H. Zimmerman, and William J. O'Sullivan, aeronautical engi-

neers at the Virginia center, to work up a thorough proposal for research in

upper-atmospheric and space flight. Specifically the Langley engineers were to

suggest a suitable manned vehicle on which construction could be initiated within

two years. Their proposal was to be reviewed by a board composed of repre-
sentatives from the three NACA laboratories and NACA's High Speed Flight

Station at Edwards Air Force Base, California. _

Throughout the next year and a half, the Langley study group, engineers at

Ames and the flight station, and the review board worked on a plan for the new

research instrument. There was wide divergence of opinion as to what should

be the nature and objectives of the vehicle; some parties were even skeptical about

the wisdom of any space-directed research. Reid, John Stack, and others at

Langley favored modifying the X-2 research airplane, then under development

by Bell Aircraft, to make it a device for manned flight above 12 miles, s Smith J.
DeFrance, one of the early Langley engineers who had become Director of the

Ames Aeronautical Laboratory when it opened in 1941, originally opposed Woods'

idea for a study group on space flight because "it appears to verge on the develop-

mental, and there is a question as to its importance. There are many more

pressing and more realistic problems to be met and solved in the next ten years."

DeFrance had concluded in the spring of 1952 that "a study group of any size is
not warranted." _

In July 1954, however, representatives of NACA disclosed to the Air Force

and the Navy their conclusions regarding the feasibility of an entirely new rocket-

powered research airplane and suggested a tripartite program for the manned

exploration of the upper atmosphere. NACA's views were based mainly on the

findings and proposals of the Langley study group, which had been working on

the problem since 1952 and had made a more detailed presentation than research

teams from Ames and the High Speed Flight Station. NACA envisioned an air-

craft that would fly as high as 50 miles and whose speed would reach perhaps

roach 7 (approximately 5000 miles per hour). Such a craft would be especially

valuable for studying the critical problems of aerodynamic heating, stability, and

control at high altitudes and speeds. Data gathered on its flights "would con-

tribute both to air-breathing supersonic aircraft . . . and to long-range high-

altitude rocket-propelled vehicles operating at higher Mach numbers." Realizing

that the temperatures generated on its return into the heavier atmosphere would

be greater than on any previous airplane, NACA suggested as a structural metal

Inconel-X, a new nickel-chrome alloy "capable of rapid heating to high tempera-

tures (1200°F) without the development of high thermal stresses, or thermal

buckling, and without appreciable loss of strength or stiffness." i0

This long-range plan was shortly accepted by the Air Force and the Navy,

Bureau of Aeronautics and put into motion as the "X-15 project." In December

1954, NACA, the Air Force, and the Navy agreed to proceed with the project
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under operating arrangements roughly similar to the previous "X" aircraft ven-

tures. The Air Force had responsibility for finding a contractor and supervising

design and construction ; both the Air Force and the Navy would provide financial

support; and NACA would act as technical director. 11

As prime contractor for the X--IS, the Air Force picked North American
Aviation of Los Angeles. The performance specifications of the X-15 called

for a rocket engine consuming anhydrous ammonia and liquid oxygen and pro-

viding some 57,000 pounds of thrust for as long as six minutes. This powerplant

would be four times as big as that of the X-2. A highly sensitive flight-data

system, thick upper and lower vertical stabilizers for aerodynamic control, small

reaction jets burning hydrogen peroxide for control in the near-vacuum of the

upper atmosphere, and a new structural material--these were some of the novel

characteristics of the stub-winged craft?-"

The X-15 would not fulfill its original design objectives until 1962, long after

NACA had become NASA and in the same year that Project Mercury achieved

its basic goals. Even so, the X-15 was by far the most ambitious, expensive, and

publicized research undertaking in which NACA ever participated. Its eventual

success stemmed largely from the imagination and ingenuity of the NACA engi-
neers who had started planning for an advanced aerodynamic vehicle in 1952.

In 1954, the }'ear of Major Arthur Murray's climb to about 17 miles in the

X-1A, the idea of manned rocket flight to an altitude of 50 miles seemed exceed-

ingly visionary. Most people in NACA, the military, the aircraft industry, and

elsewhere assumed that over the years vehicles with substantial lift/drag ratios

would evolve to higher and higher speeds and altitudes until, by skipping in and

out of the atmosphere like a flat rock across the surface of a pond, they could

flv around the world. Even then, however, there were those within NACA who

took the Executive Committee's mandate for "research in space flight and as-

sociated problems" literally and who felt that the X 15 concept did not go far

enough. The), looked to the second part of the resolution adopted by the Com-

mittee on Aerodynamics and approved by the Executive Committee, which sanc-

tioned "a modest effort" on the "problems associated with flight at altitudes from

50 miles to infinity and at speeds from Mach number 10 to the velocity of escape

from the earth's gravity."

Some of the most "far out" aeronautical engineers working for NACA in the

earl), fifties were employed at the Ames laboratory. As early as the summer of

1952, Ames engineers, experimenting at the supersonic free-flight, 10-inch-by-14-

inch, and 6-inch-by-6-inch wind tunnels at the California site, had examined

the aerodynamic problems of five kinds of space vehicles--glide, skip, ballistic,

satellite, and interplanetary. The}" knew that the aerodynamic forces acting on

a vehicle above 50 miles were relatively minor, as were problems of stability and

control at such altitudes. They concluded, however, that a space vehicle should

probably be controllable at lower altitudes, although it "may not be optimum

from the point of view of simplicity, etc .... " _
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REENTRY: 2_ERODYNAMICS TO THERMODYNAMICS

The Ames study had been specifically requested by" NACA Headquarters,

which in its initial prospectus on the new research airplane project had identified

stability and control in high-speed, high-altitude flight as one of two areas need-
ing much additional research. The other and far more critical area was aero-

dynamic heating, which becomes acute as an object knifes into the atmosphere

from the airless environment of space and collides with atmospheric molecules

of ever-increasing density. For several years NACA researchers had been study-

ing aerodynamic heating, which begins to be troublesome at about twice sonic

speed. The X-15 program was established largely to return data on heating

generated up to mach 7. But such investigations of thermal stress hardly

approached the heating problem faced by the military services and the missile

industry in their efforts to produce a durable warhead for an intercontinental

missile. In a typical ICBM flight with a peak altitude of 900 miles and a range

of 6500 miles, the stagnation temperature in the shock wave at the front of the

nose cone could reach 12,000 degrees F. This is some 2000 degrees hotter than

the surface of the Sun and 10 times the maximum surface temperature that was

calculated for an X-15 trajectory. TM Of the myriad puzzles involved in design-

ing, building, and flying the Atlas, the first American ICBM, the most difficult

and most expensive to solve was reentry heating. The popular term "thermal

barrier" to describe the reentl3,, problem was coined as an analogy to the "sonic

barrier" of the mid-1940s, although research in the fifties would reveal that the

problem could have been described more accurately as a "thermal thicket."

During June 1952, in the same summer that NACA had decided to move

toward space flight research and had proposed an advanced research aircraft,

one of the scientist-engineers at Ames had made the first real breakthrough in

the search for a way to surmount the thermal barrier. He was Harry Julian

Allen, a senior aeronautical engineer at Ames and chief of the High-Speed Re-

search Division since 1945. The burly Allen, who signs his technical papers

"H. Julian" but who is known familiarly as "Harvey," was 42 years old in 1952
and looked more like a football coach than a scientist. Holder of a bachelor of

arts degree in engineering from Stanford University, Allen in 1935 had left the

Stanford Guggenheim Aeronautical Laboratory, where he had received the

degree of aeronautical engineer, to join the NACA staff at the Langley laboratory.

When Ames was opened in 1941, he went west with Smith DeFrance and others

from Langley. '_

At Ames, Allen had invented a technique of firing a gun-launched model

upstream through a supersonic wind tunnel to study aerodynamic behavior at high

mach numbers. This notion led to the construction of the Ames supersonic

free-flight wind tunnel, opened in 1949. The tunnel had a test section 18 feet

long, one foot wide, and two feet high. By forcing a draft through the tunnel at

a speed of about roach 3 and by firing a model projectile upstream at a velocity
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This shadowgraph o/ the Mercury

reentry configuration was made in the

Ames Supersonic Free-Flight Tunnel

at a simulated speed o[ roach 10.

of 8000 feet per second, the Ames researchers could simulate a mach number of

about 15. Schlieren cameras set up at seven stations along the test section, three

on the side and four.on the top, made shadowgraphs to show airflow character-

istics over the model and thus determine the aerodynamic forces experienced.

During the 1950s the facility, constructed at an original cost of only about

$20,000, was to prove one of NACA's most valuable tools for hypersonic

investigation? c

As a member of one of the panels of the Department of Defense Research

and Development Board, a group charged with supervising weapons research,

Allen was intimately familiar with the payload protection dilemma confronting

the Air Force and Convair, the prime contractor for the difficult Atlas projectY

In their designs the Convair engineers had already provided that at the peak of

the Atlas' trajectory, its nose, containing a nuclear warhead, would separate

from the sustainer rocket and fall freely toward its target. These exponents of

the ICBM knew that without adequate thermal protection the nuclear payload

would burn up during its descent through the atmosphere.

Fifty )'ears of progress in aeronautics had produced more and more slender

and streamlined aircraft shapes, the objective being to reduce aerodynamic drag

and increase speed. In approaching the Atlas reentry enigma, the Convair group

drew from the huge reservoir of knowledge accumulated over the years by aero-

dynamicists and structures experts dealing with airplanes, rockets, and air-

breathing missiles. The men at Convair fed their data into a digital computer,

which was supposed to help them calculate the optimum design for structural

strength, resistance to heat, and free-flight stability in the separable nose section of a

long-range rocket. The computer indicated that a long, needle-nosed configura-

tion for the reentry body, similar to that of the rocket research airplanes, would be

best for the ICBM. But tests of this configuration, using metal models in the

supersonic wind tunnel at Ames and in rocket launches at Wallops Island, showed
that so much heat would be transferred to the vehicle that the warhead would
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shortly vaporize as it plunged through the atmosphere. No protection system
known at that time could prevent its destruction by aerodynamic heating. TM

This disclosure evoked another spate of predictions that an intercontinental

military rocket would not be feasible for many years. And while relatively few

people were thinking seriously about manned space flight in the early fifties, those
who were also understood that something radical would have to be done on the

problem of reentry before it would be practicable to send a man into space and
recover him.

The man who did something radical was Allen. As Allen put it, the Con-

vair engineers "cut off their computer too soon." He took the sharpnosed Atlas

reentry shape and began making mathematical calculations, using only a pad and

pencil. Eventually he reached a conclusion that seemingly contradicted all the

years of aeronautical research and streamlined aircraft design. For Allen's analy-

sis showed that the best way to cut down reentry heating was to discard a great

deal of one's thinking about orthodox aerodynamics and deliberately design a

vehicle that was the opposite of streamlined. "Half the heat generated by fric-

tion was going into the missiles," recalled Allen. "I reasoned we had to deflect the

heat into the air and let it dissipate. Therefore streamlined shapes were the

worst possible; they had to be blunt." The Ames researcher determined that the

amount of heat absorbed by an object descending into the atmosphere depended

on the ratio between pressure drag and viscous or frictional drag. The designer

of a reentry body, by shaping the body bluntly, could alter pressure drag and thus
throw off much of the heat into the surrounding air. When the bluff body col-

lided with stratospher!c pressures at reentry speeds, it would produce a "strong
bow shock wave" in front of, and thus detached from, the nose. The shock wave,

the air itself, would absorb much of the kinetic energy transformed into heat as the

object entered the atmosphere. 1_

Allen personally submitted his findings to select persons in the missile industry

in September 1952. A secret NACA report memorandum embodying his con-
clusions on the blunt-nose design, coauthored by Alfred J. Eggers of Ames, went

out to industrial firms and the military the next spring. The report bore the date

April 28, 1953, but six years passed before the paper was declassified and published

in the annual report of NACA. "°

For his conception of the blunt-body configuration, Allen received the NACA

Distinguished Service Medal in 1957. The award brought sharp criticism from

H. H. Nininger, director of the American Meteorite Museum at Sedona, Arizona,

who asserted that he had first proposed the blunt nose for reentry vehicles. In

August 1952, Nininger, a recognized authority on meteorites, had suggested to the
Ames laboratory that a blunt shape appeared promising for missile warheads.

Nininger based his conclusion on his studies of tektites and meteorites, contending

that the melting process experienced by a meteorite during its descent through the

aerodynamic atmosphere furnished a lubricant enabling the object to overcome

air resistance. Nininger's letter evidently came to Ames some weeks after Allen,
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Initial missile concept
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Blunt body concept, 1957 Manned capsule concept, 1957

Ten years o[ intensive aerodynamic research preceded the final determination o[ the

reentry configuration [or Project Mercury. Most o[ this was generated by the military

development o[ ballistic missiles. As these schlieren photographs o[ wind tunnel tests

indicate, the departure point o[ atmospheric aerodynamic configuration was to change

drastically under the new heat and stability conditions imposed by Mercury's de-

manding sequence o[ atmospheric [_ight-space[tight-reentry-atmospheric [tight-landing.

assisted by Eggers, had completed his calculations on the relationship between

warhead shape and heat convection. At any rate, what Allen wanted to do was

exactly the reverse of Nininger's suggestion: deliberately to shape a reentry body

bluntly in order to increase air resistance and dissipate a greater amount of the

heat produced by the object into the atmosphere. _'

Allen's high-drag, blunt-nose principle was of enormous interest and benefit

to the missile designers. It led directly to the Mark I and Mark II nose cones

developed by the General Electric Company for the Atlas and later for the Thor.
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Years after the discovery, James H. Doolittle, chairman of NACA's Main Com-

mittee, pointed out that "every U.S. ballistic missile warhead is designed in accord-

ance with his once radical precept." "-" In 1952 the problems of the missilemen

were not of immediate concern to designers of manned flight systems, not even to

those drawing up plans for the X-15, which would encounter a greater heating

load than any previous airplane. Yet Allen's presentation of a new way to mini-

mize the aerodynamic heating of reentry not only made possible an ICBM within

a few years but "marked the potential beginning of manned space flight, with all

of its attendant new structures and materials problems." 2._

The blunt-nose concept was just that--a concept. Succeeding years would

see much experimentation with spheres, cylinders, blunted ogives, and even concave

_hapes at the supersonic free-flight tunnel, ballistic ranges, and various other

facilities at Ames, at the 11-inch hypersonic tunnel at Langley, and at the Pilotless

Aircraft Research Station on Wallops Island.-"' As aerodynamicists began think-

ing about space flight they would propose a variety of configurations for potential

manned space vehicles, although all of the designs would feature some degree of

bluntness. Finally, blunting a reentry body furnished only part of the solution

to the heating problem. Allen's calculations presupposed that some kind of new

thermal protection material would be used for the structure of a high-drag body.

In 1952, aircraft designers and structures engineers were working mainly with

aluminum, magnesium, and titanium, and were giving some attention to such

heat-resistant alloys as Monel K, a nickel-and-steel metal used in the X-2, and

Inconel-X, the basic alloy for the X-15. -"_ But it would take much "hotter" mate-

rials to protect the payloads of the intercontinental and intermediate-range ballistic
missiles--the Atlas, the Thor, the Jupiter, and later the Titan. Far more ma-

terials research was needed before the recovery of a manned spacecraft would be
practicable.

Early in 1956, the Army Ballistic Missile Agency at Huntsville, Alabama,

modified some of its medium-range Redstones in order to extend the studies of

reentry thermodynamics that the Army had pursued at Redstone Arsenal since

1953. As modified, the Redstone became a multistage vehicle, which Wernher

yon Braun and his colleagues called the "Jupiter C" (for Composite Reentry Test

Vehicle). Meanwhile the Air Force conducted its own investigations of reentry

in conjunction with its nose-cone contractors, General Electric and the Avco Manu-

facturing Corporation, using a special multistage test rocket called the X-17,

manufactured by the Lockheed Aircraft CorporationY'

Two principal techniques for protecting the interior of the nose cone offered

themselves--"heat sink" and "ablation." The heat sink approach involved using

a highly conductive metal such a_s copper or beryllium to absorb the reentry heat,

thus storing it _md providing a mass sufficient to keep the metal from melting. The

major drawback of a heat sink was its heaviness, especially one made of copper.
In the ablation method the nose cone was covered with some ceramic material,

such as fiber glass, which vaporized or "ablated" during the period of reentry heat-
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ing. The vaporizing of the material, the conversion of a solid into a gas, dissipated

or carried away the heat. Thus the essence of the ablation technique was delib-

erately burning part of the exterior surface of the reentry body, but designing the

body so that the surface would not burn through completely. -_;

Apparently no consensus existed among students of the reentry problem by

late 1957. The "first generation" ICBM nose cones produced by General Elec-

tric, the Mark I and Mark II, were blunt, heavy copper heat sinks, and the Air

Force had decided to use the Mark II on its Thor intermediate-range missile. But

the Air Force's full-scale tests of the lighter, more sophisticated, but more difficult

and less tidy ablation process had not begun yet. Meanwhile, the Army and the

Vitro Corporation, using the exhaust of liquid rocket motors as a heat source and

the hybrid Redstone in reentry simulations, demonstrated to their own satisfaction

the practicability of consuming part of the structural material during its use, the

principle of ablation. The Army's Jupiter-C shot of August 8, 1957, carrying a

scale model Jupiter nose cone to an altitude of 600 miles and a range of 1200 miles,

supposedly "proved the feasibility of the ablative-type nose cone" and "fulfilled the

mission of the reentry test program." .,s Yet the Ballistic Missile Agency engineers

at Redstone Arsenal were working only on the intermediate-range Jupiter, not on

an ICBM. The question of whether an Atlas warhead or a manned reentry

vehicle could best be protected by the heat-sink or ablation method, or by either,
remained undetermined. Much time and effort would be expended before the

Army's claims for ablation would be fully verified and accepted.

NACA's official role in this accelerated program of materials research was

that of tester and verifier. Even so, the NACA experimenters greatly enlarged

their knowledge of thermodynamics, became well grounded in the new technology

of thermal protection, and prepared themselves to cope with the heating loads to

be encountered in manned space flight.

At the request of the Air Force, the Army, and also the Navy (which was

involved with the Polaris after 1956), NACA devoted an encreasing portion of

its facilities and technical staff to tests of such metals as copper, tungsten, molyb-

denum, and later beryllium for heat sinks, and of ablating materials like teflon,

nylon, and fiber glass. During 1955-1956 the installation of several kinds of high-

temperature jets at the Langley and Lewis laboratories greatly aided NACA ther-

modynamics research. These included, at Langley, an acid-ammonia rocket jet

providing a maximum temperature of 4100 degrees F and a gas stream velocity

of 7000 feet per second, an ethylene-air jet yielding temperatures up to 3500

degrees F, and a pebble-bed heater, wherein a stream of hot air was passed through

a bed of incandescent ceramic spheres. Both Langley and Lewis had electric arc

jet facilities, in which a high-intensity arc was used to give energy to compressed air

and raise air pressure and temperatures. The hot, high-pressure air then shot

through a nozzle to produce a stream temperature of about 12,000 degrees F.

NACA investigators used these high-temperature jets and other research tools,

including the 11-inch hypersonic tunnel at Langley, to gather data eventually rein-
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forcing the Army's contention that ablation was the most effective thermal protec-
tion method. -"9

Meanwhile Maxime A. Faget, Paul E. Purser, and other members of the Lang-

ley Pilotless Aircraft Research Division, working under the supervision of Robert R.
Gilruth, used multistage, solid-propellant rockets for studying heat transfer on
variations of Allen's basic blunt heatshield configuration. Robert O. Piland, for

example, put together the first multistage vehicle to attain mach 10. Faget

served as a regular NACA member and Purser was an alternate member of a

Department of Defense panel called the Polaris Task Group, set up to give advice

on the development of the Navy's intermediate-range, solid-fueled Polaris, which
was to be launched from submerged submarines. NACA worked with the Atomic

Energy Commission and the Lockheed Aircraft Corporation, prime contractor for

the Polaris, in developing the heat-sink nose cone used on the early versions of the
sea-based missile? °

Although there were some 30 different wind tunnels at Langley, the members
of the Pilotless Aircraft Research Division (PARD) firmly believed in the superior-

ity of their rocket-launch methods for acquiring information on heating loads and
heat transfer, heat-resistant materials, and the aerodynamic behavior of bodies

entering the atmosphere. As Faget said, "The PARD story shows how engineer-

ing experimentalists may triumph over theoreticians with preconceptions. Our
rockets measured heat transfer that the tunnels couldn't touch at that time."

Joseph A. Shortal, chief of PARD since 1951, recalled, "PARD made us more than
aeronautical engineers and aerodynamicists. We became truly an astronautically

oriented research and development team out at Wallops." _

The Ames experimenters, on the other hand, were just as firmly convinced
that their wind tunnels and ballistic ranges represented the simplest, most economi-

cal, and most reliable tools for hypersonic research. To the Ames group, rocket
shots were troublesome and expensive, and rocket telemetry was unreliable. As

one Ames engineer put it, "You might get a lot of data but since you didn't control

the experiment you didn't know exactly what it meant." 3_-
The Ames devotion to laboratory techniques, the determination to do more

and more in heating and materials research without resorting to rockets, furnished

the impetus for a new test instrument devised by Alfred J. Eggers, Jr., in the mid-

fifties. Eggers, born in 1922 in Omaha, had joined the research staff at Ames in
the fall of 1944, after completing his bachelor of arts degree at the University of

Omaha. He pursued graduate studies at Stanford University in nearby Palo Alto,
where he received a Master of Science degree in aeronautical engineering in 1949

and a Ph.D. in 19567 _ For years Eggers had worked with Allen and others at

Ames on the aerodynamic and thermodynamic problems of hypervelocity flight,

and as a conceptualizer at the California center he came to be regarded as second

only to the originator of the blunt-nose reentry principle.

Eggers assumed that the major heating loads of reentD, would be encountered
within an altitude interval of 100,000 feet. So he designed a straight, trumpet-
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shaped supersonic nozzle with a maximum diameter of 20 inches and a length of

20 feet, which in terms of the model scale used was equivalent to 100,000 feet of

thickening atmosphere. A hypervelocity gas gun launched a scale model upstream

through the nozzle to a settling chamber. While in free flight through the nozzle

to the chamber, the model passed through ever-denser air, thus closely approxi-

mating the flight history of a long-range ballistic missile. Since the apparatus

simulated both motion and heating experiences, Eggers called the combination of

hypervelocity gun and supersonic nozzle "an atmosphere entry simulator." _'

Eggers calculated that using a model only .36 inch in diameter and weighing

.005 pound, he could simulate the aerodynamic heating generated by an object

three feet in diameter, weighing 5000 pounds, and having a range of 4000 miles.

"In the simplest test," he said, "the simulator could provide with one photograph
of a model rather substantial evidence as to whether or not the corresponding

missile would remain essentially intact while traversing the atmosphere." The

reentry research technique, proposed in 1955, went into operation during the

next year. Construction of a larger version began in 1958. Eggers' atmosphere

entry simulator proved especially useful in materials research at Ames. Like the

high-temperature jets at Langley and Lewis, the rocket tests at Wallops Island,

the Army's Jupiter-C shots from Cape Canaveral, and other experimental methods,

it yielded data that later pointed toward ablation as the best method for protecting
the interior of reentry bodies? '_

Although the official focus of the NACA materials test program remained

on missile warhead development, such actMty was an obvious prerequisite to

manned space flight. And the experience of men like Gilruth, Faget, Purser,

and Shortal in the years before the Sputniks had a direct influence on their plans

for shielding a human rider from the heat of atmospheric friction. Meanwhile

other NACA engineers, especially at Langley and at the High Speed Flight Station,

were working closely with the Navy, the Air Force, and North American Aviation

on the X-15 project. At Cleveland, Lewis propulsion specialists were studying

rocket powerplants and fuels as well as cooperating with Langley and Flight

Station representatives in designing, operating, and studying reaction control

systems for hypersonic aircraft and reentry vehicles.

A MOON FOR A MAN

Others in NACA, sensing the potential for manned space exploration that

accompanied propulsion advances in military rocketry, began considering designs

for a vehicle with which man could take his first step above the atmosphere.

Early in 1954, Eggers, Julian Allen, and Stanford E. Neice of Ames put together

a classic theoretical discussion of different space flight configurations in a paper

entitled "A Comparative Analysis of the Performance of Long-Range Hyper-

velocity Vehicles." The research engineers examined the relative advantages,

in terms of range and the ratio between payload and total weight, of three kinds
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Al[red ]. Eggers, Jr., stands beside the Atmospheric Entry Simulator

he invented in 1958 as a laboratory means o[ studying the problems o[

aerodynamic heating and thermal stresses during reentry. The tubu-

lar tank in the [oreground held air under high pressure. When a

valve was opened, the air [lowed through the test section (the dark

area under the high-voltage signs) into the chimneyIike vacuum

tank. As the airstream moved, a high-velocity gun fired a test model

through the chamber in a right-to-Ie[t direction. Instruments

photographed the model in [light, timed the flight, and studied the

nature o[ the incandescence generated by the aerodynamic heating.
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of manned hypersonic vehicles: ballistic, a blunt non-lifting, high-drag projectile;

skip; and glide, the last two designs also having fairly blunt noses but possessing

some lifting ability. For satellite missions all three vehicles might be boosted
to orbital velocity by a rocket and could then separate from the rocket and go

into free flight, or orbit.

Eggers, Allen, and Neice found that the skip vehicle, which would return to

Earth by performing an intricate series of progressively steeper dips into the

atmosphere, would need an extremely powerful boost to circumnavigate the globe,

and also would encounter a prohibitively large amount of aerodynamic heating. 3_

By contrast, the glider, although heavy, would require less boost and would keep

the g forces imposed on the pilot during reentry at a quite acceptable level.

Like the skip craft, the glider would provide the advantage of pilot control during

the landing phase. It would radiate heat well, but since its thermodynamic loads

still would be high, the glider might experience dangerous interior heating during

a "global" (satellite) mission. So the authors suggested a high-lift glider; like

the high-lift-over-drag glider, it would have a delta-wing configuration but also
would feature thick, rounded sides and bottom to minimize interior heating. It

would enter the atmosphere at a high angle of attack, then level off at lower

altitudes to increase the lift/drag ratio.

The ballistic vehicle, the simplest approach of the three, could not be con-

trolled aerodynamically, but its blunt shape provided superior thermal protection,

and its relatively light weight gave it a longer range. If it entered the atmosphere

at a low angle, deceleration forces could be kept at or below 10 g, with 5 g lasting

for 1 minute and 2 g for not over 3 minutes. Therefore the three NACA

researchers concluded that "the ballistic vehicle appears to be a practical man-

carrying machine, provided extreme care is exercised in supporting the man

during atmospheric entry." 3_

As time passed, Eggers personally became convinced of the overall desirability

of the manned satellite glider as opposed to the ballistic satellite. He revealed

his preference in a modified version of the earlier paper done with Allen and
Neice, which he read before the annual meeting of the American Rocket Society

in San Francisco, in June 1957. Eggers was skeptical about the relatively high

heating loads and the deceleration forces characteristic of ballistic reentry', even

at a small entry angle. He warned that "the g's are sufficiently high to require

that extreme care be given to the support of an occupant of a ballistic vehicle

during atmospheric reentry," and pointed out that such an object, entering the

atmosphere along a shallow trajectory so as to hold deceleration down to 7.5 g,

would generate a surface temperature of at least 2500 degrees F. Thus, in Eggers'

judgment, "the glide vehicle is generally better suited than the ballistic vehicle

for manned flight at hypersonic velocities." _

Eggers realized that his glider design, if actually built, would be too heavy

for the military rockets then under development. At the same time he remained

concerned about the deceleration loads imposed on the space pilot and the heating
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loads on the spacecraft structure. He also saw the difficulty of recovering a

ballistic satellite, which since it was noncontrollable in the atmosphere, would

have to land somewhere in a target area of several thousand square miles. As

a consequence of these apprehensions, during the last half of 1957 he sketched a

semiballistic device for manned orbital flight, blunt but having a certain amount

of aerodynamic lift, with a nearly flat top and a round, deep bottom for heat

protection. This design, which Egg.ers called the "M-l," fell about halfway
between the high-lift glider and the ballistic vehicle discussed in his 1954 NACA

study with Allen and Neice. About I0 feet wide and nearly seven feet long,

the M--1 from above looked like an isosceles triangle rounded at its apex5 ° A

more graphic description was offered by Paul Purser, who called it a "_ egg

lifting shape." 4o The M-l's limited amount of lift would give it about 200 miles

of lateral maneuverability during its descent through the atmosphere and about

800 miles of longitudinal discretion over its landing point. Eggers' calculations

indicated that skillful piloting could keep reentry deceleration at about 2 g.41

AIR FORCE PROVIDES A NEED

The work of Eggers and others on designs for man-carrying space vehicles

had been stimulated not only by general progress in long-range rocketry but also

by the growing interest of the Air Force in manned space flight. Eggers knew

that ever since the war the Air Force, through the Rand Corporation, had been

considering the military potential of space technology, and that since early 1956

the service had been proceeding cautiously with contract feasibility studies of
manned satellites.

The impetus for these feasibility studies came from a staff meeting at the

headquarters of the Air Research and Development Command (ARDC) at

Baltimore, on February 15, 1956. During the course of the meeting, General

Thomas S. Power, Commander of ARDC, expressed_impatience with the failure

of his "idea men" to propose any advanced flight systems that could be under-

taken after the X-15. Work should begin now, he declared, on two or three

separate approaches beyond the X-15, including a vehicle that wouId operate

outside the atmosphere without wings. He suggested that a manned ballistic

rocket might be "eventually capable of useful intercontinental military and com-

mercial transport and cargo operation." But the main benefit of having an

advanced research project underw_.y, Power pointed out, was that the Air Force

could more easily acquire funds for the "general technical work needed." 4._

Thus prodded into action, Power's staff quickly proposed two separate re-

search projects. The first called for a "Manned Glide Rocket Research System"--

a rocket-launched glider that would operate initially at an altitude of about 400,000

feet and a speed of roach 21. The other, termed "Manned Ballistic Rocket

Research System," would be a separable manned nose cone, or capsule, the final

stage of an ICBM. Such a vehicle could lead to the "quick reaction delivery of
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high priority logistics to any place on Earth," as suggested by Power, or to a

manned satellite. Power's staff argued that the manned ballistic concept
offered the greater promise, because the solution to the outstanding technical
problems, the most critical of which was aerodynamic heating, would result from
current ICBM research and development; because existing ICBMs would furnish
the booster system, so that efforts could be concentrated on the capsule; and

because the ballistic vehicle possibly could be developed by 1960. Either pro-
gram, however, should be pushed rapidly so that the Air Force could protect
its own interests in the field of space flight.*"

In March 1956, ARDC established two research projects, one for the glide
rocket system, the other, known as Task 27544, for the manned ballistic capsule.

ARDC planners shortly held briefings on the two proposed systems for its missile-
oriented Western Development Division, in California, and for its pilot-oriented
Wright Air Development Center, in Ohio. Other briefings were held for NACA
representatives and for aircraft and missile contractors. Then, in October, Major
George D. Colchagoff of Power's staff described the basic aspects of the two
advanced systems to a classified se_qion of the American Rocket Society's annual

meeting in Los Angeles. '_
Since the Weapons Systems Plans Office of ARDC Headquarters never re-

ceived the $200,000 it had requested for its own feasibility studies, the command
had to content itself with encouraging privately financed contractor research. '_
In particular Avco, then trying to develop serviceable nose cones for the Thor and
Atlas missiles, was urged to study the manned ballistic capsule. In November
1956, Avco submitted to the Research and Development Command a preliminary
study embodying its conclusions on the ballistic approach to manned space flight.
ARDC still was short of funds, so Avco and other corporations continued to use

their own money for further investigations. 40
While ARDC promoted these systems studies and sponsored extensive research

in human factors at the School of Aviation Medicine in Texas, at the Aeromedical
Field Laboratory in New Mexico, and at the Aeromedical Laboratory in Ohio,

it also sought to gain acceptance for its ideas within the Air Force organizational
structure. On July 29, 1957, the Ad Hoc Committee of the Air Force Scientific
Advisory Board, meeting at the Rand Corporation's offices in Santa Moniea,
California, heard presentations from the Ballistic Missile Division on ballistic

missiles for Earth-orbital and lunar flights, and from ARDC Headquarters on the
two advanced flight systems then under study. Brigadier General Don D.
Flickinger, ARDC's Director of Human Factors, stated that from a medical
standpoint sufficient knowledge and expertise already existed to support a manned
space venture? r

Although the industrial firms investigated mainly the manned ballistic capsule,
NACA, following the traditional approach of building up to higher and higher
flight regimes, centered its efforts on the glide-rocket concept for most of 1957.
Since late the previous year, when NACA had agreed in principle to an ARDC
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invitation to cooperate on the Manned Glide Rocket Research System, as they

were doing for the X 15, small teams of engineers at the Langley, Lewis, and
Ames laboratories had carried on feasibility and design studiesJ _ In January

1957 the Ames group reported its conclusions on a new rocket-powered vehicle

for "efficient hypersonic flight," featuring a flat-top, round-bottom configuration.

Interestingly enough, the Ames document contained as an appendix a minority

report written by Langley aerodynamicists- mostly from the Flight Research,
Instrument Research, and Pilotless Aircraft Research Divisions--recommending

that a nonlifting spherical capsule be considered for global flight before a glide

rocket: l' "The appendix was widely read and discussed at Langley at the time,"

recalled Hartley A. Soul_, a Langley senior engineer, "but there was little interest

expressed in work on the proposal." He continued :

• . . aside from the environment that limited the NACA mission to terrestrial

transportation, the proposal was criticized on technical grounds. The report
suggested that landings be made in the western half of the United States, not
a very small area. The spherical shape was suggested so that the attitude
would not be important during reentry. The shape was specifically criticized
because the weight of material to completely shield the surface from tile reentry
heat would probably preclude the launching with programmed ICBM boosters.
Further, tile lack of [body] orientation might result in harm to the occupant
during the deceleration period. 5°

NACA study groups continued their investigations of manned glide rocket

concepts through the spring and summer. In September 1957 a formal "Study
of the Feasibility of a Hypersonic Research Airplane" appeared, bearing the

imprimatur of the whole NACA but influenced primarily by Langley proponents

of a raised-top, flat-bottom glider configuration? _

A few days later, on October 4, Sputnik I shot into orbit and forcibly opened

the Space Age. The spectacular Russian achievement wrought a remarkable

alteration in practically everyone's thinking about space exploration, especially
about the need for a serious, concerted effort to achieve manned space flight.

New urgency attended the opening of a long-planned NACA conference begin-

ning October I5 at Ames, which was to bring together representatives from
the various NACA laboratories in an effort to resolve the conflict in aerodynamic

thinking between advocates of round and flat bottoms for the proposed hyper-

velocity glider. Termed the "Round Three Conference," the Ames meeting pro-
duced the fundamental concept for what would become the X-20 or Dyna-Soar

(for dynamic soaring) project--a delta-wing, flat-bottom, rocket-propelled glider

capable of reaching a velocity of mach 17.5, almost 13,000 miles per hour, and

a peak altitude of perhaps 75 miles?-"

Although they had been working mainly on the hypersonic glider, as requested

by the Air Force, the research engineers of PARD, in tidewater Virginia, also

had been spending more and more time thinking about how to transmute missile

reentry bodies into machines for carrying man in low Earth orbit. Their ad-

vocacy, along with that of other Langley workers, of a spherical capsule early
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that year had indicated their growing interest in making the quantum jump

from hypersonic, upper-atmospheric, lift/drag flight to orbital space flight in a

nonlifting vehicle. At the Round Three Conference, Faget and Purser compared

notes with Eggers, perhaps the leading hypervelocity theoretician in NACA.

Eggers related his own conclusions: for orbital flight the design giving the highest

proportion of payload to total weight was the compact, low lift/drag vehicle,

having little or no wings, and embodying Allen's blunt-nose principle. He dis-

cussed the analytical studies of his semibatlistic M-i, which had some lift but

would, he estimated, weigh from 4000 to 7500 pounds. Eggers cautioned his

NACA colleagues that a nonlifting, or pure ballistic, vehicle might subject the

passenger to excessive deceleration forces, s3

Faget and Purser returned to Langley convinced that a maximum concentra-

tion of effort to achieve manned orbital flight as quickly as possible was impera-
tive. _ Obviously this meant that in the months ahead their research should

focus on the ballistic-capsule approach to orbiting a man. Both the hypersonic

glider, which called for progressing to ever higher speeds and altitudes, and

Eggers' M-I, also too heavy for any existing booster system, would take too long

to develop. The manned ballistic vehicle combined a maximum of simplicity

and heat protection with a minimum weight and offered the best chance of getting

a man into space in a hurry. Henceforth the aerodynamicists in PARD, and

space enthusiasts in other units of the Langley laborato_', turned from NACA's

historic preoccupation with winged, aerodynamically controllable vehicles and

devoted themselves to the study of "a man in a can on an ICBM," as some in the
Air Force called it. 5_

After Sputnik I, the aircraft and missile corporations also stepped up their

research on the ballistic capsule ; throughout November and December their design

studies and proposals flowed into ARDC Headquarters. The most active of

the firms considering how to put a man on a missile still was Avco. On Novem-

ber 20, 1957, it submitted to ARDC its second and more detailed study of systems

for manned space flight, entitled "Minimum Manned Satellite." The Avco

document concluded that "a pure drag reentry vehicle is greatly superior in

satisfying the overall system requirements," and that the best available rocket

for boosting a manned satellite into an orbit about 127 miles from Earth was the

Atlas. Still unproven, the Atlas was to make its first successful short-range flight

(500 miles) on December 17, 1957. An Atlas-launched satellite, according

to the Avco idea, would be a manned spherical capsule that would reenter the

atmosphere on a stainless-steel-cloth parachute. Shaped like a shuttlecock, the

parachute was supposed to brake the capsule through reentry. Then air pressure

would expand the parachute to a diameter of 36 feet, and the capsule would land

at a rate of 35 feet per second.

Avco requested $500,000 to cover the expense of a three-month study and the

construction of a "mockup," or full-scale model, of the capsule containing some

of its internal systems. But because the Ballistic Missile Division was skeptical
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about the drag-brake apparatus, and because ARDC was uncertain about Air

Force plans in general, a contract was not awarded. Avco engineers, believing

that the limiting factor in putting a man in orbit was not the capsule but the

development of a reliable booster, focused on the Atlas and began holding dis-

cussions with representatives of Convair, builder of the Atlas? G

JOCKEYING FOR POSITION

On October 9, only five days after Sputnik I, the Ad Hoc Committee of the

Air Force Scientific Advisory Board urged the development of "second generation"

ICBMs that could be used as space boosters, proposed the eventual accomplish-

ment of manned lunar missions by the Air Force, and recommended the launching

of Air Force satellites for reconnaissance, communications, and weather prediction

purposes as soon as possible. A few days later, Secretary of the Air Force James H.

Douglas appointed a committee of 56 academic and corporate scientists and Air

Force officers, headed by the eminent but controversial nuclear physicist Edward

N. Teller, to "propose a line of positive action" for the Air Force in space

exploration. Not surprisingly, the Teller Committee in its report of October 28

recommended a unified space program under Air Force leadership. 57
Then, on December 10, 1957, Lieutenant General Donald L. Putt, Air

Force Deputy Chief of Staff, Development, set up a "Directorate of Astronautics"

for the Air Force. Brigadier General Homer A. Boushey, who sixteen years

earlier had piloted the first rocket-assisted aircraft takeoff in this country, became

head of the new office. The move quickly met opposition from Secretary of

Defense Nell H. McElroy, who was chary about any of the services using the term

"astronautics," and from William M. Holaday, newly appointed Defense Depart-

ment Director of Guided Missiles, whom the New York Times quoted as charg-

ing that the Air Force wanted to "see if it can grab the limelight and establish a

position." The furor within the Defense Department caused Putt to cancel the

astronautics directorate on December 13, only three days after its establishment. 5_

Sputnik H, the dismayingly large, dog-carrying Soviet satellite, had gone
into orbit on November 3. As the mood of national confusion intensified in

the last weeks of 1957, Headquarters USAF ordered the Air Research and

Development Command to prepare a comprehensive "astronautics program,"

including estimates of funding and projected advances in space technology over

the next five years. ARDC, which had been working on its own 15-year plan

for Air Force research and development in astronautics, now boiled its findings

down to a five-year prospectus. ARDC's report went to Headquarters USAF

on December 30, and at the end of the year of the Sputniks the five-year plan

was under consideration in the Pentagon. '_

In any Air Force push into astronautics, NACA presumably would play a

key role a_ssupplier of needed research data. The agency had done this for nearly

four decades in aeronautics. Proceeding on this premise, Putt wrote NACA
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Director Dryden on January 31, 1958, formally inviting NACA's participation in

a man-in-space program with the Air Force, including both the boost-glide re-

search airplane, soon to be dubbed Dyna-Soar, and "a manned one-orbit flight

in a vehicle capable onty of a satellite orbit .... " _" Dryden promptly approved

NACA cooperation on the first approach, although the research agency and the

Air Force would not sign their formal agreement on the subject until the fol-

lowing May/" Regarding the satellite project offer, however, Dryden informed

Putt that NACA was working on its own designs for a manned space capsule and

would "coordinate" with the Air Force late in March, when NACA completed
its studies. _-_

Behind NACA's apparent reluctance to follow the Air Force lead into manned

satellite development was a conviction, held by some people at NACA Head-

quarters, but mainly by administrators and engineers of the Langley and Lewis

laboratories, that the agency should broaden its activities as well as its outlook

Moving into astronautics, NACA should leave behind its historic preoccupation

with research and expand into _'stems development and flight operations--

into the uncertain world of large contracts, full-scale flight operatiorLs, and public

relations. NACA should, in short, assume the leadership of a new, broad-

based national space program, having as one of its principal objectives to demon-

strate the practicability of manned space flight.

So in the 10 months between the first Sputnik and the establishment of a

manned space program under a new agency, NACA would follow a rather
ambivalent course. On one hand it would continue its traditional research and

consultative capacity, counseling the Air Force on space flight proposals and
imparting it_ findings to industrial firms. But at the same time ambitious teams

of engineers here and there in the NACA establishment would be preparing

their organization and themselves to take a dominant role in the Nation's efforts

in space.
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(NOVEMBER i 957--SEPTEMBER 1958)

PUTNIK II, carrying its canine passenger into orbit on November 3, 1957,
made clear what the first Sputnik had only implied: the U.S.S.R. wouId

eventually try to put a man in orbit. Americans read of this latest Soviet achieve-

ment and wondered how soon the West might be able to restore the technological

and ideological balance. Throughout the United States, individuals and organ-

izations were doing an uncommon amount of introspection. It was time for

some rethinking and reexamination, for an inquiry into the nature, meaning, and

direction of American government and society in the Space Age.

One of the most introspective Government agencies in the post-Sputnik period

was the National Advisory Committee for Aeronautics. To most people in

NACA it was obvious that the organization had reached a crisis in its proud but

rather obscure history; unless NACA moved rapidly and adroitly it might very

well be overwhelmed in the national clamor for radical departures. New guide-

lines for its future dearly were in order. On November 18, 19, and 20, 1957,

aboard the carrier Forrestal off the eastern coast of Florida, NACA's key Com-

mittee on Aerodynamics held another of its periodic meetings. Carried on in a

mood of patriotic concern and challenge created by the Sputniks, these discussions

reinforced the growing conviction that NACA should do more in astronautics.

Among the 22 representatives of industry, the military, and academic aeronautics

making up the committee, a consensus emerged that "NACA should act now to

avoid being ruled out of the field of space flight research," and that "increased

emphasis should be placed on research on the problems of true space flight over

extended periods of time." The committee then adopted a resolution calling for

"an aggressive program . . . for increased NACA participation in upper atmos-
phere and space flight research."

Two days after the Committee on Aerodynamics adjourned, the Main Com-

mittee of NACA met and voted to establish a Special Committee on Space

Technology. H. Guyford Stever, a physicist and dean of the Massachusetts

Institute of Technology, took charge of the heterogeneous group. The special

committee was the first established by NACA to concern itself expressly and

exclusively with space matters. It was "to survey the whole problem of space
technology from the point of view of needed research and development and advise

75



THIS NEW OCEAN

the National Advisory Committee for Aeronautics with respect to actions which

the NACA should take." "- Appointed to the new committee were such diverse

leaders in space science and technology as James A. Van Allen, Wernher von

Braun, William H. Pickering, and W. Randolph Lovelace II?

As apprehensive Americans watched the failure of the Vanguard test vehicle

in December and the successful Jupiter-C launch of Explorer I in January, NACA

continued to assess its potential role in the Space Age. Shortly after the Sputniks,

NACA Director Hugh L. Dryden; Chairman James H. Doolittle; John F. Victor5',

the venerable executive secretary of NACA; and others at Headquarters in

Washington had decided on the course NACA should follow in succeeding months.

Assuming that now a unified space program would come into being, the NACA
leaders wanted to ensure their organization a place in such a national enterprise.

To Dryden, who largely guided the formulation of its strategy, NACA should

proceed cautiously toward its minimum and yet most important objective--
extension of its traditional preeminence as an aeronautical research organization

into the higher realm of astronautics. This would involve a continuation of

NACA's traditional function as planner, innovator, tester, and data-gatherer for

the Defense Department and the missile and aircraft industry. While a larger

role, entailing responsibilities for development, management, and flight operations

in addition to research, very possibly could come to NACA in a national astro-

nautics effort, publicly NACA should play down whatever ambitions for such a

role individuals and groups within the agency might have. +

In keeping with this "soft-sell" philosophy and plan of attack, the Main Com-

mittee, at its regular meeting of January 16, 1958, resolved that any national

undertaking in astronautics should combine the talents and facilities of the Defense

Department, NACA, the National Academy of Sciences, and the National Science
Foundation. In other words, national space activities should follow roughly the

pattern of Project Vanguard. NACA, while taking part in the launching of

space vehicles and acquiring more authority to let research contracts, should
continue to function primarily as a research institution. "_ Dryden essentially

reiterated this viewpoint in a speech which Victory read for him nine days later
before the Institute of the Aeronautical Sciences in New York. The NACA

Director proposed that the current dMsion of labor among the military, industry,

and NACA be perpetuated in a national space program, with NACA doing

research and providing technical assistance and the military contracting with

industry for hardware development. 6

Then, the next month, the Main Committee considered and circulated a pro-

spectus inspired by Abe Silverstein, Associate Director of the Lewis Aeronautical

Laboratory, and written mainly by his senior engineers. Entitled "A Program for

Expansion of NACA Research in Space Flight Technology," it called for a "major

expansion" of NACA activity to "provide basic research in support of the develop-
ment of manned satellites and the travel of man to the moon and nearby planets."

The Lewis group proposed an enlargement of NACA's existing laboratories and
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a new, separate installation for nuclear powerplant research. The cost of the

expansion of the program, including the expense of contracted research, was

estimated at $200 million. Nothing was said about giving NACA added develop-

ment, management, and operational tasks in manned space flight programs. _

So by early February 1958, as the Eisenhower administration began wrestling

with the complexities of formulating a national program for space exploration,

NACA had taken the official position that with regard to space it neither wanted

nor expected more than its historic niche in Government-financed science and

engineering. While NACA should become a substantially bigger instrument for

research, it should remain essentially a producer of data for use by others.

MISSILES TO MANNED BALLISTIC SATELLITES

The circumspect approach of NACA Headquarters to a national space pro-

gram was only one of several being suggested formally in the winter of 1957-1958.

Various other proposals came from the scientific community. In mid-October

the American Rocket Society had called for a civilian space research and develop-

ment agency. In November the National Academy of Sciences endorsed an

idea for a National Space Establishment under civilian leadership. By April 1958

a total of 29 bills and resolutions relating to the organization of the Nation's space

efforts would be introduced by members of the Congre._s. Almost everyone

assumed that some sort of thorough-going reform legislation, probably creating

an entirely new agency, was needed if the United States was to overcome the Soviet

lead in space technology. On January 23, 1958, the Senate Preparedness Inves-

tigating Committee under Senator Lyndon B. Johnson had summarized its findings

in 17 specific recommendations, including the establishment of an independent

space agency? During these months of debate and indecision, the military serv-

ices continued their planning of space programs, both in hope of achieving a spe-

cial role for themselves in space and in knowledge that U.S. planning could not

simply stop during the months it took to settle the organizational problem.

Of the three military services the Air Force moved most rapidly with plans for

advanced projects and programs. Responding to a request sent by the Office of

the Secretary of Defense to the three military sen'ices, Headquarters USAF by

mid-January 1958 had completed its review of the comprehensive five-year

astronautics program submitted the previous month by the Air Research and

Development Command. On January 24 the Air Force submitted the plan to

William M. Holaday, Director of Guided Missiles in the Department of Defense.

The five-year outline envisaged the development of reconnaissance, communica-

tions, and weather satellites; recoverable data capsules; a "manned capsule test

system"; then manned space stations; and an eventual manned base on the Moon.

The Air Force estimated that funding requirements for beginning such a long-

range program in fiscal year I959 would total more than $1.7 billion.'

The ambitious five-year plan, with its astronomical estimate of costs for the
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coming fiscal year, had remained in Holaday's office. The Air Force pressed

ahead with its astronautics plans, including the placing of a manned capsule in

orbit. On January 29, 30, and 31, t958, ARDC held a closed conference at

Wright-Patterson Air Force Base near Dayton, Ohio, where 11 aircraft and mi_ile
firms outlined for Air Force and NACA observers the various classified proposals

for a manned satellite vehicle that they had submitted to ARDC during November

and December 1957. The indust_" presentations appear to have varied consid-

erably in thoroughness and complexity. The Northrop Corporation, for example,

simply reviewed the boost-glide concept suggested by NACA at the Round Three

Conference the previous October and already adopted by the Air Force for its

Dyna-Soar project. By contrast, the Avco Manufacturing Corporation, the

McDonnell Aircraft Corporation, Republic Aviation, and North American Avia-

tion made detailed presentations, including estimates of the minimum amount of

time required to put a man in orbit. Like Avco and other firms, McDonnell

of St. Louis had been working on designs for a "minimum" satellite vehicle,

employing a pure ballistic shape, since the spring of 1956, when the Air Force
had first briefed industry representatives on its original Manned Ballistic Rocket

Research proposal. Republic sketched a triangular planform arrangement

modeled on the vehicle suggested the previous year by Antonio Ferri and others

at the Gruen Applied Science Laboratories. I° The "Ferri sled," as the Republic

device was called, was one of two approaches wherein the pilot would parachute

after being ejected from the spacecraft, the vehicle itself not being recovered.

The other company advocating an expendable spacecraft was North American;

an X-15, although designed to land conventionally on skids as a rocket research

aircraft, would orbit and then impact minus its parachuting pilot. H

After the Wright-Patterson conference, the Air Force stepped up the pace of

its manned-satellite studies. On January 31, ARDC directed the Wright Air

Development Center to focus on the quickest means of getting a man in orbit.
The center was to receive advice from the Air Force Ballistic Missile Division in

Los Angeles on selection of a booster system. A few weeks later the center issued

a purchase request, valued at nearly $445,000, for a study of an internal ecological

system that could sustain a man for 24 hours in an orbiting capsule2-"

On February 27, ARDC officers briefed General Curtis E. LeMay, Air Force

Vice Chief of Staff, on three alternative approaches to manned orbital flight:

developing an advanced version of the X-15 that could reach orbital velocity;

speeding up the Dyna-Soar project, which eventually was supposed to put a

hypersonic glider in orbit ; or boosting a relatively simple, nonlifting ballistic capsule

into orbit with an existing missile system, as proposed by Avco, McDonnell, and

other companies. LeMay instructed ARDC to make a choice and submit a

detailed plan for an Air Force man-in-space program as soon as possible. _'_

While the Air Force pushed its manned satellite investigations and its develop-

ment work on the Thor, Atlas, and Titan, the Army and the Naw_ initiated
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manned space studies of their own in addition to accelerating their ballistic missile

efforts with the Jupiter and the Polaris, respectively. Flushed with the success

of the Explorer I satellite launching in January, the Army reached the apex of its

astronautical prestige. Proud of the prowess of yon Braun's rocket team at its

Arm)' Ballistic Missile Agency, Huntsville, Alabama, the Army sought a major

role in military space technology. Since the Army already had lost operational

responsibility for its Jupiter intermediate-range ballistic mi_ile to the Air Force,

a space mission was vitally important to its future in astronautics. Central to the

Army's space plans was securing authorization, priority, and abundant financing
from the Defense Department for one of yon Braun's pet ideas, a clustered-engine

booster vehicle with more than a million pounds of thrust."

On February 7, 1958, Secretary of Defense Neil H. McElroy, acting on
President Eisenhower's instructions, ordered the creation of an Advanced Research

Project Agency (ARPA) to manage all existing space projects. Roy W. Johnson,

a vice-president of General Electric, took over the directorship of this new office;

Director of Guided Missiles Holaday transferred some of his responsibilities to

the agency?:'
Three weeks after thc establishment of ARPA, Johnson acknowledged publicly

that "the Air Force has a long term development responsibility for manned space

flight capability with the primary objective of accomplishing satellite flight as

soon as technology permits." The statement was reiterated on March 5 by a

spokesman for McElroy. The Defense Department also authorized the Air Force

to develop its "117L" system--an Atlas or Thor topped by a liquid-propellant

upper stage (later named Agena) as a booster combination, together with an
instrumented nose cone--"undcr the highest national priority in order to attain

an initial operational capability at the earliest possible date." The 117L system,

designed originally to orbit reconnaissance satellites, would now also be used for

orbiting recoverable hiological payloads, including primates?';

In response to Vice Chief of Staff LeMay's instructions of February 27 and the

apparent receptiveness of Defense Department officials to the Air Force's astro-

nautical plans, the Air Research and Development Command moved to "firm up"

its plans for manned space flight. On March 8, the Ballistic Missile Division pro-

posed an I 1-step program aimed at the ultimate objective of "Manned Space

Flight to the Moon and Return." The steps included instrumented and animal-

carrying orbital missions, a manned orbit of Earth, circumnavigation of the Moon

with instruments and then animals, instrumented hard and soft landings on the

Moon, an animal landing on the Moon, manned hmar circumnavigation, and a

manned landing on the lunar surface. Then, on March 10, 11, and 12, ARDC

staged a large conference at the offices of its Ballistic Missile Division in Los An-

geles. On hand were more than 80 rocket, aircraft, and human-factors specialists

from the Air Force, industry, and NACA. Although the space sights of the Ballis-

tic Missile DMsion, under Major General Bernard A. Schriever, were set on the

79



THIS NEW OCEAN

distant "man on the Moon" goal, the basic objective of the Los Angeles man-in-

space working conference was to hammer out an "abbreviated development plan"

for getting a man in Earth orbit as quickly and as easily as possible. 17

The conference focused on what some Air Force speakers called a "quick and

dirty" approach--orbital flight and recovery using a simple ballistic capsule and

parachutes for a water landing in the vicinity of the Bahamas. The ballistic

vehicle would weigh between 2700 and 3000 pounds, and would be about six feet

in diameter and eight feet long. Its "life support," or internal ecological, system

would be designed to sustain a man in orbit for as long as 48 hours. Because there

was no real certainty that man could function under the various stresses of space

flight, all systems in the capsule would be fully automatic. TM

The human passenger would be essentially a rider rather than a pilot, although

for experimental purposes he would try to perform certain tasks. The body sup-

port arrangement--showing the influence of Harold J. von Beckh of ARDC's

Aeromedical FieId Laboratory--would have the spaceman supine on a couch that

could be rotated according to the direction of the g forces building up during launch

and reentry. The rotatable couch was regarded as necessary because the capsule

would both exit and enter the atmosphere front-end forward. Maximum reentry

loads on the occupant of the Air Force machine were expected to be about 9 g; the

interior temperature during reentry was not supposed to exceed 150 degrees. An

ablative nose cone would provide thermal protection. Small retrograde rockets

would brake the vehicle enough to allow the pull of gravity to effect a reentry? °

Among the most fervent Air Force champions of a man-in-space project at the

Los Angeles conference were the human-factors experts, some of whom had been

studying the medical problems of upper- and extra-atmospheric flight for more

than a decade. But predictably they were also the most cautious people in assess-

ing the psychophysiological limits of human tolerance under the conditions of flight

into space. Air Force medical personnel generally agreed that 15 or more

launches of primates and smaller biological payloads should precede the first

manned orbital shot. Colonel John P. Stapp of the Aeromedical Field Laboratory

felt that the first human space passengers should have both engineering and medical

training, that they should go through at least six months of selection, testing, and

preparation, and that from a medical standpoint a television camera was an essen-

tial piece of equipment in the manned capsule. Major David G. Simons, Stapp's

colleague, believed that continuous medical monitoring of the man, including

voice contact throughout the orbital mission, should be mandatory. 2°

The Air Force flight physicians knew that German centrifuge experiments dur-

ing the Second World War had proved that men could withstand as much as 17 g

for as long as 2 minutes without losing consciousness51 Nevertheless, numerous

centrifuge runs at Wright-Patterson and at Johnsville, Pennsylvania, and calcula-

tions of the angle of entry from an orbital altitude of about 170 miles had con-

vinced them that a 12-g maximum was a good ground rule for designing the

capsule body-support system. With a continuously accelerating single-stage
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booster following a steep launch trajectory, an aborted fight and subsequent re-

entry might subject the rider to as much as 20 g. Consequently the Air Force

specialists assumed that a two-stage launch rocket would be necessary to provide a

shallower reentry path and lower forcesf-'

In retrospect, there were two striking aspects of the Los Angeles man-in-space

presentation. The first was that the Air Force, historically devoted to piloted,

full)" controllable aircraft, was thinking in terms of a completely automatic orbital

capsule, virtually without aerodynamic controls, whose passenger would do little

more than observe and carry out physiological exercises. The other was that no

attention was given to using the Atlas alone as a booster system for a manned satel-

lite. Indeed hardly anyone advocated putting an upper stage on the Atlas to

constitute the desired two-stage launch vehicle. Spokesmen for Space Technology

Laboratories, technical overseer of the Air Force ballistic missile program, went so

far as to declare that a more dependable booster than the Atlas would have to be

developed. They favored adapting the intermediate-range Thor and combining

it with a second stage powered by a new fluorine-hydrazine engine developing some

15,000 pounds of thrust. By the time the conference adjourned on March 12, the

conferees were in fairly general agreement that about 30 Thors and 20 fluorine-

hydrazine second-stage rockets would be needed for a manned satellite project.

Some 8 to 12 Vanguard second stages would also be needed, to be mated with

Thors for orbiting smaller, animal-bearing capsules. 23

While the "abbreviated development plan" was emerging from the Los

Angeles gathering, a NACA steering committee met at the Ames laboratory. Its

members were Hartley A. Soul_ and John V. Becket of Langley, Alfred J. Eggers

of Ames, and Walter C. Williams of the High Speed Flight Station. The}, had

been appointed by NACA Assistant Director Ira H. Abbott to suggest a course of

action on the January 31 proposal by Lieutenant General Donald L. Putt, Air

Force Deputy Chief of Staff, Development, to NACA Director Dryden for formal

NACA-Air Force cooperation in a manned satellite venture.-"' The steering

committee agreed that the zero-lift approach- the ballistic capsule--offered the

best promise for an early orbital mission. Soulc}, Becket, Eggers, and Williams

recommended that "NACA accept the Air Force invitation to participate in a

joint development of a manned orbital vehicle on an expedited basis," and that

"the ballistic type of vehicle should be developed." -_5

On March 14, a month and a half after Putt's letter to Dryden, NACA

officially informed Headquarters USAF that it would cooperate in drawing up a

detailed manned satellite development plan. On April 11, Dryden sent to Gen-

eral Thomas D. White, Chief of Staff of the Air Force, a proposed memorandum

of understanding declaring an intention to set up a "joint project for a recoverable

manned satellite test vehicle." Before a final agreement was actually signed,

however, NACA Assistant Director for Research Management Clotaire Wood,

at Dryden's direction, suggested to Colonel Donald H. Heaton of Headquarters

USAF that the NACA-Air Force arrangement "should be put aside for the time
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being." Heaton agreed, and in mid-May the joint Air Force-NACA manned

space undertaking was tabled indefinitely. =G

NACA's METAMORPHOSIS BEGINS

The explanation for Wood's action and for the general prudence of NACA

in dealing with the Air Force on space matters in the spring of 1958 lay in the

contents of the space bill sent by the Eisenhower administration to Capitol Hill

on April 14 and then being debated in Congress. This proposal appeared likely

to transform NACA into the focal point of the nation's cfforts in space.
From thc initial discussions in 1954 of a United States International Geo-

physical Year satellite project, Prcsidcnt Eisenhower's position had been that

space activities should be conducted solely for peaceful purposes. The nature

and objectives of Project Vanguard had reflected this policy. He summed up

his feelings in a letter to Soviet Premier Nikolai Bulganin, dated January 12, 1958.

Describing the demilitarization of space as "the most important problem which

faces the world today," hc proposed that--

. . . outer space should bc used only for peaceful purposes .... can we not
stop the production of such weapons which would use or, more accurately, mis-
use, outer space, now for the first time opening up as aficld for man's explora-
tion? Should not outer space be dedicated to the peaceful uses of mankind
and dcnled to the purposes of war? . . F r

Consistent with this "space for peace" policy, the concentration on February 7,

2958, of Federal space activities in the Advanced Research Projects Agency of

the Defense Department had been only an interim measure pending establishment

of a new, civilian-controlled space management organization. Shortly before

the creation of ARPA, Eisenhower had turned to his newly appointed, 18-member

President's Scientific Advisory Committee (PSAC), chaired by President James

R. Killian, Jr., of the Massachusetts Institute of Tcchnolo_ r and including among
its members NACA Chairman Doolittle. Eiscnhower instructed the Committee

to draw up two documents : a broad policy statement familiarizing Americans with

space and justifying Government-financed astronautical ventures, and a recom-
mendation for organizing a national program in space science. The "Kitlian

committee," as the early PSAC was called, chose two subcommittees. One, on

policy, was headed by Edward H. Purcell, a physicist and executive vice-president

of Bell Telephone Laboratories; the other, on organization, was led by Harvard

University physicist James B. Fisk.

The Fisk subcommittee on organization finished its work first. After talking

with Doolittle and NACA Director Dryden, Fisk and his colleagues made a crucial

report to PSAC late in February. A new agency built around NACA should be

created to carry out a comprehensive national program in astronautics, emphasiz-

ing peaceful, civilian-controlled research and development. The White House

Advisory Committee on Government Organization, corrsisting of Nelson B. Rocke-
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feller, Killian, and Maurice H. Stans, Director of the Bureau of the Budget, used

this PSAC subcommittee report as the basis for a formal recommendation on a

national space organization, which Eisenhower received and approved on March 5.

Five months after Sputnik I, the administration began drawing up proposed legis-

lation for consideration by the Congress. As Dryden later observed, NACA's

cautious post-Sputnik strategy had "paid off, in the long run."
PSAC's rationale for space exploration, entkled "Introduction to Outer Space,"

was issued on March 26. This statement proclaimed that "the compelling urge

of man to explore and to discover," "the defense objective," "national prestige,"

and "new opportunities for scientific observation and experiment" were "four

factors which give importance, urgency, and inevitability to the advancement of

space technology." 2s

On April 2, Eisenhower sent his formal message on space matters to Congress.

The document again indicated the President's intense conviction that space should

be primarily reserved for scientific exploration, not military exploitation. It called
for the establishment of a "National Aeronautical and Space Agency," which

would absorb NACA and assume responsibility for all "space activities...

except . . . those projects primarily associated with military requirements." The

executive authority in the new organization would be exercised by one person, a

director, who would be advised by a 17-member "National Aeronautical and Space

Board." The proposal for a loose advisory board represented little more than an
extension of the NACA Main Committee. The idea for a single executive, how-

ever, stemmed mainly from the opinions of Eisenhower's legislative experts and

the officials of the Bureau of the Budget. They wanted authority in the new agency
to be centralized, not diffused in a committee as was the case wkh NACA and

the Atomic Energy Commission. The second and more critical departure from

NACA history was Eisenhower's stipulation that the proposed organization wouId

have not only research but development, managerial, and flight operational re-

sponsibilities. Unlike NACA, then, it would possess extensive authority for

contracting research and development projects. 29
Twelve days later, on April 14, the Eisenhower administration sent to the

Democratic-controlled Congress its bill to create such an agency, drafted largely

by the Bureau of the Budget. g° In the House of Representatives and the Senate,

special committees began hearings on the bill. The measure would undergo

extensive amendment and reworking at the hands of the legislators. But it soon

was apparent that a new agency would come into being, that NACA would con-

stitute its nucleus, and that it would undertake large-scale development and

operational activities in addition to research. The odds were better than good
that a manned satellite project would fall within the domain of the civilian

organization.

Proceeding on this assumption, engineers working at all of the NACA installa-

tions-at the ranges and wind tunnels at Langley and Ames, in the high-tem-

perature jet facilities and rocket-test chambers at Lewis and Langley, at the
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NACA witnesses testify be[ore the Senate Special Committee on Space and Astro-

nautics, o12 _lay 6, 1958j with regard to bill S. 3609, "a bill to provide [or research

into problems o[ flight within and outside the earth's atmosphere, and [or other pur-

poses." The legislative end product would be the National Aeronautics and Space

Act o[ 1958, which created NASA. NACA witnesses shown here: left to right, Paul
G. Dembling, NACA Legal Adviser; ]ames H. Doolittle, Chairman, NACA; and

Abe Silverstein, Associate Director of NACA Lewis Flight Propulsion Laboratory.

rocket launch pads and control panels on Wallops Island, and in the flight hangars

at the High Speed Flight Station--stepped up their research in materials, aerody-
namics, and control. "_ By early 1958, according to Preston R. Bassett, chairman

of NACA's renamed Committee on Aircraft, MissiIe, and Spacecraft Aerody-

namics, approximately 55 percent of all NACA activity was already applicable
to space flight? _ According to another set of NACA statistics, the Pilotless Air-

craft Research Division (PARD) was expending 90 percent of its effort on space

and missile research ; the rest of the Langley laboratory, 40 percent; Ames, 29 per-

cent; and Lewi._, 36 percent? "_ VirtuaU._: every member of NACA's technical

staff eagerly anticipated a national program of space exploration. Since the

raison d'etre of NACA always had been to improve the performance of piloted

aircraft, most NACA engineers viewed manned space flight as an even more
challenging ,_'ad rewarding form of activity.
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Not everyone in the NACA laboratories, however, was convinced that the

agency's destiny lay in developing hardware, managing programs, and carrying
out satellite launchlngs. Many scientist-engineers subscribed wholeheartedly to
the official NACA position enunciated by Headquarters in January and Feb-
ruary: While NACA ought to labor mightily in the furtherance of space science,
it should continue to solve problems posed by other agencies engaged in develop-

ment and operations, not handle programs itself. The "research-minded" element
within the NACA technical staff probably was strongest at Ames. Most of the
Ames complement had gone to work for NACA because of the nature of the
organization. Its quasi-academic focus on research, its receptiveness to new and
sometimes radical concepts, its relative obscurity and freedom from politics ap-
pealed to them. At the California institution the prospect of managing programs,
which entailed fighting for appropriations, wrangling with industrial contractors,

and perhaps competing with the military, seemed exceedingly distasteful? 4
This attitude was not so prevalent at the two other laboratories or at the

High Speed Flight Station. The years of direct participation with Air Force,
Navy, and contract personnel in the research aircraft projects had given Walter
Williams and his staff at the Flight Station a rather clear operational orientation,
albeit with airplanes and not with space rockets and satellites. The Lewis and
Langley staffs included a sizable number of research workers who, while enjoying

the intellectual liberty of NACA, felt it would be quite a challenge to carry out a
program of their own instead of simply providing advice for the military and
industry. They looked on approvingly as the Eisenhower administration sent
to C_ngress a measure substantially embodying their ideas.

The academic approach to aeronautics and astronautics pervaded much of
Langley, the oldest and in some ways the most tradition-minded of the NACA
laboratories. The commitment to basic research and the devotion to theoretical

calculations and wind tunnels as the most efficacious means of gathering aero-

dynamic data were as strong among some Langley engineers as among the Ames
investigators. But in the Flight Research, Instrument Research, and Pilotless
Aircraft Research Divisions at Langley; at the semiautonomous Pilotless Air-
craft Research Station on Wallops Island, 70 miles away across Chesapeake Bay;
and in the Flight Research Division at Lewis, there were people who had gained
the bulk of their experience by working with airfoils mounted on the wings of

airplanes in flight and from air-launched and ground-launched scale models pro-
pelled by rockets. For years they had been close to "development" and "opera-
tions" in their research activities, but they had turned their telemetered findings
over to someone else for practical application. Now it seemed that the Soviet
artificial moons might have given these ambitious aeronautical engineers a chance
to put their imagination and technical experience to use in a manned space flight
program. As Paul E. Purser, then head of the High Temperature Branch of
PARD, put it, "In early 1958 we simply assumed we would get the manned
satellite project. So we started to work." _
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Over the years the PARD specialists had perfected their techniques of launch,
guidance, automatic control, and telemetry on small rockets, and had steadily
added to the mountain of experimental data on hypervelocity performance and

aerodynamic heating. Their rockets, while remaining small in thrust and pay-
load, had become more and more sophisticated. During 1957, by firing five-

stage research rockets, they had been able to achieve a final-stage velocity of
mach 16. 3_ And they already were doing conceptual work on a new and larger
multistage research rocket, designed to boost scale models in their own stabifity
and heat-transfer studies and to send up small instrumented satellites and space

probes for the Air Force. Later called the Scout, this four- or five-stage, solid-
propellant configuration could fire its stages sequentially to place either a 150-
pound payload in a 300-mile orbit, 100 pounds in a 5000-to-10,000-mile orbit,
or 30 pounds in an orbit more than 22,000 miles from Earthy

In the hectic weeks and months following the Soviet satellite Iaunchings, the

advocates of manned space flight at Langley, realizing that their experience in
nose-cone research was directly transferable to the design of manned satellite ve-
hicles, turned their attention to spacecraft design as never before. NACA's ini-
tial agreement of March 14, 1958, to collaborate with the Air Force in drawing
up plans for a manned orbital project gave official sanction to research they al-
ready had been doing largely on their own time. Theoretically this work still was

in support of the Air Force and industrial manned-satellite studies. As it turned
out, the Langley engineers were doing the early development work for their own
enterprise, later to become Project Mercury.

The sparkplug behind much of this activity was Maxime A. Faget, head of the
Performance Aerodynamics Branch in PARD. Thirty-seven years old in 1958,
Faget had been born in British Honduras, the son of an honored physician in the
United States Public Health Service. In 1943, when his father was developing

sulfone drugs for the National Leprosarium in Carville, Louisiana, the diminutive
Faget received a bachelor of science degree in mechanical engineering from Loui-
siana State University. After his discharge from the Navy's submarine service

in 1946, he joined the staff at Langley. He soon devised choking inlets for ram-
jets, a flight mach number meter, and several mathematical formulas for deriving
data from Richard T. Whitcomb's area rule28 Like Robert R. Gilruth and others

before him at Langley, Faget preferred to enlarge his knowledge in aerodynamics
and thermodynamics not in wind tunnels but by observing and telemetering data

from vehicles in free flight.
In mid-March, less than a week after the conclusion of the Air Force man-in-

space working conference in Los Angeles, Gilruth, as Assistant Director of Langley,
called Faget and his other top engineers together to determine what should be
the "Langley position" on optimum spacecraft configurations at the NACA Con-
ference on High-Speed Aerodynamics, to be held at the Ames laboratory beginning
March 18. The consensus of the meeting was that the Langley-PARD repre-
sentatives should present a united front at Ames behind a ballistic concept. 3_
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The Conference on High-Speed Aerodynamics, the last in a long line of full-

dress symposiums held by NACA, attracted most of the luminaries in the organi-

zation, including Dryden, Silverstein, Eggers, H. Julian Alien, Walter Williams,
and the members of the Committee on Aircraft, Missile, and Spacecraft Aerody-

namics. Military personnel and representatives of most of the aircraft and missile

firms also attended this forum. The 46 papers read at the conference, dealing

with hypersonic, satellite, and interplanetary flight, represented the most advanced

thinking in aerodynamics within NACA. Taken together, the papers demon-

strated how far some NACA engineers trained in aeronautics had pushed their

research into the new discipline of astronautics. 4°

Much interest centered around three presentations proposing alternative con-

figurations for manned orbital flight. The first of these papers was authored by

Faget, Benjamine J. Garland, and James J. Buglia. Faget presented it as the

orbital configuration regarded most favorably by PARD personnel--the wingless,

nonlifting vehicle. Faget and his associates pointed out several advantages of

this simple ballistic approach. In the first place, ballistic missile research, devel-

opment, and production experience was directly applicable to the design and con-
struction of such a vehicle. The fact that it would be fired along a ballistic path

meant that automatic stabilization, guidance, and control equipment could be

kept at a minimum, thus saving weight and diminishing the likelihood of a
malfunction.

The nonlifting vehicle simplified return from orbit because the only necessary

maneuver was the firing of retrograde rockets--"retrorockets"--to decelerate the

spacecraft, deflecting it from orbit and subjecting it to atmospheric drag. And

even that maneuver need not be too precise for the accomplishment of a safe

recovery. After retrofire, successful entry depended solely on the inherent sta-

bility and structural soundness of the ballistlc vehicle. Faget, Garland, and

Buglia acknowledged that the pure-drag device necessitated landing in a large and

imprecisely defined area, using a parachute, and dispensing with lifting and brak-

ing controls to correct the rate of descent, the direction, or the impact force.

Rather severe oscillations might occur during descent. But Faget and his asso-

ciates noted that tests with model ballistic capsules in the 20-foot-diameter, free-

spinning tunnel at Langley had shown that attitude control jets, such as those used

on the X-1B, X-2, and X-15 rocketplanes, could provide rate damping and help

correct the oscillations, while a small drogue parachute should give still more

stability.

The three Langley engineers went so far as to propose a specific, if rudimentary,

ballistic configuration--a nearly flat-faced cone angled about 15 degrees from

the vertical, 11 feet long and 7 feet in diameter, using a heat sink rather than

an ablative covering for thermal protection. Although the space passenger

would lie supine against the heatshield at all times, during orbital flight the

capsule would reverse its attitude so that the deceleration loads of reentry would

be imposed from front to back through the man's body, the same as under
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acceleration. The authors concluded that "as far as reentry and recovery is

concerned [sic], the state-of-the-art is sufficiently advanced so that it is possible to

proceed confidently with a manned satellite project based upon the ballistic reentry

type of vehicle." 4a

One dissenter from the Langley consensus favoring a manned projectile was

John Becker, of the Langley Compressibility Research Division and a veteran of

X-15 development, who read a paper at the conference on possible winged

satellite configurations. Becker's main concern was the reentry heating problem

in conjunction with some maneuverability within the atmosphere. Combining

his theoretical findings with those of Charles W. Mathews of Langley, Becker

suggested a gIider-Iike configuration. Instead of entering the atmosphere at a

low angle of attack and using lift to return to Earth, it would deliberately come

in at a high angle of attack, employing its lower wing surface as a heatshield.

Deceleration loads still could be held at a little over 1 g in this fashion. The

gross weight of such a low-Iift, high-drag vehicle would be only about 3060

pounds. "Thus . . . the minimum winged satellite vehicle is not prohibitively

heavier than the drag type," concluded Becker. "The weight is sufficiently low

to permit launching by booster systems similar to that for the drag vehicle de-

scribed in a previous paper by Maxime A. Faget, Benjamine J. Garland, and

James J. Buglia." 4_

What some Langley researchers had come to regard as the "Ames position"

on manned satellites was described in a paper by Thomas J. Wong, Charles A.

Hermach, John O. Reller, and Bruce E. Tinling, four aeronautical engineers who

had worked with Eggers. They presented a polished, more detailed version of

the blunt, semilifting M-1 configuration conceived by Eggers the previous sum-

mer. For such a vehicle a lift/drag ratio of Y2 could be effected simply by

removing the upper portion of a pure ballistic shape, making the body somewhat

deeper than that of a half-cone, and adding trailing edge flaps for longitudinal

and lateral control. Maximum deceleration forces would be only 2 g, low

enough to permit a pilot to remain in control of his vehicle. Blunting would

reduce heat conduction; the vehicle would be stable and controllable down to

subsonic speeds and would provide substantial maneuverability; and structural

weight would remain relatively low. Thus "it appears that a high-lift, high-drag

configuration of the type discussed has attractive possibilities for the reentry of
a satellite vehicle." 43

The Ames engineers' presentation was not in the form of a spacecraft design

challenge to the Langley-PARD aerodynamicist_s. Eggers and various others

at Ames remained convinced of the overall superiority of the lifting body for

manned satellite missions. But as Eggers explained, "Ames was not enthusiastic

in 1958 to participate in an operational program for building and launching

spacecraft of any kind, manned or unmanned." 4_ While some Ames people

were rather avidly pushing the M-1 concept, their avidity did not stem from

any desire for operational dominance in a civilian space program. The Cali-
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fornia NACA scientists were quite willing to leave the business of building

prototypes, carrying out full-scale tests, and then managing a program to their

more "hardware-oriented" colleagues across the continent.

To Faget, Purser, and Gilruth the choice between the semilifting configura-
tion favored by the Ames group and their nonlifting device really was an academic
one. Given the assumption that a manned satellite should be fired into orbit

as quickly as possible, then the Atlas ICBM, not the still untested Titan or a
Thor-fluorine combination, should serve as the launch vehicle for a one-ton

spacecraft. The Atlas was following a tortuous route toward status as a reliable

operational rocket, but it was still the only ICBM anywhere near being ready.

The criterion already adopted by Faget and his associates, that an attempt to

orbit a man should follow the simplest, quickest, and most dependable approach,

negated a heavier, semilifting vehicle; this would have required adding an extra
stage to the Atlas or some other rocket. The same criterion even ruled out

Becker's low-lift, high-drag proposal. If the first manned orbital project was

to adhere to and profit from ballistic missile experience, then the capabilities of

the Atlas should be the first consideration. Faget himself did not have detailed

data on the Atlas' design performance before, during, or for some time after the

Ames conference; such information was highly classified and he lacked an official

"need to know." About two months after he delivered his paper he learned

through conversations with Frank J. Dore, an engineer-executive of Convair, what

he needed to design a manned ballistic payload. 4_ In the weeks following the

Ames conference, Faget's and other Langley-PARD research teams, centering

their efforts on the basic ballistic shape, started working out the details of hurling
a man-carrying projectile around the world. 4G

While the engineers at the NACA Virginia installations hurried their designs,

tests, and plans, and while Congress received Eisenhower's space bill, the organiza-

tional transformation of NACA began. After the White House Advisory Com-

mittee on Government Organization recommended that a national civilian space

program be built around NACA, Director Dryden and his subordinates in Wash-

ington began planning the revamping that would have to accompany the reorienta-

tion of NACA functions. Dryden called Abe Silverstein of Lewis to Washington

to begin organizing a space flight development program. On April 2, as part
of his space message to Congress, Eisenhower instructed NACA and the Defense

Department to review the projects then under ARPA to determine which should

be transferred to the new cMlian space agency. NACA and Defense Department
representatives, in consultation with Bureau of the Budget officials, reached tenta-

tive agreements on the disposition of practically all the projects and facilities in

question, with the notable exception of manned space flight. In accordance

with Eisenhower's directive that NACA "describe the internal organization, man-

agement structure, staff, facilities, and funds which will be required," NACA set

up an ad hoc committee on organization under the chairmanship of Assistant Di-
rector Ira AbbottY
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MAy IN SPheE SOONEST?

Officially NACA still was acting as consultant and tester for the Air Force

and industry on spacecraft design and development. ARDC had sent its ab-

breviated development plan for a manned orbital capsule, based on conclusions

reached at the Ballistic Missile Division conference, to Headquarters USAF on

March 14. Five days later Air Force Under Secretary Marvin A. MaeIntyre

requested $133 million from ARPA for manned satellite development during

fiscal year 1959. On the same day that Eisenhower proposed the civilian agency

to Congress, Genera1 White, Air Force Chief of Staff, secured approval for a man-

in-space project from the Joint Chiefs of Staff. Despite the introduction of the
administration bill in Congress and the resultant tabling the next month of the

proposed agreement between White and Hugh Dryden for a joint Air Force-

NACA manned satellite project, NACA continued to furnish advice and informa-
tion to the Air Force. '"

Throughout most of April, representatives from the various offices within

ARDC, forming a "Man-in-Space Task Force" at the Ballistic Missile Division,

worked on an "Air Force Manned Military Space System Development Plan."

The final goal was to "achieve an early capability to land a man on the moon

and return him safely to earth." The first of four phases, called "Man-in-Space-

Soonest," involved orbiting a ballistic capsule, first carrying instruments, then pri-

mates, and finally a man. In the second phase, "Man-in-Space-Sophisticated,"

a heavier capsule, capable of a 14-day flight, would be put in orbit. "Lunar Re-

connaissance," the third phase, would soft-land on the Moon with instruments, in-

cluding a television camera. The last phase was "Manned Lunar Landing and

Return," wherein primates, then men, would be orbited around the Moon, landed

on its surface, and returned safely. The whole undertaking was supposed to cost

$1.5 billion, a level of financial support that should complete the program by

the end of 1965. The Thor-Vanguard, the Thor with a fluorine upper stage,

and a "Super Titan" topped by fluorine second and third stages would be the
launch vehiclesW

The detailed designs and procedures for the Man-in-Space-Soonest portion

of the long-range program went to Headquarters USAF on May 2. Based on

Thor-117L, Thor-Vanguard, and Thor-fluorine booster combinations, the "Soon-

est" concept posited a manned orbit of Earth on the tenth launch of the Thor-

fluorine system, in October 1960? 0

Meanwhile, on April 30, the contractor team of Avco and Convair, which,

since the Sputniks, had spent more time and money on manned satellite design

than other industrial firms, presented to the Air Force a highly detailed proposal

for development of a "minimum" vehicle. Featuring the "bare" Atlas, the basic

"one and one-half stage" ICBM with no second stage, the Avco-Convair approach

would orbit a man inside a sphere weighing 1500-2000 pounds. The steel-mesh

drag brake, a metallic, inverted parachute, would be used for atmospheric entry. _I
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Specialists at the Ballistic Missile Division concluded that using the "bare" Atlas

would save only three or four months of development time, that it would neces-

sitate an undesirably low orbital altitude, that it ignored the prospect of dangerously

high reentry g forces following an "abort" with what was essentially a single-stage
booster, and that it presented little "growth potential," in contrast to the Thor-

fluorine system? _ As early as March, moreover, ARDC's advisers in NACA, led

by Maxime Faget, had criticized the complex drag-brake apparatus as "poor policy

that might interfere with the early completion of the program as well as being a
totally unnecessary device." _a

However, Air Force Vice Chief of Staff LeMay, whose directive back in Feb-

ruary had accelerated the proposed military manned satellite project, now ordered
a reevaluation of the Avco-Convair scheme. LeMay felt this was possibly a

cheaper way to get a man into space than Man-in-Space-Soonest, which called

for an expenditure of more than $I00 million for fiscal 1959. On May 20,

Lieutenant General Samuel E. Anderson, Commander of ARDC, replied that

in view of a general lack of confidence within ARDC in the Avco metal shuttlecock

device, the Air Force should pursue the Man-in-Space-Soonest approach. Le-

May accepted this recommendation? 4 Henceforth, although there would be

significant amendments to Man-in-Space-Soonest, the Air Force's own plan

would encounter diminishing competition from would-be contractors' alternatives.

While Anderson was discouraging LeMay's interest in the Avco-Convair pro-

posal, General Schriever, Commander of the Ballistic Missile Division, wrote An-

derson that his office was ready to proceed with a manned orbital project; the

selection of a capsule contractor awaited only allocation of sufficient funds. But
ARDC still could not secure full authorization from the Advanced Research Proj-

ects Agency, under which the Air Force would have to fund a project to put a

man in orbit. ARPA had sketched the Soonest plan before the National Security

Council Planning Board, which supposedly had a "feeling of great urgency to

achieve . . . Man-in-Space-Soonest at the earliest possible date." But ARPA
Director Johnson still shrank from the initial $100-million-plus request contained

in the program outline? 5

The main trouble was the high cost of mating the intermediate-range Thor

with l l7L and Vanguard second stages, developing an entirely new rocket with

a fluorine powerplant, and carrying out perhaps as many as 30 development

flights before trying to orbit a manned capsule?" Late in May, Air Force Under

Secretary MacIntyre and Assistant Secretary Richard E. Horner suggested that

making the Atlas a carrier for manned flight might cut program costs below the

$100 million mark. ARDC then had its Ballistic Missile DivMon prepare an

alternative approach for Man-in-Space-Soonest. The BMD answer was that

using the Atlas would mean reducing the orbital altitude of the 2000-3000-pound

capsule from about 170 miles to about 115 miles. This in turn would mean that

voice contact would be lost for long periods unless more orbital tracking stations

were built around the globe. Despite these reservations, on June 15, the Ballistic
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Missile Division sent to Washington a revised development plan for orbiting a

man in an Atlas-boosted ballistic capsule by April 1960 at a total cost of $99.3

million. The next day ARPA gave its approval to the revised "Soonest" plan

and authorized the Air Force to proceed with study contracts on the life sup-

port system of the proposed manned capsule. The Wright Air Development

Center let two concurrent three-month study contracts, at $370,000 each, to North

American Aviation and General Electric, which were to design the space cabin

and ecological mechanisms and build "mockups"--full-scale working models--

of the capsule interiorP 7

By late June, with the reworked version of the space bill proposed by the

Eisenhower administration almost ready to be voted on in Congress, it was

apparent that the Air Force was in much more of a hurry to hurl a man into
orbit than was ARPA. The new Defense Department agency remained reluc-

tant to commit heavy financing to a project that might well be abandoned or

transferred when the civilian space organization proposed by Eisenhower came

into existence. Throughout June and into July, an ARPA Man in Space Panel,

headed by Samuel B. Batdorf, received briefings and proposals from the Air

Force and in turn reported to Herbert F. York, chief scientist in ARPA. But

during these weeks Faget, serving as the regular NACA representative on the

ARPA panel, began to detect a definite change in the attitude of ARPA person-
nel toward NACA. The essence of this change, according to Faget, was the

growing belief that now perhaps ARPA should give more advice to NACA on

space technology than vice versa, as had been the case. For example, York

recommended to Johnson that NACA Director Dryden's "personal concurrence"

be obtained before any Air Force man-in-space program was formally approved

by ARPA. 58

On June 25 and 26, the ARPA Man in Space Panel sponsored a meeting in

Washington for representatives from Headquarters ARDC, the Ballistic Missile

Division, Convair, Lockheed, Space Technology Laboratories, and NACA. The

meeting was called to resolve such outstanding questions as the relationship

between payload weight and the lifting capabilities of various booster systems,

booster reliability, and ablation versus heat sink thermal protection techniques.

The gathering produced little specific technical agreement. Into July, ARPA

continued to hold back adequate "go-ahead" funds for a full-fledged Air Force
effort to send a manned vehicle into orbit? _

NACA MAKES READY

Throughout the spring and into the summer of 1958, as the administration

bill made its way through Congress, NACA had given its full participation and

support to the man-in-space planning sessions of ARPA and the Air Force. But

at the same time the research engineers at Langley and on Wallops Island were

pushing their own studies. They could see the opportunity to carry out a manned
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sate!lite project coming their way. By early spring all NACA laboratories were

urgently engaged in basic studies in such areas as propulsion, spacecraft con-

figuration, orbit and recovery, guidance and control, structures and materials,

instrumentation, and aerodynamic heating. Ames and Langley researchers were

conducting wind tunnel experiments and rocket launches with models of orbital
vehicles? °

At the Langley laboratory, proponents and would-be managers of a manned

space flight program studied the nonlifting approach to orbital circumnavigation,

refined this concept, tested it, restudied it, and invented new ways to prove hard-

ware feasibility and reliability. Floyd L. Thompson, Associate Director of Langley

and Acting Director most of the time, gave Robert Gilruth the go-ahead for

manned satellite work. In turn, Gilruth gave a free hand to PARD Chief Joseph
A. Shortal, Faget, Purser, Charles Mathews, Alan B. Kehlet, Willard S. Blanch-

ard, Jr., Carl A. Sandahl, and others at the Virginia laboratory. G_

The search for better experimental methods in manned satellite research

produced a concept by Purser and Faget for a new test rocket which would

employ a cluster of four solid-propellant Sergeant rockets to provide a high

initial thrust. Fired almost vertically and unguided except for large stabilizing

aerodynamic fins, the rocket would be an inexpensive means of testing full-scale

models of spacecraft in the most critical phases of an orbital mission--launch,

abort, and escape at different speeds and under different stresses, parachute

deployment, and recovery. Such a vehicle could also "toss" a man in a ballistic

capsule to an altitude of perhaps 100 mile._. Late in February, Purser and Faget

received a job order and authorization to proceed with design work on the test

rocket, which at that time they called "High Ride." _.2

Another experimental technique devised by the PARD engineers was a full-

scale "capsule simulator." It was designed to test the practicability of controlling

th_ attitude of a ballistic vehicle manually by activating air jets mounted on its

body, similar to the method that would be used to control the X-15 at the peak

of its trajectory. In March, Purser and several others in PARD put into opera-

tion a crude simulator rig featuring a small bed covered by a tent and attached

to a pendulum. The pendulum permitted an oscillation period of two to four

seconds, during which the "pilot" attempted to realign the simulator by firing

the air jets: Throughout the spring Langley test pilot Robert A. Champine,
Purser, and others took turns riding the simulator. Frequently modified and

improved, it provided useful data on spacecraft reaction controls. _3

Meanwhile Faget and his coworkers were steadily modifying the manned

ballistic satellite design itself. Almost from the beginning of their design studies

and tests, late in 1957, they had assumed that a ballistic vehicle should enter the

atmosphere at an attitude 180 degrees from that of launch, so the g forces would
be imposed on the front of the body under both acceleration and deceleration.

The "tail" of the capsule when it went into orbit would become its "nose" during

reentry. Their original capsule configuration--a squat, domed body with a nearly
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flat heatshield--rcsembled the Mark II missile warhead. The body was recessed

slightly from the perimeter of the heatshield, leaving a narrow lip that theoretically
would deflect the airflow in such a way as to minimize heat transfer to the after

portion. But models of this configuration tested in the Langley free-spinning

tunnel proved dynamically unstable at subsonic speeds. The Faget group then

lengthened the capsule fuselage and eliminated the heatshield lip. By March 1958,

the Langley ballistic vehicle, as described by Faget, Garland, and Buglia at the
Ames Conference on High-Speed Aerodynamics, was an elongated cone. This

design contrasted sharply with the configuration sketched earlier that month at

the ARDC working conference in Los Angeles--a rather deep dome, the rounded
front end of which was the heatshield. _'

The elongated cone provided dynamic stability during the blazing period

of reentry, but tests in the 11-inch hypersonic tunnel and other tunnels at Langley
showed that too much heat would be transferred by turbulent convection to its

afterbody. Besides thermodynamic considerations, the NACA planners could

not figure out how to fit into the top part of the cone the two parachutes neces-

sary for its recovery. The Virginia designers next tried a conical nose shape, then
a rounded one with a short cylinder attached to it, but the problems of heat transfer

from the heatshield and insufficient space for parachute packaging remained for

both of these configurations. It was late summer 1958 before the Langley-PARD

researchers had settled on a capsule design combining the advantages of maximum

stability in a nonlifting body, relatively low afterbody heating, and a suitable

parachute compartment. This was the shape that became the basis of the Mercury

spacecraft--a blunt face, a frustum, or truncated cone, and a cylinder mounted

atop the frustum. The completely flat heatshield had been discarded because it

trapped too much heat, while a rounded face only increased heat transfer. The

design ultimately chosen featured a heatshield with a diameter of 80 inches, a
radius of curvature of 120 inches, and a ratio of 1.5 be:ween the radius of the
curve and the diameter of the shield. _: This heatshield design, as worked out

by William E. Stone},, Jr., of PARD at Langley, and confirmed by AMn Seiff,

Thomas N. Canning, and other members of the Vehicle Environment Division at

:\rues, got rid of a maximum amount of heat during reentryJ _

Materials research continued at Langley throughout the spring and summer.

In their man-in-space development plans, the Air Force experts initially had
favored an ablation heatshield, but their NACA advisers generally felt that the

ablation technique was not yet reliable enough for manned reentry. In M'arch,

two of the most respected engineers in the NACA establishment, Gilruth and

Sould of Langley, axsisted by Clotaire Wood of Headquarters, had presented to

the Air Research and Development Command NACA's design concepts for

manned orbital flight, including use of the heat sink on a blunt body as the best

thermal protection procedure. The question remained open, however. In June,

the Wright Air Development Center, the Ballistic Missile Division, and NACA

agreed to undertake joint investigation of heatshield materials, the objective being

95



THIS NEW OCEAN

to compile a sufficient quantity of data for ARDC to make a decision between
heat sink and ablation methods within three months. 6'

Considering the unreliability common in early ballistic mi_iles, and

especially the widespread lack of confidence in the hard-pushed Atlas, some fast

and almost foolproof means of escape would be essential to any launch system

for manned space flight. The Air Force man-in-space designs had included an

escape mechanism with many moving parts and a degree of complexity unaccept-

able to the NACA engineers. The Air Force plans envisioned a pusher rocket

escape system, meaning that a rocket or rockets would fire at the base of the

capsule to hurl it clear of the booster. The PARD rocket experts, again led by

Faget, rejected this approach and began working on a solid-fueled tractor escape

rocket. This would be mounted above the capsule and would pull it upward

and away from a faulty launch vehicle. By the end of August 1958, Willard

Blanchard and Sherwood Hoffman of PARD, working on plans and suggestions

hurriedly made by Faget and Andre J. Meyer, Jr., had drawn designs for the

escape rocket and tower, consisting of a slender rocket case and nozzle and three

thin struts fastened to the cylinder of the capsule. The Wallops Island engineers

already were planning a series of test firings of the awkward-looking escape

mechanism, using "boilerplate" capsules, or full-scale metal modelsY '_

The solld-fueled tractor rocket with a minimum of components reflected the

Langley-PARD preoccupation with the easiest, most dependable way to get a

manned spacecraft into orbit. There were certain interlocking aspects of the

approach. The "bare" Atlas, the regular ICBM without an upper stage, should

be the booster. With the ballistic capsule, acceleration forces during launch

would be about 5 or 6 g; on a shallow reentry trajectory, deceleration loads should

not exceed 8 or 9 g. But an abort and reentry after a launch following the steep

trajector 3" and unbroken acceleration of a single-stage booster could impose as

much as 20 times the force of gravity on the capsule passenger. Air Force

planners had considered a two-stage booster and a flight profile with a more

shallow trajecto_', or a variable-drag device like the Avco metal parachute, to

lessen the abort-reent_" g loads--although by midsummer cost considerations

were pushing the Air Force toward the bare Atlas. '_9 For body support, the

Air Force had thought in terms of some kind of rotational apparatus to maintain

continuously optimum positioning in relation to the direction of acceleration. 7°

This procedure, the NACA engineers felt, was too complicated and probably

entailed too much weight.

As Man-in-Space-Soonest was taking shape in late spring, featuring a two-

stage booster and either a rotatable interior cabin or a rotatable couch, Faget had

another idea. Why not build a lightweight, stationary couch that a man would

lie not on but in? This was the fundamental principle behind the contour couch

designed by Faget, fabricated out of fiber glass at Langley, and tested on the big

Navy centrifuge at Johnsville late in July. 71 There, in what Faget called "the

only technical 'break-through' of the summer," Carter C. Collins and R. Flanagan
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Gray of the Navy endured more than 20 g while riding in the contour couch.

Then, said Faget, "we were able to disregard the USAF 'ground rule' (and a rather

firmly established one in their minds) that 12 g was the reentry design limit."
The bare Atlas could be used to hurl a man into orbit, and an abort need not

impair his safety. 72

Bmw_ oF NASA

Even before the contour couch was demonstrated, the Air Force research and

development planners also had about accepted the bare Atlas as a manned satellite

booster, although they retained serious misgivings regarding abort and reentry g

loads, orbital altitude, lifting ability, and reliability. But by early July 1958, there

actually seemed to be an inverse relationship between the Air Force's progress on

Man-in-Space-Soonest and the progress of the space bill through Congress. On

July 10, Brigadier General Homer A. Boushey of Headquarters USAF informed

the Air Research and Development Command that the Bureau of the Budget was

firmly in favor of placing the space exploration program, including manned space

flight, in the proposed civilian space organization. Nothing could be done to
release further go-ahead funds from the Advanced Research Projects Agency. r3

Only a little more than three months after the Eisenhower administration's

draft legislation went to the Capitol, both houses of Congress on July 16 passed

the National Aeronautics and Space Act of 1958, creating the National Aero-

nautics and Space Administration. Despite this long-expected action, there still

seemed to be a chance for Man-in-Space-Soonest, provided it could be carried out

at a relatively modest cost. So Roy Johnson and his subordinates in ARPA
continued to admonish the Air Force to scale down its funding requests. The

Ballistic Missile Division replied that a fiscal 1959 budgetary allotment of only

$50 million, the latest figure suggested by ARPA, would delay the first manned

orbital launch until late 1961 or early 1962. In its sixth development plan for

Man-in-Space-Soonest, issued on July 24, BMD proposed orbiting a man by

June 1960 with the bare Atlas, at a cost of $106.6 million. This was an increase
of $7.3 million over the project cost estimate contained in the fifth development

plan on June 15. Schriever personally wrote Anderson, Commander of ARDC,
that the Ballistic Missile Division wag already studying requirements for a world-

wide tracking network, that the heat sink versus ablation question was under

examination, that three companies were designing the 117L and the Vanguard

second stage as possible backup systems for the bare Atlas, and that invitations

for a briefing for prospective capsule contractors could be mailed within 24 hours.

Schriever asked for immediate approval for Man-in-Space-Soonest at the $106.6
million level5 _

In Washington, on July 24 and 25, Ballistic Missile Division specialists gave a
series of briefings for ARDC, Secretary of the Air Force Douglas, the Air Staff,

and ARPA. The ARPA briefing featured urgent appeals for full, immediate

program approval to give the United States a real chance to be "soonest" with a
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man in space. ARPA Director Johnson flatly refused to give his go-ahead at that

time. President Eisenhower and his advisers, he explained, were convinced there

was then no valid role for the mifitary in manned space flight. NACA, the

nucleus of the civilian space program to be organized under the terms of the

recently passed Space Act, already was planning its own manned satellite project,

perhaps to be executed in conjunction with ARPA, at a cost of about $40 million

for fiscal 1959. Consequently, said Johnson, it was futile for the Air Force to

expect more than $50 million for the current fiscal year for Man-in-Space-Soonest.

The impiication was the Air Force would be lucky to receive even that. _

Eiscnhower signed the National Aeronautics and Space Act into law on July 29,

1958. His action brought into being an organization to "plan, direct, and conduct

aeronautical and space activities," to "arrange for participation by the scientific

community in planning .scientific measurements and obser_'ations," and to "provide

for the widest practicable and appropriate dissemination of information concerning

its actMties and the results thereof"--in short, to guide the Nation into the Space

Age. 7_ Space activities related to defense were to continue in the DOD.
There were certain basic differences between the final act and the bill that

representatives of NACA, the Bureau of the Budget, and Eisenhower's other

advisers had drafted and sent to Congress in April. These changes were the

product especially of the actMties and influence of three men : Lyndon B. Johnson,

Senate majority leader and chairman of the Preparedness Subcommittee of the

Senate Committee on Armed Services and the Senate Special Committee on Space

and Astronautics; John W. McCormack, House majority leader and chairman

of the House Select Committee on Astronautics and Space Exploration; and

Senate minority leader Styles Bridges of New Hampshire, ranking Republican on

the Senate space committee. =

The large Space Board proposed by the administration to advise the head

of the civilian agency gave way to a five-to-nine-member National Aeronautics

and Space Council, charged with advising the President, who was to be its chair-

man. The provision for a National Aeronautics and Space Administration,

headed by an administrator and a deputy administrator, rather than a "Space

Agency" headed by a single director was, according to two staff members of

the House space committee, "a mighty promotion in Washington bureaucratic

terms." TM Reflecting general concern in Congress over the relationship between

space technology and national defense, the Space Act added a Civilian-Military

Liaison Committee, appointed by the President, to ensure full interchange of

information and data acquired in NASA and Defense Department programs.

Other significant amendments pertained to patent procedures, authority to hire
some 260 persons excepted from the civil service rating system, and NASA's obliga-

tion to cooperate with "other nations and groups of nations." 7_

Eisenhower, acting mainly on the advice of Killian, his chief scientific adviser,

passed over the respected, apolitical Dryden, Director of NACA since 1949, and

named T. Keith Glennan, president of the Case Institute of Technology in Cleve-
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land, former member of the Atomic Energy Commission, and a staunch Repub-

lican, as the first Administrator of NASA. Dryden was appointed to the post

of Deputy Administrator. Glennan would furnish the administrative leadership

for the new entity, while Dryden would function as NASA's scientific and tech-

nical overseer. On August 15 the Senate voted its confirmation of Glennan and

Dryden, and four days later the new Administrator met with the Abbott organiza-

tion committee to review the proposed organization of NASA. s°

The National Aeronautics and Space Administration, absorbing more than

8000 employees and an appropriation of over $100 million from NACA, was

beginning to take shape. Under the terms of the Space Act, accompanying

White House directives, and later agreements with the Defense Department, the

fledgling agency acquired the Vanguard project from the Naval Research Labora-

tory; the Explorer project and other space activities at the Army Ballistic Missile

Agency (but not the von Braun rocket group) ; the services of the Jet Propulsion

Laboratory, hitherto an Army contractor; and an Air Force study contract with

North American for a million-pound-thrust engine, plus other Air Force rocket

engine projects and instrumented satellite studies. In addition, NASA was to

receive $117 million in appropriations for space ventures from the Defense De-

partmentY But the Space Act was silent regarding organizational responsibility

for manned space flight.

OTHER MEANS TO THE SAME END

Besides Man-in-Space-Soonest of the Air Force, there were two other manned

military space ventures seeking approval from ARPA in the summer of 1958. A

rather heated competition was underway among the three armed services in the

area of manned space flight. The Army's entry, much simpler than the Air Force

approach, was supposed to lift a man into the space region "sooner" than Soonest.

After the Sputniks, von Braun and his colleagues at Redstone Arsenal had had

great success resuscitating their instrumented satellite project. Now they had

unearthed one of their old proposals for using a modified Redstone to launch a

man in a sealed capsule along a steep ballistic, or suborbital, trajectory. The

manned capsule would reach an altitude of approximately 150 miles before splash-

ing into the Atlantic about the same distance downrange from Cape Canaveral.

The passive passenger would be housed in an ejectable cylindrical compartment

about four feet wide by six feet long, which in turn would be housed in an inverted

version of the kind of nose cone used on the Jupiter IRBM. s2

The Army tried to justify the proposal partly as a step toward improving

techniques of troop transportation. But, more important, such a ballistic shot

supposedly could be carried out during 1959; this would recoup some of the

prestige captured by the Soviet satellite launchings as well as furnish some much-

needed medical information, especially regarding high g loading and the effect

of about six minutes of weightlessness. Initially called "Man Very High," the
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project called for the support of all three services. The sealed compartment
would be modeled closely on the Air Force Manhigh balloon gondola then being

used in a series of record-breaking ascents. In April the Air Force, already

overloaded with plans for its own Dyna-Soar and manned satellite projects,

had decided not to participate. So the Army had renamed the plan "Project

Adam" and had begun pushing it as an Army project, with Navy cooperation

expected in the medical and recovery phases. 8_

The Adam proposal began the formal climb from the Army Ballistic Missile

Agency through the Pentagon hierarchy to the office of the Secretary of the

Army, then to ARPA. It came under very heavy criticism from sources both

inside and outside the Defense Department. The ARPA Man in Space Panel

unequivocally recommended that the proposal be turned down. Hugh Dryden
of NACA told the House Space Committee that "tossing a man up in the air

and letting him come back . . . is about the same technical value as the circus

stunt of shooting a young lady from a cannon .... " And Arthur Kantrowitz

of Avco, whose company was still trying to get the Air Force manned satellite
contract, termed Adam "another project which is off the main track because I

feel that weightlessness is not that great a problem." _4

On July 11, ARPA Director Johnson notified Secretary of the Army Wilbur

M. Brucker that ARPA did not consider Project Adam a practical proposal for

manned space flight. Consequently the Army could not expect to receive the

$10-12 million it requested for the "up-and-down" project. Early in August,

Brucker, mentioning that the Central Intelligence Agency had expressed an

interest in Adam, defended the approach as a potential "national political-

psychological demonstration." Deputy Secretary of Defense Donald A. Quarles

replied that in light of the Soviet achievement of orbiting an animal, the Air

Force man-in-space project, and the creation of NASA, a decision on Project

Adam would have to await "further study." In succeeding months the contro-

versial "lady from a cannon" plan slipped quietly into the inactive i:ategory at
Redstone Arsenal. _5

Still a third military proposal for manned space flight came forth during
the contentious first half of 1958. In April the Navy Bureau of Aeronautics

presented to ARPA the results of its manned satellite study, cleverly acronymized

"MER I" (for "Manned Earth Reconnaissance"). This approach called for

an orbital mission in a novel vehlcle--a cylinder with spherical ends. After

being fired into orbit by a two-stage booster system, the ends would expand

laterally along two structural, telescoping beams to make a deita-wlng, inflated

glider with a rigid nose section. The configuration met the principal MER I

requirement: the vehicle would be controllable from booster burnout to landing
on water. Fabric construction obviously implied a new departure in the design

of reentry vehicles. At ARPA's direction the Bureau of Aeronautics undertook

a second study (MER II), this one to be done jointly on contract by Convair,
manufacturer of the Atlas, and the Goodyear Aircraft Corporation. The Convair-

100



FROM NACA TO NASA

Goodyear study group did not make its report until December. At that time

it reasserted the feasibility of the lifting pneumatic vehicle but relegated the

inflation of the craft to the postentry portion of the mission3 _ By December,

however, Project Mercury already was moving ahead steadily under NASA.

Funds for a MER III phase (model studies) were not forthcoming from the

Defense Department, and the intriguing MER concept became a little-known

aspect of the prehistory of manned orbital flight.

MER, sometimes referred to as "Project MER," was by far the most ambitious

of the manned space flight proposals made by the military in 1958. Its emphasis

on new hardware and new techniques meant it really had little chance for approval

then. Conversely, Project Adam was not ambitious enough for the time and

money involved. Of the three military proposals, Man-in-Space-Soonest came

closest to full program approval. But by August the Air Force's hopes for putting

a man into orbit sooner than the Soviet Union, or than any other agency in this

country, were fading rapidly before the growing consensus that manned space

flight should be the province of the civilian space administration.

NASA GETS THE JOB

After the passage of the Space Act on July 16, Killian had requested from

Dryden a formal memorandum placing on record NACA's views regarding a

manned satellite project. Two days later, a week and a half before Eisenhower

signed the act, Dryden sent his memorandum to Killian. The NACA director

sketched his organization's extensive research background in such pertinent areas

as control systems for hypersonic vehicles, thermodynamics, heat-resistant struc-

tural materials, and the current X-15 project. Then, in his strongest official

statement up to that time on development, operations, and managerial respon-

sibilities, Dryden concluded, "The assignment of the direction of the manned

satellite program to NASA would be consistent with the President's message to

Congress and with the pertinent extracts from the National Aeronautics and
Space Act of 1958 .... ,, 8_

Like everyone else, incIuding Air Force leaders, Dryden wanted to avert a

potential conflict between NASA and the Air Force regarding manned space

flight. On the same day that Eisenhower signed the Space Act, July 29, Dryden

met with Roy Johnson and Secretary of Defense Nell H. McElroy to discuss the

future management of manned space programs, but no agreement was reached.

The conferees adjourned to await action from the White House38

Some time between then and August 20, probably on August 18, Eisenhower

made his decision. Again apparently acting on Killian's advice, he assigned to

NASA specific responsibility for developing and carrying out the mission of

manned space flight. This decision provided the coup de grace to the Air Force's

plans for Man-in-Space-Soonest. Deputy Secretary of Defense Quarles decided

the $53.8 million that had been set aside for various Air Force space projects,
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including Man-in-Space-Soonest (but not Dyna-Soar), would constitute part of

the $117 million to be transferred from the Defense Department to NASA.
LeMay, Air Force Vice Chief of Staff, then notified the Air Research and De-

velopment Command that he was transferring $10 million previously earmarked

for the Soonest project. He added that Eisenhower's action obviously made

impossible the immediate project approval Schriever had urged on July 24. A

seventh and final manned satellite development plan, which the Ballistic Missile

Division submitted to ARDC on September 11, significantly dropped the term
"Soonest" from its descriptive titleY

The Air Force would proceed with its Dyna-Soar project in conjunction with

NASA and later would inaugurate a "Discoverer biosatellite program" based on

the 117L system. After August 1958, however, the project to rocket into orbit

a man in a ballistic capsule was under undisputed civilian management, although

it would draw heavily on all three services as well as industry and universities.

The National Aeronautics and Space Administration received authorization

to carry out this primitive manned venture into lower space mainly because

Eisenhower was wedded to a "space for peace" policy. He was ioined by his

closest advisers, most members of Congress, and perhaps a majority of politically

conscious Americans. In 1958 there simply was no clear military justification

for putting a man in orbit. 9° And while there is little evidence on this point,

it may be assumed that the very ambitiousness of the Air Force planners, to

whom the orbiting of a manned ballistic vehicle was only the first phase of a

costly program aimed at putting a man on the Moon, discouraged the budget-

conscious Eisenhower administration. Already enormous sums were being spent

on ballistic missiles and other forms of advanced weapons technology.
Also helping to influence the President and his advisers, however, was the

fact that NACA, around which NASA would be built, already had gone far in

designing, testing, planning, and generally making itself ready for the execution

of a manned satellite project. For months representatives from NACA Head-

quarters had conferred periodically with prospective contractors like Avco, Lock-

heed, and General Electric on such subjects as heatshield technology, environ-

mental control systems, and communications requirements. "1 As early as March

1958, both before and after th'e Ames conference, Maxime Faget and Caldwell

C. Johnson, working in PARD, together with Charles Mathews of the Langley

Flight Research Division, had drawn up basic outlines for the manned ballistic

satellite mission, the capsule configuration and internal equipment, heating loads

and structural considerations, and weight limitations for a manned payload lifted

into orbit by an Atlas. Throughout the spring and summer, Johnson, a self-

made engineer attached to PARD from the Langley Engineering Services Division,

continually modified his designs and specifications for the "can" to be mounted
on the Atlas ICBMY

By the end of the summer, experimenters operating in the 2000-foot towing tank
at the Virginia laboratory already were using Langley-made scale models and
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During the spring of 1958 engineers at Langley both researched and brainstormed

the problems associated with a manned spacecraft. These engineering sketches were

done in May 1958 by Caldwell C. Johnson. In the upper left, the spaceera[t is still
attached to the, booster in powered ascent; the nose fairings have lust _ettisoned,

exposing the parachute containers and permitting the antenna to deploy. Upper

right, reentry has begun and the spent retrorockets are being _ettisoned. Lower Ie/t,

the parachutes are deploying and the hcatshicId is being )ettisoned. And at lower

right, the spacecraft has safely landed in the water and is now communicating.



Twomodelso[ possiblecapsuleconfig-
urations#ore early 1958. The cone

shape was soon obsolete, while the

rounded- end- with- cylinder configura-

tion is clearly related to C. C. Johnson's

engineering sketches. It is interesting

that the couch configuration is the same

in the two divergent capsule designs.
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A water-drop test at the Langley labora-

tory is about to check the landing char-

acteristics and [totation stability o[ the

cone-shaped capsule configuration.

\

\ \

dummies of the ballistic capsule in water impact trials, while other engineers were
carrying out air-drop tests of a boilerplate capsule parachute system over Chesa-
peake Bay. And a group from the Lewis laboratory was commuting regularly to
Langley to participate in design discussions on all the orbital spacecraft systems,

especially on thermal protection techniques and on the attitude control, separa-
tion (posigrade), and reentry (retrograde) rockets? 3

Meanwhile Faget's and Paul Purser's proposal made early in the year for a
clustered-rocket test booster to be used in payload design research and in manned
vertical flights had undergone a politic modification. After Dryden publicly drew

his analog3, between the Army's Project Adam and the circus lady shot from a
cannon, the PARD research team leaders dropped the name "High Ride" and

shelved their ideas for using the rocket to fire a man into space. In August, Faget
asked William M. Bland, Jr., and Ronald Kolenkiewicz of PARD to prepare
precise specifications for a vehicle to launch full-scale and full-weight capsules to a
maximum altitude of 100 miles. Only a year would pass before the experimental
rocket went into operation. When it did, the former "High Ride" would have

acquired the new nickname "Little Joe." _*
Only three days after Eisenhower signed the Space Act and more than two
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weeks before he formally gave the manned satellite job to NASA, Dryden and

several other representatives of the disappearing NACA had testified before the

House space committee on their budget request for $30 million for fiscal 1959.

Assistant Director Gilruth of Langley gave a hurriedly prepared presentation on

plans for a manned ballistic satellite; his remarks amounted to the first open dis-
cussion of the technical aspects of what was soon to become Project Mercury.

After exhibiting models of the contour couch and an outdated cone-shaped capsule,

Gilruth turned to the proposed launch vehicle. Here he revealed the fears and

hopes about the Atlas that would characterize NASA's efforts to orbit a man:

The Atlas . . . has enough performance to put this in orbit and the guidance
system is accurate enough, but there is the matter of reliability. You don't
want to put a man in a device unless it has a very good chance of working
every time.

There are scheduled many Atlas firings in the next year and a half. Reli-
ability is something that comes with practice. It is to be anticipated that this
degree of reliability will occur as a result of just carrying out the national
ballistic missile program. °_

The Main Committee of NACA held its last meeting on August 2 1 and formally

extended best wishes to NASA and Administrator Glennan, who attended the

meeting. 9° In mid-September, Glennan and Roy Johnson of ARPA agreed that

their two agencies should join in a "Man-in-Space program based on the 'capsule'

technique." 97 They then established a joint NASA-ARPA Manned Satellite

Panel to draw up specific recommendations and a basic procedural plan for the

manned satellite project. Composed of Gilruth, who served as chairman, and

Faget of Langley, Eggers of Ames, Williams of the Flight Station, and George M.

Low and Warren J. North of Lewis, representing NASA, together with Robertson

C. Youngquist and Samuel Batdorf of ARPA, the panel began holding meetings

dUrlng the last week of September. _

On September 25, Glennan issued a proclamation declaring that "as of the

close of business September 30, 1958, the National Aeronautics and Space Ad-

ministration has been organized and is prepared to discharge the duties and exercise

the powers conferred upon it." 99 In a message to all NACA personnel he added :

One way of saying what will happen would be to quote from the legal-
istic language of the Space Act .... My preference is to state it in a quite differ-
ent way--that what will happen.., is a sign of metamorphosis. It is an indi-
cation of the changes that will occur as we develop our capacities to handle the
bigger job that is ahead. We have one of the most challenging assignments
that has ever been given to modern man) n°

On Tuesday afternoon, September 30, more than 8000 people left work as

employees of the 43-year-old NACA. The next morning almost all of them

returned to their same jobs with NASA.
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Specifications for a Manned Satellite

(OCTOBER--DECEMBER 1 9 5 8)

"All right. Let's get on with it !"

These were the informal words of leadership that launched the development
of the United States' first manned space flight program. They were spoken by
T. Keith Glennan, newly appointed first Administrator of the National Aero-
nautics and Space Administration, following a briefing by eight civil service
aeronautical engineers who felt ready to become "astronautical engineers." This
was exactly a year and three days after national debate and preliminary planning
had been precipitated by Sputnik I. Glennan's words symbolized the firm reso-
lution of the Congress, the Eisenhower administration, and the American people
to accept the challenge of nature, technology, and the Soviet Union to explore
the shallows of the universe. 1

By the first anniversary of Earth's first artificial satellite, Americans generally
seemed willing, if not eager, to accept the rationale of scientific experts and engi-

neering enthusiasts that the new ocean of space could now and should now be
explored by man in person. The human and the physical energies necessary for

man to venture beyond Earth's atmosphere had become, for the first time in
the history of this planet, available in feasible form. These energies only needed
transformation by organization and development to transport man into the
beyond.

If these were the articles of faith behind the first American manned satellite

program, they had not been compelling enough to spark action toward space flight
before the Sputniks. Public furor was inspired primarily not by the promise of
extending aeronautics and missilery into astronautics, but rather by the national-
istic fervor and punctured pride caused by the obviously spectacular Soviet
achievements. Faith, fervor, and even some fear were perhaps necessary if the
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American democracy was to embark on a significant space program. But the

people most directly concerned with mobilizing the men and the technology, to

accomplish manned orbital flight had first to organize themselves.

A MANNED SATELLITE PLAN

The establishment of an organization to carry through a manned space flight

program depended upon gaining the national decision to create a space agency

and then upon defining the objectives of the space agency ,as a whole and of its

highest priority programs in particular. In July 1958 legislative debate had

ended in the passage of the National Aeronautics and Space Act. In August

administratiw: power struggles had abated with President Dwight D. Eisenhower's

appointments and Senate confirmation of the administrative heads of the new

space agency. By September the technical and jurisdictional questions remaining

to be solved for an operational manned satellite program had been removed from

the open forum by their assignment to the Joint NASA-ARPA Manned Satellite

Panel. When Glennan proclaimed that the demise of NACA and the birth of

NASA would take effect at the close of business on September 30, 1958, there was

reason to suppose that a preliminary organization of the nation's space program

was well in hand. But in Washington there was no clear commitment to the

precise size or priority of the manned program within NASA, because NASA

itself was as yet only a congeries of transferred people, facilities, and projects.-"

Earlier attempts to coordinate interservice and interagency plans and pro-

cedures for putting a man in space had been ineffectual. During the middle of

September, Glennan and Roy W. Johnson, Director of Advanced Research Proj-

ects Agency (ARPA), had come to agree on the bare outline of a joint program

for a manned orbital vehicle based on the ballistic capsule idea. A month earlier,

Hugh L. Dryden, the veteran Director of the NACA, and Robert R. Gilruth,

Assistant Director of Langley Aeronautical Research Laborato_', had informed

Congressional committees of their plans for a manned capsule and had requested

$30 million to proceed with the work. But only when the Joint Manned Satellite

Panel was established by executive agreement between NASA and ARPA in mid-

September 1958 did plans and proposals begin to jell into a positive course of
action .3

Of the eight members of this steering committee, only two were from ARPA.

Six had come from NACA and were the principal policy makers who laid down

the guidelines and objectives for the first manned space flight program. This

group began to meet almost continuously in late September in an effort to estab-

lish preliminary plans and schedules for the manned satellite project. Thousands

of scientists and engineers over past years made possible their outline report,

entitled "Objectives and Basic Plan for the Manned Satellite Project." But

technical liaison between military and cMlian groups oil the immediate working

levels provided the specific data for the outline drawn up by this panel: '
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SPECIFICATIONS FOR A MANNED SATELLITE

I. OBJECTIVES

The objectives of the project are to achieve at the earliest practicable date
orbital flight and successful recovery of a manned satellite, and to investigate
the capabiIities of man in this environment.

II. MISSION

To accomplish these objectives, the most reliable available boost system will
be used. A nearly circular orbit will be established at an altitude sufficiently
high to permit a 24-hour satellite lifetime; however, the number of orbital
cycles is arbitrary. Descent from orbit will be initiated by the application of
retro-thrust. Parachutes will be deployed after the vehicle has been slowed
down by aerodynamic drag, and recovery on land or water will be possible.

nI. CONFIGURATION

A. Vehicle

The vehicle will be a ballistic capsule with high aerodynamic drag. It
should be statically stable over the math number range corresponding to flight
within the atmosphere. Structurally, the capsule will be designed to with-
stand any combination of acceleration, heat loads, and aerodynamic forces that
might occur during boost and reentry of successful or aborted missions.

The document outlined generally the life support, attitude control, retrograde,

recovery, and emergency systems and described the guidance and tracking, instru-

mentation, c3mmunications, ground support, and test program requirements.

In only two and one-half pages of typescript, the "Obiectives and Basic Plan"
for the manned satellite were laid out for the concurrence of the Director of ARPA

and the Administrator of NASA during the first week of October 1958. Verbal

elucidations of accompanying charts, tables, and diagrams, plus scale models
brought along from Langley Field, successfully .sold this approach for putting

man into orbit. Although the Air Force, Army, and Navy, as well as numerous

aviation industry research teams, also had plans that might have worked equally

well, the Nation could afford only one such program. The simplest, quickest, least

risky, and most promising plan seemed to be this one?

The fact that the Joint Manned Satellite Panel was "loaded" six to two in

favor of NASA reflected the White House decision that ARPA would assist NASA

rather than comanage the project. The plans of the panel gave the appearance

of unanimity among aeronautical engineers on how to accomplish manned orbital

flight. Keith Glennan and Roy Johnson were impressed by this consensus but

they refrained from making public their commitments for several more months.

The tacit agreement among the panel members that no basic technical or scientific

problems remained to be solved before moving into development and flight test

would be tested by industrial response to the basic plan. If previous research had

been sufficiently thorough to allow NASA to begin immediately applTing engineer-

ing knowledge for the achievement of orbital flight, then the panel's judgment of
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the state of the art should be confirmed by the aircraft companies. Only Alfred

J. Eggers wished to be placed on record as favoring concurrent development of
a lifting reentry vehicIe. _

The panel recommended three types of flight testing programs. First, develop-
ment tests should verify the components of the manned satellite vehicle "to the

point where they consistently and reliably perform satisfactorily, and provide

design criteria by measuring loads, heating, and aerodynamic stability derivatives

during critical portions of the flight." Second, qualification flight tests shouId

determine suitability of the complete vehicle to perform its specified missions.

Third, training and pilot performance flight tests should validate man's "potential
for the specified missions."

In this program, all three types of tests will be made with full-scale articles.
These tests will be initiated at low velocities, altitudes and loads. They will
progress with a buildup in severity of these conditions until the maximum mis-
sion is reached. In general, development tests will be completed, followed by
qualification tests, and pilot performance and training tests. However, there
will be some overlap as the severity of conditions are built up in the flight test
program. The number and type of pilot performance and training flights will
be determined as the program develops. 7

Although the conceptual design and the operating philosophy for the manned

satellite program were remarkably firm at the time of authorization, specific

technical difficulties in development could not be pinpointed in advance. The

people who would have to solve them were only then being identified and appointed

to their individual jobs. At NACA Headquarters in Washington, Hugh Dryden

had presided during the summer over the metamorphosis of NACA into NASA.

An established scientist and a proven technical executive, Dryden had been a

logical choice if not for the Administrator, then for Deputy Administrator, the

second highest position within the space agency. He must decide how many and

who should move to Washington to manage the administrative side and to oversee

the engineering work. What proportion of effort and funds should NASA spend
on developing manned, as opposed to unmanned, spacecraft and rockets? On

whom should the immediate responsibility for technical direction of the manned

satellite program be put? Where should the locus for ground control of manned

space flight operations be placed?

THE PEOPLE IN CHARGE

Glennan and Dryden decided many questions of appointment quite naturally
by aIIowing informal working arrangements to become formal. Glennan's fel-

low Clevelander, Abe Silverstein, Associate Director of NACA's Lewis Flight Pro-

pulsion Laboratory, was appointed Director of Space Flight Development. Sil-
verstein had been the technical director of research at Lewis since 1949 and had

worked closely with Dryden since March and with Glennan since August in plan-
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ning the early organization of NASA. 8 As reflected by his title, manned pro-

grams per se were supposed to occupy only about one-third of Silverstein's time.
He brought with him from Cleveland three other scientist-administrators of demon-

strated talents to handle most of his staff work concerning the manned satellite

program, which then was a minor portion of Silverstein's responsibility compared

with his concerns over propulsion development. Newell D. Sanders became

Silverstein's Assistant Director for Advanced Technology. But the primary re-

lations between Washington and the field activities for manned space flight de-

velopment were to be handled by George M. Low, who eventually became chief

of an Office of Manned Space Flight, and Warren J. North, a former NACA test

pilot who at first headed an Office of Manned Satellites, then of Space Flight Pro-

grams. Dryden and Glennan depended heavily upon Silverstein and his aides

for the technical review and supervision of the division of labor among the various

NASA field centers. But the locus of manned space flight preparations remained

with the small group of Langley and Lewis personnel under Gilruth, the group

that had zealously researched, planned, and designed what was to become Project
Mercury.

Dryden desired to conserve the character of the three primary NACA centers

as national laboratories specializing as necessary in applied and advanced research

for aeronautics and astronautics. Glennan agreed to assign the large new devel-

opment and operational programs to distinct, or at least reorganized, groups of

people. The directors of the Langley, Ames, and Lewis Research Centers should
continue their aeronautical and missile work with a minimum of disturbance while

expanding the proportion of their research devoted to space. NASA Headquar-

ters personnel, temporarily located in the Dolley Madison House, across Lafayette

Square from the White House, should be able to coordinate agency-wide activi-

ties without too much interference in the high degree of local autonomy at the

research laboratories near airfields in Virginia, California, and Ohio.
With the birth of NASA all the former NACA laboratories had their names

changed. Langley Memorial Aeronautical Laboratory, from 1920 until 1940

the firs.t and only research lab for NACA, became on October 1, 1958, the Langley

Research Center. Located on the Virginia peninsula, across Hampton Roads

from Norfolk, the Langley laboratories flanked one side of old Langley Field, one

of the pioneer U.S. military airfields; for 10 years now the Air Force had called

it the Langley Air Force Base. NASA's 700 acres there contained buildings and

hangars more permanent and other structures more unusual than were normally

found at military airfields. On opposite edges of the runways, about 3000 civilians

in 1958 worked at facilities worth more than $150 million. About 700 of these

people were professional engineers and self-made scientists whose major tools

were 30 different wind tunnels. Also they had experimental models, operating

aircraft, shops, and laboratories for chemistry, physics, electronics, and
hydrodynamics."

As a national aeronautical laboratory Langley supported little if any "pure"
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or "basic" science, in the sense of independent individual investigations in pursuit

of knowledge as opposed to utility. But it had long provided a world-renowned
institutional setting for "applied science." Both research and development were
carried on there without prejudice. 1°

Now that the "sky" was to be redefined in terms of "aerospace," man's mastery
of dimensions at least five times higher than he had ever flown required radically
new social as well as technological inventions. Silverstein was asked by Dryden

to help Gilruth create an entirely new management organization, composed pri-
marily of Langley personnel, without disrupting other work in progress. The
Director of Langley Research Center, Henry J. E. Reid, was on the verge of re-
tirement, and responsibility for administering Langley had devolved to Floyd L.
Thompson. Neither Reid nor Thompson was close enough to the manned satel-
lite working level, where events were moving so rapidly, to assume charge of the

special organization taking shape there.
The project director of the manned satellite program should therefore be the

man who had already directed it through its gestation period--Robert R. Gilruth.
As Assistant Director of Langley and the former chief of the Pilotless Aircraft

Research Division (PARD), he had long nurtured Maxime A. Faget and his asso-
ciates, the conceptual designers of the NACA manned satellite. After the con-
solidation of professional consensus at Langley behind the Faget plan in March
1958, Dryden and his Washington associates Ira H. Abbott and John W. Crowley,
]'r., had given Gilruth authority to get underway? _

Gilruth had come to Langley after earning his master's degree in aeronautical
engineering at the University of Minnesota under Professor Jean Piccard in 1936.
He had been a leader in research during the development of transonic and super-

sonic aircraft, becoming the man in charge of structures, dynamic loads, and
pilotless aircraft studies at Langely in 1952. During the decade of guided missile
development, Gilruth had served on some six scientific advisory committees for
the military services and for NACA. His eminence was widely recognized both
as a scientist-engineer and as a research administrator. Furthermore, he was

eager to continue his leadership of the vigorous group of younger engineers work-
ing with Faget? 2

As soon as Gilruth and Faget returned with Glennan's verbal approval "to

implement the manned satellite project," Thompson, acting director of Langley,
began making arrangements to establish in separate facilities at the Unitary Wind
Tunnel Building the self-appolnted group already working on space flight.
Charles J. Donlan, Technical Assistant to the Director of Langley, was asked to
serve as Assistant Project Manager. Under Gilruth and Donlan, 33 Langley
personnel, 25 of these engineers (14 of them from PARD), were officially trans-
ferred on November 5, 1958, to form the nucleus of a separate organization to

be called the Space Task Group? 3
Although the new Task Group was responsible directly to Washington, its

initial composition and actions were left largely to local initiative. The Langley
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group had anticipated by two months the official actions and had discussed

organization of a "Manned Ballistic Satellite Task Group." Called by some of its
secretaries the "Space Task Force," it had acquired 10 to 15 men from Lewis
Research Center when Silverstein in July had directed them to commute to Langley
to aid in working out detailed designs for structure, thermal protection, and instru-
mentation in the program. This informal Langley-Lewis working arrange-
ment gradually integrated and expanded as the Space Task Group took shape
through the following year. 14

Gilruth's authorization gave him two hats: one as project manager of the
Space Task Group, and the other--announced May 1, 1959--as assistant director
of a new NASA "space projects center" to be located near Greenbelt, Maryland,
about 15 miles northeast of the Nation's capital. In Washington, Dryden and
Silverstein were making plans for this space development facility to accommodate

the NASA inheritance of Project Vanguard and about 150 of its personnel, trans-
ferred from the Naval Research Laboratory. Such a facility might easily double
as an operations control center. At this time the scientific and operational aspects
of manned satellites appeared to complement the tracking network and instru-
mentation for the Vanguard satellites. So as soon as the building could be con-

structed on an agricultural experimental farm at Beltsville, Maryland, the Space
Task Group would move there. In the interim LangIey would continue to

furnish lodging and logistic support while a space flight operations center was
being built. All this was to change about two years later when it became apparent
that the scope, size, and support for manned space endeavors called for an entirely
separate center. 15

Everyone connected with the Space Task Group in the first several months
of its existence was too busy preparing and mailing specifications, briefing pro-
spective contractors, and evaluating contractor proposals to take much interest in
organization charts. A kind of executive committee, forming around Gilruth
and Donlan during November and December, gradually organized itself along
functional lines. Gilruth and Donlan, Faget and Paul E. Purser, Charles W.
Mathews, and Charles H. Zimmerman formed the core of this first executive

council. Other senior NACA engineers on the original STG personnel list, men
like Aleck C. Bond, Christopher C. Kraft, Jr., Howard C. Kyle, George F. Mac-
Dougall, Jr., and Harry H. Ricker, Jr., also played important roles in the initial
formulation of the technological plan of attack.

Of the 35 members of the original group from Langley, only eight provided
administrative or clerical services. Thus, with the 10 additional people from the
Lewis laboratory, Gilruth and Donlan had 35 scientist-engineers to assign to

specific technical problems. Those 14 who came directly from PARD continued
working on implementing their designs, as they had been doing for almost a
year. Five men came from the Flight Research Division of Langley, two came
from the Instrument Research Division, two from the Stability Research Division,

and one each from the Dynamic Loads and Full-Scale Tunnel Research Divisions.
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Some of these, men like William M. Bland, Jr., John P. Mayer, Robert G. Chilton,

Jerome B. Hammack, Jack C. Heberlig, William T. Lauten, Jr., and Alan B.

Kehlet, had made substantial professional investments in the space flight program

at a time when this was still some risk to their careers. Being a Buck Rogers buff

was not yet quite respectable. 1°

From Glennan's approval of the project until the formal establishment of

the Space Task Group on November 5, and indeed for some months later, it

was by no means certain how much support and what priority the manned

satellite program might receive. Some NACA careerists were hesitant to join

an operation that might easily prove abortive. So far Gilruth had no specified

billets to fill nor any public, formal mandate from Headquarters. He and

Silverstein worked together very closely through the shuttle service of George

Low on Silverstein's staff, who divided his time between Washington and STG.

The hectic early days, cluttered and confused, made the future of the Task Group

appear less than certain. Although NASA Headquarters had received from

ARPA and allocated to Langley the necessary funds to get started, NASA seemed

to prefer the science programs it had inherited along with instrumented satellites.

The Space Task Group wanted full and explicit support of the development

engineering necessary for a manned satellite. But the members did not let lack

of documented clarity from the policy level dampen their enthusiasm or activity.

Throughout October, trips and conferences by key personnel verified at the work-

ing level and in the field what could and could not be done to implement policy

planning in Washington. To many of the younger engineers under Gilruth,

NASA's initial organizational confusion offered opportunity for initiative at the

local level to accomplish more than directives from Headquarters in getting an
American into orbit. 17

In order to avoid the danger of converting the Langley Research Center into

Langley "Research and Development" Center, Dryden insisted that the Space

Task group should be separated from the mother institution and attached to the

BeltsviUe Center. Some Langley engineers welcomed the opportunity to partici-

pate in a full-fledged development program; others, more research-oriented,

abhorred the idea. In managing the Space Task Group, Gilruth had to reconcile

these attitudes, to recruit talent and screen zeal, and to create an organization

capable of developing into hardware what had been conceived in research.

"AEROSPACE" TECHNOLOGY

One of the scientific questions of the International Geophysical Year that had

to be answered before the orbital mechanics of a manned satellite could be specified

in detail was: where precisely does Earth's atmosphere end? By late 1958 the

aeromedicaI fraternity, following Hubertus Strughold's lead, had accepted the

conceptual outlines of "space-equivalent altitudes," with refined definitions of the

"aeropause," as a general biological guide to answer a slightly different question :
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where does space begin? But upper-atmospheric studies, based on the actual

behavior of the six or eight known artificial satellites plus the data gained from a

few rocket probes and about 100 comparable sounding rockets and balloons, were

neither definite enough nor codified well enough to plan the precise height at which
man should first orbit Earth. TM

The NASA/ARPA mission specification of a circular orbit to be achieved by

"the most reliable available boost system . . . at an altitude sufficiently high to

permit a 24-hour satellite lifetime" (before the natural decay, or degradation, of

the original orbit because of slight but effective upper-atmospheric friction) had

carefully avoided a commitment to either a booster or an orbital altitude. The

Space Task Group proceeded on the assumption that both apogee and perigee of
the manned ballistic satellite should be within the rough limits of 100-+-25 miles

high. The Task Group chose 100 statute miles (87 nautical miles) as the nominal

average altitude to ensure a full-Earth-day lifetime for the one-ton manned
moonlet.

The outer limits of Earth's atmosphere, where it blends in equilibrium with

the solar atmosphere or plasma, seemed around 2000 miles, and the "edge" of the

outer ionospheric shell was thought to be perhaps 4000 miles above sea level, but

these were irrelevant parameters for orbit selections. ICBM performance data

at that time made it certain that the "most reliable available boost system" could

not boost a 2200-pound ballistic capsule even to the 400-or-so-mile "floor" of the
Van Allen belt? 9

The Atlas ICBM was still "the most reliable available boost system"; there

was as yet no viable alternative booster. All preliminary hardware planning had

been based on the assumption that the Atlas would prove its power and prowess

very soon. The NACA nucleus of NASA was composed for the most part of

aeronautical engineers, airplane men not yet expert with missiles and rockets.

Few of them at first fully realized how different were the flight regimes and re-

quirements for the technology of flight without wings.

Since WorId War II winged guided missiles or pilotless drone airplanes had

given way to rocket-propelled ballistic projectiles; by 1958 the industrial base and

engineering competence for missilery had matured separately from and tangentially

to the aviation industry? ° If the manned satellite program were to become the

first step for sustained manned space flight, a new synthesis between science and

engineering and a new integration between the aircraft and missile industries would

be necessary. "Space science" and "aerospace technology," terms already made

popular by the Air Force, were now in the public domain, but their meanings were

vague and ambiguous so long as they held so little operational content. Silver-

stein, Crowley, and Albert F. Siepert, the men who became the first executive

directors of the top three "line offices" of NASA Headquarters, indubitably had

their debates on programming operations for NASA and the Nation. But on the

need for new syntheses and reintegrations of established disciplines and industries

there could be no debate. NASA's legal mandate to coordinate and to contract
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for cooperative development "of the usefulness, performance, speed, safety, and

efficiency of aeronautical and space vehicles" was second only to its first objective in

the Space Act, expanding "human knowledge of phenomena in the atmosphere
and space." 21

The complex prehistory of NASA and the manned satellite program began to

impinge on NASA policy. It affected project planners as soon as they set forth

their intention to put a man into orbit. Industrial and military investments in

feasibility studies to this same goal had been heavy. The Space Task Group
decided in mid-October to withdraw from all contacts with industrial contractors

while finishing its preliminary specifications for the manned satellite capsule. STG

thus avoided any accusations of favoritism, but lost about two months in time

before it was able to acquire the latest classified and proprietary studies and designs

by other organizations.

Three most pertinent examples of industrial research going on concurrently

with government research and leading up to seminal proposals for manned satel-

lite specifications were those studies being conducted by the Convair/Astronautics

Division (CV/A) of the General Dynamics Corporation in conjunction with the

Avco Manufacturing Corporation, studies by the General Electric Company in

conjunction with North American Aviation, Inc., and those by McDonnell Air-

craft Corporation. The CV/A-Avco proposal to the Air Force in April 1958 for

a spherical drag-braked manned satellite was followed by more reports by CV/A

in June and November, and these proved that the builders of the Atlas were ex-
ploring every avenue for civilian uses of their booster rocket. Convair men like

Karel J. Bossart, Mortimer Rosenbaum, Charles S. Ames, Frank J. Dore, Hans R.

Friedrich, Byron G. MacNabb, F. A. Ford, Krafft A. Ehricke, and H. B. Steele

had a continuing interest in seeing their fledgling weapons carrier converted into

a launch vehicle for manned space flight, either with or without an upper stage.

At NASA Headquarters, Abe Silverstein decided earl), in November to formalize

his earlier approval of Faget's plan for the "bare Atlas." On that basis a formal

bidders' briefing for the capsule contract was planned for November 7. Only

after mid-December, when all the proposals were in, did STG learn how great had
been other industrial investments in research for a manned ballistic satellite? 2

Although the Atlas airframe, design, and systems integration had all grown

directly out of Convair engineering development, the liquid-fueled rocket engines

for the Atlas, as well as for the Redstone, Jupiter, and Thor missiles, were all

products of the Rocketdyne Division of North American Aviation, Inc. Hence

North American, when teamed with another corporate giant, General Electric,

appeared also to be a prime contender for the manned satellite contract. The

Space Task Group was only dimly aware at this time of the specifications that

had emerged from North American and General Electric as proposals for the Air

Force's "Man-in-Space-Soonest" studies, but it did know at least that its own

ballistic capsule plan was at variance with the "high lift over drag" thinking at
North American. 23
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Back in May 1957, five months before Sputnik I, James S. McDonnell, Jr., the

founder and president of a growing aircraft corporation bearing his name, gave

an address at an engineering school commencement ceremony. He predicted a

speculative timetable for astronautics that placed the achievement of the first

manned Earth satellite, weighing four tons and costing one billion dollars, between

the years 1990 and 2005 A.D. One year later, in a similar address, McDonnell

sagaciously abandoned his timetable and said :

I think it is fortunate that the Soviets have boldly challenged us in [space science
and exploration] .... Their space challenge is a fair challenge. We should
accept this challenge and help to turn it primarily into peaceful channels.

So, fellow pilgrims, welcome to the wondrous age of astronautics. May seren-
dipity be yours in the years to come as man stands on the earth as a footstool
and reaches out to the moon, the planets, and the stars? 4

Off and on since Sputnik II, McDonnell Aircraft Corporation's Advanced

Planning Group had assigned first 20, then 40, and, from April through June
1958, some 70 men to work on preliminary designs for a manned satellite capsule.

Led by Raymond A. Pepping, Lawrence M. Weeks, John F. Yardley, and Albert

Utsch, these men had completed a thoroughgoing prospectus 427 pages in length

by mid-October 1958. People at Langley had been aware of this work in some

detail, but when NACA and PARD became part of NASA, a curtain of discretion
fell between them and STG. The McDonnell proposal was repolished during

November before it took its turn and its chances with all the rest of the bidders. 2:

While interested aerospace companies were endeavoring to fulfill the Gov-

ernment's plans and specifications for a manned satellite, a number of men in
the institutional setting at Langley were busily engaged in final preparations for
the bidders' conference. Craftsmen like Z. B. Truitt and Scott Curran, in the

Langley shops, fabricated new models of both the couch and the capsule for

demonstration purposes. Engineering designers like Caldwell C. Johnson and
Russell E. Clickner, Jr., reworked multiple sets of mechanical drawings until

Faget and the Task Group were satisfied that they had the architectonic engineer-

ing briefing materials ready for their prospective spacecraft manufacturing con-
tractors. Gilruth, Donlan, Mathews, and Zimmerman meanwhile approved the

Mock diagrams of systems as they evolved. They looked over their requirements

for outside support in future launching operations, flight operations, trouble-shoot-

ing research, and crew selection and training. With everything going on at

once among half a hundred men at most, there was no time now in STG for

second thoughts or doubts about whether the "Faget concept" would work. -_"

Questions of policy and personnel at the time of the organization of NASA

and during the birth of this nation's manned space flight program were affected

significantly by a conflict then existing between the experts on men and the experts

on missiles. In the eyes of the Space Task Group, the medical fraternity, par-

ticularly some Air Force physicians, was exceedingly cautious, whereas the Space
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Task Group seemed overly confident to some Air Force medical men and some

of their pilots. During the deliberations of the joint NASA-ARPA Manned

Satellite Panel, the contrast between the technical aspects of the Air Force's

"Man-in-Space-Soonest" proposal and the Faget plan sponsored by the Langley-

PARD group had been resolved in favor of the latter. Air Force planners of

the Air Research and Development Command earl)' had accepted a basic ground

rule specifying 12 g as the design limit for capsule reentry loads. They had

opposed the so-called "bare Atlas" approach, which would carry the risk of im-

posing accelerations up to 20 g in case of a mid-launch abort. As a last resort

they too had turned to the standard Atlas as the most feasible launch vehicle, even

though, Faget believed, Air Force aeromedical experts had not accepted the
significance of the physiological demonstrations by Carter C. Collins and R.

Flanagan Gray on the Navy's centrifuge at Johnsville in July that man could
sustain 20 g without lasting harmful effects. In calculating the risks in manned

space flight, the group at Langley saw this event as having paramount
importanceY

To ensure that NASA would have intelligent liaison and some expertise of

its own in dealing with military aeromedical organizations, one of the early

official actions of the NASA Administrator was the appointment on November 21

of a Special Committee on Life Sciences, headed by W. Randolph Lovelace II.

This committee, composed of members from the Air Force, Army, Navy., Atomic

Energy Commission, Department of Health, Education, and Welfare, and private

life, should provide "objective" advice on the role of the human pilot and all

considerations involving him. However, NASA and particularly STG would

soon discover certain difficulties with this, as with other, review committees

"having a certain amount of authority . . . yet no real responsibility" for seeing
that the program worked properly.2S

On a similar but lower plane, Gilruth asked for and received from the
military services three professional consultants for an aeromedical staff. Lieu-

tenant Colonel Stanley C. White from the Air Force and Captain William S.

Augerson from the Army were physicians with considerable experience in aero-

space medicine, and Lieutenant Robert B. Voas from the Navy held a Ph.D. in

psychology. Thus both NASA and STG ensured the autonomy of their medical

advice while at the same time they tapped, through White, the biomedical knowl-

edge gained by the Air Force in its "Man-in-Space-Soonest" studies and, through

Augerson, that gained by the Army and Navy through joint biosatellite planning. 2'_

CALLING FOR A CAPSULE CONTRACTOR

The Space Task Group was ready by October 20, 1958, to initiate the formal

quest for the best builder of a spacecraft. Silverstein, Gilruth, Donlan, Faget,

Mathews, and Zimmerman had decided what they wanted; now the top-

priority need was to decide which contractor would be most competent to con-
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struct, at maximum reliability and speed and with minimum cost and risk, the

first manned spacecraft.
Preliminary specifications for capsule and subsystems were mailed by the

Langley procurement office to more than 40 prospective firms on October 23,

1958. Thirty-eight of these companies responded by sending representatives to
the bidders' conference at Langley Field on November 7. The briefing was

conducted by Faget, Alan Kehlet, Aleck Bond, Andre Meyer, Jack Heberlig, and
several others from STG and Langley. The verbal exchange of ideas at this

meeting was preliminary to corporate expressions of interest expected by STG
before mid-November. After that the Task Group would mail out formal specifica-

tions as the basis for bid proposals to be submitted before December 11, 1958.

After his part of the briefing, Faget was asked by one of the representatives whether
the retrorockets described could also be used for escape. Faget said no and ex-

plained why not. He then made it clear that any alternative capsule configura-
tions would be considered "provided that you incorporate the retrorocket prin-

ciple, the non-lifting principle, and the non-ablating heat sink principle." 3o

Nineteen of the companies present expressed interest in the competition; they

were mailed copies of STG's 50-page "Specifications for Manned Space Capsule"
on November 14, 1958. This document, officially numbered "S-6," formally

described STG's expectations of the missions, configurations, stabilization and

control, structural design, onboard equipment, instrumentation, and testing for

manned orbital flight, but significantly it did not deal in detail with reliability,

costs, or schedules for flight testing. 3_

By December 11, the deadline for bid proposals, the list of original com-

petitors had narrowed to 11; there was a late starter in Winzen Research, Inc.,

whose proposal was incomplete. All but three of these manufacturers had been

engaged for at least a year with feasibility studies related to the Air Force plans
for a manned satellite. Of the 11, the eight corporations with deepest investments

were Avco, Convair/Astronautics, Lockheed, Martin, McDonnell, North Ameri-

can, Northrop, and Republic. The three other bidders were the Douglas,
Grumman, and Chance-Vought aircraft companies. Significantly perhaps, certain

other major missile and aircraft companies, like Bell, Boeing, and United Aircraft,

were not represented. Bell was preoccupied with the Dyna-Soar studies; Boeing

also was working on Dyna-Soar and had obtained the prime contract for the

Minuteman missile system; and United Aircraft sent its regrets to Reid that it was

otherwise deeply committed. '_-" Other military research and development contracts,
such as those for the XB-70 "Valkyrie" and XF-108 were also competing for the

attention of the aerospace industry.

The Space Task Group and NASA Headquarters meanwhile had worked

out the procedures for technical assessment of these manufacturers' proposals and

for contractual evaluations and negotiations. At Langley, a Technical Assessment

Committee headed by Donlan was to appoint 11 component assessment teams to

rate the contending companies in each of 11 technical areas. The classification
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system set up by the Space Task Group to evaluate these competitors for the space-
craft contract illustrated the major areas of concern.

Between four and six research engineers sat on each of the following 11 com-

ponents assessment teams: systems integration; load, structure, and heatshield;

escape system; retrograde and landing system; attitude control systems; environ-

mental systems; pilot support and restraint system; pilot displays and navigational

aids; communications systems; instrumentation sensors, recorders, and telemeters;

and power supplies. Each area was rated on a five-point scale ranging from

excellent to unsatisfactory; the scores from these ratings were averaged to provide

an overall technical order of preference.

All this had to be done over the Christmas holidays and while the Task Group

was moving from the Unitary Wind Tunnel building on the west side of Langley

Air Force Base to new quarters in an old NACA building on the east side. Early

in January at NASA Headquarters a similar assessment team would gather to

evaluate the competitors on their competence in management and cost accountabil-

ity. MacDougall was to be the only Task Group representative on the "business

evaluation" committee. Finally, a Source Selection Board, chaired by Silverstein

at NASA Headquarters and including Zimmerman from STG, would review the

grading, approve it, and make its final recommendation for the choice of the

spacecraft contractor, a3

Although virtually everyone in the Task Group participated in the process of

selecting the capsule builder, there were other equally pressing tasks to be accom-

plished as soon as possible. Procurement of booster rockets, the detailed design

and development of a smaller, cheaper test booster, and the problem of finding

the best volunteers to man the finished product--these were seen as the major

problems requiring a head start in the fall of 1958.

SHOPPING FOR THE BOOSTERS

Booster procurement was perhaps the most critical, if not the highest priority
task to be initiated. Once the Hobson's choice had been made to gear a manned

satellite project to the unproven design capabilities of the Atlas ICBM, the corollary

decision to use the most reliable of the older generation of ballistic missiles for

testing purposes followed ineluctably. While the intercontinental-range Atlas was

still being flight-tested, the medium-range Redstone was the only trustworthy
booster rocket in the American arsenal. For suborbital tests, the intermediate-

range Jupiter and Thor bosters were possible launch vehicles, but as yet they were

neither capable of achieving orbital velocities nor operationally reliable. 3_

Even while the Joint Manned Satellite Panel was briefing the administrators

of ARPA and NASA during the first week in October, Purser, Faget, North, and
Samuel Batdorf flew to Huntsville for a business conference with the Arm), Ballistic

Missile Agency regarding procurement of launch vehicles. Wernher yon Braun's

people a._sured their NASA visitors that Redstone missiles could be made available
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on 12 to 14 months' notice and that the Army's Jupiters were far superior to the

Thors of the Air Force. Although the Space Task Group had already consulted
the Air Force Ballistic Missile Division, at Inglewood, California, and was con-

sidering the Thor for intermediate launchings, a careful reconsideration of the

adaptability of each weapon system as a launch vehicle for a manned capsule was

now evidently required. The so-called "old reliable" Redstones might have been

ordered right away. But the question of the need for intermediate qualification

and training flights along ballistic trajectories was not yet settled, a5 So more

visitations to the Air Force and Army missile centers were arranged.

STG's wager on the Atlas was formalized by an order to the Air Force, placed
on December 8, I958, for first one, then nine of these Convair-made liquid-

fueled rockets. The Air Force Ballistic Missile Division, heretofore the only

customer for the Atlas, agreed to supply one Atlas, a C-model, within six months

and the rest, all standard D-models, as needed over a period of several years.

Faget was pleasantly surprised to know an Atlas-C could be furnished so soon.

Having placed its first and primary order with the Air Force, the Space Task

Group went on to decide a month later to buy eight Redstones and two Jupiter

boosters from the Army Ordnance Missile Command. The decision to procure

both medium- and intermediate-range boosters from the same source hinged

largely on the fact that the Jupiter was basically an advanced Redstone. Both

were Army-managed and developed and Chrysler-built. To adopt the Thor

would have required another orientation and familiarization program for NASA

engineers. 3G
Informed that the Atlas prime movers would cost approximately $2.5 million

each and that even the Redstone would cost about $1 million per launching, the

managers of the manned satellite project recognized from the start that the

numerous early test flights would have to be accomplished by a far less expensive

booster system. In fact, as early as January 1958 Faget and Purser had worked

out in considerable detail on paper how to cluster four of the solid-fuel Sergeant

rockets, in standard use by PARD at Wallops Island, to boost a manned nose

cone above the stratosphere. Faget's short-lived "High Ride" proposal had

suffered from comparisons with "Project Adam" at that time, but in August
1958 William Bland and Ronald Kolenkiewicz had returned to their preliminary

designs for a cheap cluster of solid rockets to boost full-scale and full-weight

model capsules above the atmosphere. As drop tests of boilerplate capsules

provided new aerodynamic data on the dynamic stability of the configuration

in free-fall, the need for comparable data quickly on the powered phase became

apparent. So in October a team of Bland, Kolenkiewicz, Caldwell Johnson,
Clarence T. Brown, and F. E. Mershon prepared new engineering layouts and

estimates for the mechanical design of the booster structure and a suitable
launcher, sv

As the blueprints for this cluster of four rockets began to emerge from their

drawing boards, the designers' nickname for their project gradually was adopted.
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Since their first cross-section drawings showed four holes up, they called the project

"Little Joe," from the crap-game throw of a double deuce on the dice. Although
four smalIer circles were added later to represent the addition of Recruit rocket

motors, the original name stuck. The appearance on engineering drawings of

the four large stabilizing fins protruding from its airframe also helped to perpetuate
the name Little Joe had acquired.

The primary purpose of this relatively small and simple booster system was

to save money--by allowing numerous test flights to qualify various solutions to

the myriad problems associated with the development of manned space flight,

especially the problem of escaping from an explosion midway through takeoff.

Capsule aerodynamics under actual reentry conditions was another primary

concern. To gain this kind of experience as soon as possible, its designers had
to keep the clustered booster simple in concept; it should use solid fuel and exist-

ing proven equipment whenever possible, and should be free of an}' electronic
guidance and control systemsY

The designers made the Little Joe booster assembly to approximate the same

performance that the Army's Redstone booster would have with the capsule

payload. But in addition to being flexible enough to perform a variety of mis-

sions, Little Joe could be made for about one-fifth the basic cost of the Redstone,

would have much lower operating costs, and could be developed and delivered

with much less time and effort. And, unlike the larger launch vehicles, Little

Joe could be shot from the existing facilities at Wallops Island. It still might
even be used to carry a man some day.

Twelve companies responded during November to the invitations for bids

to construct the airframe of Little Joe. The technical evaluation of these pro-

posals was carried on in much the same manner as for the spacecraft, except
that Langley Research Center itself carried the bulk of the administrative load.

H. H. Maxwell chaired the evaluation board, assisted by Roland D. English,

Johnson, Mershon, and Bland of the Space Task Group. English later became

Langley's Little Joe Project Engineer, Bland the STG Project Engineer, and

Mershon the NASA representative at the airframe factory. The Missile Divi-

sion of North American Aviation won the contract on December 29, i958, and

began work immediately at Downey, California, on its order for seven booster
airframes and one mobile launcher. 3_

The primary mission objectives for Little Joe as seen in late 1958 (in addi-

tion to studying the capsule dynamics at progressively higher altitudes) were

to test the capsule escape system at maximum dynamic pressure, to qualify the

parachute system, and to verify search and retrieval methods. But since each

group of specialists at work on the project sought to acquire firm empirical data

as soon as possible, more exact priorities had to be established. The first flights

were to secure measurements of inflight and impact forces on the capsule; later

flights were to measure critical parameters at the progressively higher altitudes

124

I! i :

l



SPECIFICATIONS FOR A MANNED SATELLITE

of 20,000, 250,000, and 500,000 feet. The minimum aims of each Little Joe
shot could be supplemented from time to time with studies of noise levels, heat

and pressure loads, heatshield separation, and the behavior of animal riders, so

long as the measurements could be accomplished with minimum telemetry.

Since all the capsules boosted by the Little Joe rockets were expected to be

recovered, onboard recording techniques would also contribute to the simplicity

of the system .40

Unique as the only booster system designed specifically and solely for manned

capsule qualifications, Little Joe was also one of the pioneer operational launch

vehicles using the rocket cluster principle. Since the four modified Sergeants

(called either Castor or Pollux rockets, depending upon modification) and four

supplemental Recruit rockets were arranged to fire in various sequences, the

takeoff thrust varied gready, but maximum design thrust was almost 230,000

pounds. Theoretically enough to lift a spacecraft of about 4000 pounds on a

ballistic path over 100 miles high, the push of these clustered main engines should
simulate the takeoff profile in the environment that the manned Atlas would

experience. Furthermore, the additional powerful explosive pull of the tractor-

rocket escape system could be demonstrated under the most severe takeoff condi-

tions imaginable. The engineers who mothered Little Joe to maturity knew it
was not much to look at, but they fondly hoped that their ungainly bastard would

prove the legitimacy of most of the ballistic capsule design concepts, thereby

earning its own honor.
Although Little Joe was designed to match the altitude-reaching capability

of the Redstone booster system, and thus to validate the concepts for suborbital

ballistic flights, it could not begin to match the burnout speed at orbiting altitude

given by the Atlas system. Valuable preliminary data on the especially critical
accelerations from aborts at intermediate speeds could be duplicated, but Litde

Joe could lift the capsule only to 100 miles, not put it at that altitude with a

velocity approaching 18,000 miles per hour. For this task, a great deal more,

some sort of Big Joe was needed. A Jupiter booster might simulate fairly closely

the worst reentry heating conditions but ultimately only the Atlas itself could
suffice.

Therefore, paralleling the planning of the Little Joe project at Langley, a

counterpart test program was inaugurated by the Space Task Group with special
assistance from the Lewis Research Center in Cleveland. Whereas Little Joe

was a test b_oster conceived for many different demonstration flight tests, "Big

Joe" was the name for a single test flight with a single overriding objective--to
learn at the earliest practicable date what would happen when the "steel-balloon"

rocket called Atlas powered a ballistic capsule on exit from Earth's atmosphere.

Specifically, an experiment matching the velocity, angle of entry, time, and

attitude at altitude for reentry from Earth orbit needed to be performed as soon

and as exactly as possible by a powered ballistic test flight so that designs for

thermal protection might be verified or modified. The Space Task Group was
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most anxious about this; the whole manned satellite program wa,s balanced

tenuously on the stable thrust of the Atlas and the certain protection of the
heatshield.

Public eencern over whether the Nation possessed an intercontinental missile

wa_ alleviated on November 28, 1958, when an Atlas frst flew its designed
range more than 6300 miles down the Atlantic Missile Range toward Ascen-

sion Island. Three weeks later, on December 18, the Atlas scored again with a

secretly prepared first launch into orbit of the entire Atlas vehicle (No. 10 B)

as a communications relay satellite called "Project Score." Roy Johnson of

ARPA claimed he was "sleeping more comfortably each night" after that. '_ In

the midst of these demonstrations of the power of the prototype Atlas, NASA

Headquarters and the Space Task Group planned to launch the first Atlas test
for the space flight program in June or July 1959.

Gilruth appointed Aleck Bond, the former head of the Structural Dynamics

Section at Langley, to take the reins as project engineer for Big Joe. Bond began

to coordinate, with a real sense of urgency, the work of Langley and Lewis

on the prototype capsule and of the Air Force Ballistic Missile DMsion and

Convair/'Astronautic_ on the Atlas propulsion system. Two Big Joe shots were

arranged initially, but the second was to be merely insurance against the failure

of the first. Although the Lewis laborato W traditionally had been most closely

associated with propulsion problems and therefore was the logical center for

NASA's first experience with large launch vehicles, neither I,ewi_ direction nor

Lewis propulsion experts were directly involved. NASA simply did not have
time to learn the intricacies of launching the Atlas itself. Rather, Lewis con-

tributed the expertise to design the electronic instrumentation and the automatic

stabilization and control system for the boilerplate capsules being built jointly

by the Lewis and Langley shops.

Bond recalled the initial rationale for Big Joe, alias the Atlas ablation test:

At the time that the Big Joe flight test program was conceived, only lim-
ited experimental flight test data existed on the behavior of materials and the
dynamics of bodies reentering the earth's atmosphere at high speeds. These
data, which evolved from the ballistic missile program, were useful; however,
they were not direct])' applicable to the manned satellite reent W case because
of the vast differences in the reent W environment encountered and in the
length of time the vehicles were subjected to the environment. There was
considerable concern regarding the nature of the motions of a blunt body as it
gradually penetrated the earth's atmosphere and began to decelerate. Of
similar concern was the lack of after-body heating measurements and knowl-
edge of integrity of ablation materials when exposed to the relatively low level,
long duration heat pulse which is characteristic of the reentry of bodies with
low ballistic parameters . . . entering the earth's atmosphere at shallow entry,
angles. 4:

Although for Big Joe the Task Group could center its attention on the capsule,

whereas for Little Joe it had to develop the booster as well, the design and
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development problems for Big Joe still were sufficient to cause slippage in the

scheduled launch date from early to late summer in 1959. To launch and recover

the capsule safely would require very extensive familiarization with new pro-

cedures. Central among the primary objectives for Big Joe were the twin needs

to determine the performance of the thermal protection materials and to learn

the flight dynamics of the spacecraft during reentry. Many critical decisions for

the project depended upon early, reliable data on the heatshield, the afterbody

radiative shingling, and the dynamic stability of the "raindrop" configuration

during the craft's trajectory back through the atmosphereY

Also necessary were evaluations of the aerodynamic and thermodynamic loads

on the capsule all along its flight path and of the operation of its automatic

attitude control system. But certainly nothing was more important in the fall

of 1958 than the need to settle the technical controversy over the heat sink versus

ablation principles for the heatshield. Whether to use absorbing or vaporizing

materials to shield the astronaut from reentry heating was one of the few major

problems remaining to be solved when the manned satellite project was established.

HEAT SINK VERSUS ABLATION

Since the peak heating rates for this blunt-body, high-drag configuration were

expected to be one whole order of magnitude less than those experienced by

ballistic missiles, no one competent to judge the issue now considered the "thermal

barrier" problem insoluble. Rather, it had been proven to be no more than a

"thermal thicket." Since the mid-fifties, various civilian and military experi-

mental teams had studied the reentry problems for ballistic missile warheads, but

only part of this research data was applicable to the different case of the space-

craft. Army and Vitro Corporation reentry experiments using ablation materiaIs
(such a_s graphite, teflon, nylon, or lucite) had already demonstrated that Jupiter

nose cones worked quite welI as ablators. But NACA preferred to rely on the

successful prior experience of the Air Force with heat-sink metals, particularly

copper, for early Thor nose cones. The results of these thermodynamic studies in

materials science were contradictory, or at least inconclusive. So the manned

satellite project began life officially in October without a commitment to either

method of heat shielding, but with a definite preference for Faget's prejudice?'

Gilruth, Faget, and other members of the Space Task Group since March

1958 had been leaning toward the heat sink. A 600-pound metallic heat sponge

might be a littIe heavier but it would be more reliable than a ceramic heat dis-

sipator, for the simple reason that there was more industrial experience with

fabricating refractory metals than with molding and bonding ablation materials.

Some officials were convinced by the Navy's succe_ful use of a lightweight

beryllium heat sink on Polaris flight tests that beryllium was the answer. The

heat sink method also was thought to have the considerable advantage over ablat-

ing materials of creating less of a "plasma sheath"--the envelope of ionized air
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generated by the friction of atmospheric braking. Telemetry and communica-

tions blackouts from this phenomenon might be troublesome. Pending further

study, the Task Group and Silverstein decided to retain the original specification

that a be_'llium heatshield be provided by the capsule contractor. Requiring

all the bidders to assume a beryllium shield should give a fairer evaluation of their

proposals. Until Big Joe could test the ablation technique, no final decision
would be made. 4_

Ablation technology, imprecise by nature, was neither well understood nor

ve_' highly sophisticated as yet, whereas the metallography of heat sink materials

was straightforward, and the thermodynamics of metals was deducible. Faget

believed there would be no intrinsic weight penalty for using a metal shield; the
difficulty of ditching a hot shield without danger had yet to be solved. There

was no disposition to ignore ablation in favor of heat sink. Big Joe was con-

ceived to resoive the problem. By late November, when Aleck Bond took charge
of it, his presumption was that Big Joe would provide the definitive test of an
ablation heatshield.

Rocketry was not the only means considered for accomplishing high-altitude
qualification tests at the beginning of the program. On their own initiative in

the summer of 1958, Jerome Hammack, John B. Lee, Joe W. Dodson, and other

Langley engineers had begun a modest program of parachute and stability trials

by dropping boilerplate capsule models from C-130 transports provided by the

Air Force. Balloon flights, however, seemed to promise even more effective and

economical means of qualifying by "space-soaking" the complete capsule and its

associated systems. From the Montgolfier brothers in the 1780s to David G.

Simons' Manhigh ascents in 1957 and the contemporary Strato-Lab project of the

Na_T, ballooning had always been an attractive way to pierce the vertical
dimension. 4G

Believing that the environmental conditions at extreme altitude could be

experienced more easily than they could be simulated in vacuum chambers on

Earth, the Space Task Group proceeded with plans to launch balloons carrying
ballistic capsules as gondolas. Tests of instrumentation, retrorockets, drogue and

main parachute systems, and recovery procedures, plus pilot orientation and

training, might be done within a year's time by lighter-than-air ascents. Con-

tracts were let to the Weather Bureau, the Office of Naval Research, and the

Air Force Cambridge Research Center for planning this flight support program. 4_

No sooner had these feasibility studies been started than the Space Task

Group discovered how intricate, vast, and expensive had become stratospheric

sounding technology.' in recent years. The popular craze over Unidentified Flying

Objects during the fifties had been caused partly by atmospheric and cosmic-ray

research with floating objects, enormous M_lar plastic gas bags drifting around at

high altitudes. Preliminary balloon flights for the manned satellite project

threatened to become much more expensive than had been originally anticipated? _

Contract planning, booster procurement, and the need for specialized help
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SPECIFICATIONS FOR A MANNED SATELLITE

from the military services were central concerns of NASA and the Space Task

Group during their first three months of existence. The possibility of friction

in management relations between NASA and the Defense Department was also

recognized as a potential problem. To facilitate coordinated work and plans,

STG needed in-house representatives in uniform. Efficient administration de-

manded liaison officers to serve as single points of contact between STG and

each of the military services. So in December orders were cut for Lieutenant

Colonel Keith G. Lindell of the Air Force, Lieutenant Colonel Martin L. Raines

of the Army, and Commander Paul L. Havenstein of the Navy to report to the

Space Task Group for this function.

In general, relations between NASA and the Department of Defense had

proceeded quite amicably since the drafting of a "Memorandum of Understand-

ing" in September by the Joint Manned Satellite Panel. 49 However, with so

much initiative being taken by the Space Task Group, there was danger that

the concurrent actions of NASA Headquarters and STG might cause some frus-

trations and confusions in the Pentagon and among military contractors. NASA

was still too young for its STG to be known. At this stage most of the planning

for budgeting, procurement, tracking, and recovery operations had to be done in

Washington; NASA Headquarters was carefully guarding its prerogative of

conducting interagency business? ° Cooperation between Defense and NASA,

and between STG and its own Headquarters, was good, if not idyllic, during the

first 100 days. Nowhere was this more obvious than in astronaut selection.

PROJECT ASTRONAUT?

Preliminary procedures for pilot selection had been worked out by the

aeromedical consultants attached to the Space Task Group at Langley during

November. Their plan called for a meeting with representatives from industry

and the services to nominate a pool of 150 men from which 36 candidates would

be selected for physical and psychological testing. From this group 12 would be

chosen to go through a nine-month training and qualification program, after

which six finally would be expected to qualify? 1

On the basis of this plan, Donlan from Langley, and North in Washington,

together with Allen O. Gamble, a psychologist on leave from the National Science

Foundation, drafted civil service job specifications for individuals who wished to

apply for the position of "Research Astronaut-Candidate." One of the early

plans outlined very well the original expectations of NASA and STG on the type

of man thought necessary. NASA Project A, announcement No. 1, dated De-

cember 22, 1958, was a draft invitation to apply for the civil service position of

research astronaut-candidate "with minimum starting salary range of $8,330 to

$12,770 (GS-12 to GS-15) depending upon qualifications." This document
called the manned ballistic satellite program "Project Astronaut," and the first
section described the duties of the astronaut:
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Although the entire satellite operation will be possible, in the early phases,
without the presence of man, tile ,astronaut will play an important role during
the flight, tie will contribute by monitoring the cabin environment and by
making necessary adjustments. IIe will have continuous displays of his position
and attitude and other instrument readings, and will have the capability of
operating the reaction controls, and of initiating the descent from orbit. IIe
will contribute to tile operation of the communications system. In addition,
the astronaut will make research observations that cannot be made by instru-
ments; these include physiological, astronomical and meteorological
observations. 5-"

Only males between 25 and 40 years of age, less than 5 feet 11 inches in

height, and with at least bachelor's degrees were to be considered. Stringent

professional experience or graduate study requirements specified five patterns of

career histories most desirable. Candidates who had either three years of work

in any of the physical, mathematical, biological, or psychological sciences, or

who had three years of technical or engineering work in a research and develop-

ment program or organization might apply. Or anyone with three years of

operation of aircraft, balloons, or submarines, as commander, pilot, navigator,

communications officer, engineer, or comparable technical position, would be

eligible, as would persons who had completed all requirements for the Ph.D.

degree in any appropriate field of science or engineering plus six months of

professional work. In the case of medical doctors, six months of clinical or

research work beyond the license and internship or residency would be required.

Furthermore, the job qualifications required proof that applicants had demon-

strated recently their "(a) willingness to accept hazards comparable to those

encountered in modern research airplane flight; (b) capacity to tolerate rigorous

and severe environmental conditions; and (c) ability to react adequately under

conditions of stress or emergency." The announcement added :

These three characteristics may have been demonstrated in connection with
certain professional occupations such as test pilot, crew member of experi-
mental submarine or arctic or antarctic explorer. Or they may have been
demonstrated during wartime combat or military training. Parachute jumping
or mountain climbing or deep sea diving (including SCUBA) whether as occu-
pation or sport, may have provided opportunities for demonstrating these
characteristics, depending upon heights or depths obtained, frequency and
duration, temperature and other environment conditions, and emergency epi-
sodes encountered. Or they may have been demonstrated by experience as an
observer-under-test for extremes of environmental conditions such as accelera-
tion, high or low atmospheric pressure, variation in carbon dioxide and oxygen
concentration, high and low ambient temperatures, etc. Many other examples
could be given. It is possible that the different characteristics may have been
demonstrated by separate types of experience.

Finally, as a last check on ruling out the "lunatics" who might send in crank

applications, this proposed plan for astronaut .selection required that each appli-

cant have the sponsorship of a responsible organization. A nomination form
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appended to this announcement would have required 17 multi-point evaluations
of the nominee by some official of the sponsoring institution.

Clearly this astronaut selection plan was sober enough and stringent enough
to ensure an exceptionally high quality applicant, but the plan itself was not
approved and had to be abandoned. President Eisenhower during the 1958
Christmas holidays decided that the pool of military test pilots already in existence
was quite sufficient a source from which to draw. Since certain clarified aspects
would inevitably be involved, military test pilots could most conveniently satisfy
security considerations. 5_

Although some in NASA regretted the incongruity of allowing volunteers for

the civilian manned space program to be drawn only from the military, the decision
that the services would provide the candidates greatly simplified pilot selection
procedures. A meeting held at NASA Headquarters during the first week of
January brought together W. Randolph Lovelace II, Brigadier General Don D.
Flickinger, Low, North, Gilruth, and several other members of the Space Task
Group. There the elaborate civil service criteria for selection were boiled down
to a seven-item formula:

1. Age--less than 40.
2. Height--less than 5 feet, 11 inches.
3. Excellent physical condition.
4. Bachelor's degree or equivalent.
5. Graduate of test pilot school.
6. 1500 hours total flying time.
7. Qualified jet pilot.

When these criteria were given to the Pentagon, service record checks revealed
more than 100 men on active duty who appeared to be qualified. The military
services were pleased to cooperate in further screening. NASA was relieved not
to have to issue an open invitation, and STG was pleased to have Headquarters'
aid in the selection. 5_

Contrary to the feeling expressed in some quarters, even among experimental
test pilots, that the ballistic capsule pilot would be little more than "spam in a
can," most members of STG believed from the beginning that their pilots would
have to do some piloting. As George Low explained their views to Administrator

Glennan, "These criteria were established because of the strong feeling that the
success of the mission may well depend upon the actions of the pilot; either in his
performance of primary functions or backup functions. A qualified jet test pilot
appeared to be best suited for this task." _ - Exactly how much "piloting," in the

traditional sense, man could do in orbit was precisely the point in issue.

The least technical task facing NASA and its Space Task Group in the fall
of 1958 was choosing a name or short title for the manned satellite project.

Customarily project names for aircraft and missiles were an administrative con-

venience best chosen early so as to guarantee general usage by contractors, press,
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and public. Langley had earlier suggested to Headquarters three possible em-
blems or seals for the use of NASA as a whole: one would have had Phaeton

pulling Apollo across the sky; another would have used the Great Seal of the

United States encompassed by three orbital tracks; and a third proposed a map

of the globe circled by three orbits. These proposals, as well as the name suggested

by Space Task Group for the manned satellite project, lost out to symbols con-

sidered more appropriate in Washington. "Project Astronaut," preferred at first

by Gilruth to emphasize the man in the satellite, was overruled largely because it

might lead to overemphasis on the personality of the man. '_G

Silverstein advocated a systemic name with allegorical overtones and neutral

underpinnings: The Olympian messenger Mercury, denatured by chemistry, ad-

vertising, an automobile, and Christianity, was the most familiar of the gods in the

Greek pantheon to Americans. Mercury, alias Hermes, the son of Zeus and

grandson of Atlas, with his winged sandals and helmet and caduceus, was too

rich in symbolic associations to be denied. The esteemed Theodore von K_irm_in

had chosen to speak of Mercury, as had Lucian of Samosata, in terms of the

"reentry" problem and the safe return of man to Earth. 5_

Had a mythologist been consulted, perhaps the additional associations of

Mercury. with masterful thievery, the patronage of traders, and the divinity of

commerce would have proven too humorous. But "Mercury," Glennan and

Dryden agreed on November 26, 1958, was the name most appropriate for the

manned satellite enterprise? 8

Greeks might worry about whether Mercury would function in his capacity as

divine herald or as usher to the dead, but Americans, like the Romans, could be

trusted not to worry. On Wright Brothers' Day, December 17, 1958, 55 )'ears

after the famous flights at Kitty Hawk, North Carolina, Glennan announced

publicly in Washington that the manned satellite program would be called "Project

Mercury." 09
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From Design into Development

(JANUARY-JUNE 1959)

t_ ROM dreams into definitions and from design into development, the idea for a
manned satellite was growing toward fruition. During the first half of 1959,

the Space Task Group (STG) guided the translation of its conceptual designs into
detailed developmental plans for the molding of hardware. Creating an engi-
neering program, planning precisely the flight missions, organizing men, money,
and material to fulfill those missions, and establishing technical policy and mana.
gerial responsibility were the prime necessities of the moment. But this year
began with the realization of a Russian "dream," Mechta.

On January 2, 1959, the Soviets announced they had successfully launched

a rocket toward the Moon, the final stage of which weighed 3245 pounds,
including almost 800 pounds of payload instrumentation inside its spherical shell.
The Soviet Mechta, also popularly called Lunik/, was the first man-made object
to attain the 25,000-mile-per-hour speed needed to break away from Earth's
gravitational field. By comparison the United States Moon probe Pioneer HI,
launched by a four-stage Jupiter called Juno II on December 6, 1958, had
weighed 13 pounds and attained a velocity of 24,000 miles per hour. And though
it missed its target, Lunik I flashed past Earth's natural satellite to become the first
successful "deep space" (i.e., translunar) probe and the first man-made artifact
to become a solar satellite?

While Mechta presumably went into solar orbit, and even while many incred-
ulous Americans refused to accept this impressive claim, NASA mobilized for the
national effort to catch up with the Soviets in propulsion and guidance, and in
progress toward manned space flight. The project named Mercury embodied
the latter half of those hopes.

Robert R. Gilruth and his STG associates at Langley, together with Abe
Silverstein and others in Washington, plunged knowingly into one of the greatest
engineering adventures of all time. Somewhat self-conscious in the role of men
of action setting out to do what had never been done before, they tried to match

means to their ends without too much introspection and by avoiding useless
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worries over comparative scores in the space race. Like all good engineers, they

were also professors of efficiency. They committed themselves to do their unique

task as effectively, economically, and quickly as possible. But the inexorable

conflict between the novelty of the experiment and the experience with novelty that

alone can lead to efficiency they had to accept as an occupational hazard. Two

of their ideals--to perform orbital flight safely and to perform it with economy--

were embodied in preliminary designs for Project Mercury long before those same

ideals became obligations during the development of the program. Their third

ideal-timeliness--gradually became crushed between performance and cost
considerations.

In the hectic three months of planning and procurement from September

1958 to January 1959, the original "objectives and basic plan" for Project

Mercury gradually clarified by abbreviation to an itemized list. Continued

reiteration throughout preliminary development (January through June 1959)

finally reduced the aims, attitudes, and means of the Space Task Group to a set

of nominative formulas used again and again as "Slide No. 1" in briefings:

Objectives

1. Orbital flight and recovery

2. Man's capabilities in environment
Basic Principles

1. Simplest and most reliable approach

2. Minimum of new developments

3. Progressive build-up of tests
Method

1. Drag vehicle
2. ICBM booster

3. Retrorocket

4. Parachute descent

5. Escape system

Reduced to this form by July 1959, the basic doctrine for Project Mercury

remained essentially unchanged throughout the entire life of the program. Al-

though the managers of Mercury found this a source of considerable pride, they

were forced to make certain departures from their basic principles and to refine

their methods continually. "_ The techniques and technology for landing, for

example, were not specified this early. The efforts to ensure a safe touchdown,

on water instead of land, became a critical concern over a year later.

BRICKBAT PRIORITY

From the beginning STG had sought to obtain the Nation's highest priority for

the manned satellite program. But the White House, Congress, and NASA

Headquarters at first regarded as equally important the development of a "10_, ''
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or one-million-pound-thrust, booster engine, and the elaboration of space sciences

through the continuation of instrumented satellite programs similar to Vanguard.

Hugh L. Dryden initiated a request to the Department of Defense as early as

November 14, 1958, to put the "manned satellite and the one-million-pound-thrust

engine" in the DOD Master Urgency List alongside the Minuteman and Polaris

weapon systems. But the National Aeronautics and Space Council (NASC) had

deferred this request on December 3, pending a scheduled meeting the next week

of the Civilian-Mihtary Liaison Committee (CMLC). The Space Council did

recommend that NASA assign its highest in-house priority to Project Mercury.

When it met, the Liaison Committee recommended the "DX," or highest

indu'strial procurement priority, for the manned satellite. They assumed that the

Vanguard and Jupiter-C projects would be dropped from that category and that

the million-pound-thrust engine would be assigned the next lower, or a "DO,"

priority. 3

New additions to the DX list required the approval of the National Security

Council, but earlier that body had delegated authority to the Secretary of Defense

to decide on top priorities for satellite systems. Secretary Nell H. McElroy and

the Joint Chiefs of Staff received the Liaison Committee's recommendations for

a new Master Urgency List on December 17. NASA Administrator T. Keith

Glennan protested to William M. Holaday, the Pentagon's Director of Guided

Missiles and chairman of the Liaison Committee, that not only Mercury but the

big new booster, to become known in February as the Saturn, should have top

priority. McElroy therefore directed Holaday to review the entire DX category

before deciding what to do about the dual NA_SA requests for the so-called "brick-

bat," or highest, priority rating? Here matters stood at the end of the year.

For these reasons, financial allowances for extensive (and expensive) overtime

work and the authorization for preferential acquisition of scarce materials were
delayed well into 1959. Maxime A. Faget's optimistic belief before the program

started that a man might possibly be placed in orbit within 18 months, or during

the second quarter of the calendar year 1960, depended upon the immediate as-

signment of the Nation's highest priority to Mercury--and an enormous amount

of the best possible luck ! One of the first official estimates of the launch schedule

for STG, made by Christopher C. Kraft, Jr., in early December for the Air Force

Missile Test Center at Cape Canaveral predicted concurrent development, quali-

fication, and manned orbital flights from April through September in 19607

This "guesstimate" was likewise predicated on an immediate Defense Department

order to allow Project Mercury to compete "on a non-interference basis" with the

military missile programs in obtaining critical "off-the-shelf" components, particu-

larly electronic and guidance items.

By the first of the new year, it was fairly clear that the large Saturn booster

would be continued by the Army's Wernher von Braun team and that the Defense
Department was not about to release von Braun and his associates to NASA.

Glennan, Dryden, and Silverstein had given Project Mercury the highest priority
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within NASA itself, but among industrial suppliers and the Defense Department it

ranked second to several more urgent and competing demands. By March 1959,

definite evidence of equipment and material supply shortages accumulated. The

new prime contractor warned of delivery schedule slippages resulting from Mer-

cury's DO rating. Holaday's reports were favorable toward Mercury, and Glen-

nan compromised on the "10%engines." For the Advanced Research Projects
Agency (ARPA) had directed the Army Ordnance Missile Command and the

Air Force Ballistic Missile Division, respectively, to start independent development

of both a clustered first-stage booster (the Saturn) and a single-chamber rocket

engine (the F-1 ) able to generate about 1,500,000 pounds of thrustJ

So NASA finally presented a united front with the Defense Department to
the President and Congressional committees. On April 27, 1959, Eisenhower

himself approved the request for the "brickbat" procurement rating for Mercury.

The prime contract and most of the major subcontracts for the space capsule had

been let well before May 4, when Mercury was officially listed in the topmost

category on the Master Urgency List7 But the attendant privilege of not having

to seek the lowest bidder on every major item bought was probably less important

to the development of the program than the added prestige and support the DX

rating brought to Mercury within the aerospace industry and among the military
services.

During the first quarter of 1959, confusion reigned in Washington aerospace

circles as too many missile czars, too many space projects, and too many agencies

clamored for more funds and support. But journalists, scientists, and humani-

tarians applauded the successes of the Navy-NASA Vanguard II, a tiny weather

satellite; of the Air Force's Discoverer I, first satellite in Ffolar orbit; and of the

Army-NASA Pioneer IV, which managed to duplicate Mechta's escape veloc-
ity. As a deep-space probe and the first U.S. solar satellite, Pioneer IV, launched

March 3, was magnificently instrumental in expanding man's knowledge of the
plurallty of the Van Allen radiation belts and of the "solar winds," or radiation

storms, that permeate interplanetary space. Glennan had resolved to identify all

NASA booster rockets with the name "United States" only, but other rocket

agencies within the government were unlikely to follow suit. In the midst of all

this, Project Mercury seemed still an obscure conception to the public. Roy W.

Johnson of ARPA called it "very screwball" when first proposed; by the end of
March he said, "It looks a little less screwball now." s

Meanwhile, within STG itself, the most urgent task in getting on with the

program had already been accomplished by the end of I958. On December 29

the Task Group had completed its technical assessments of the industrial proposals

for manufacturing the capsule and it_ subsystems. Eleven complete proposals

had been received. The narrowing of the field of possible manufacturers was

facilitated by the fact that so many alternate configurations were submitted. Faget

had invited the bidders "to submit alternate capsule and configuration designs

if you so desire, provided that you incorporate the retrorocket principle, the non-
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lifting principle and the non-ablating heat sink principle. You are not limited to

this particular approach only." 9 But some of the bidders had taken him al-

together too literally in this statement.

AWARDING THE PRIME CONTRACT

During the first week in January, another group of men, led by Carl Schreiber

at NASA Headquarters, evaluated the procurement aspects of the competitive

proposals. This Management, Cost, and Production Assessment Committee was

required to rank only eight companies, because four had been disqualified on

purely technical grounds. By January 6, four companies were reported to the
Source Selection Board as having outstanding management capabilities for the

prime contract. But in the final analysis Abe Silverstein and the six members of

his board had to decide between only two firms with substantially equal technical

and managerial excellence: Grumman Aircraft Engineering Corporation and.

McDonnell Aircraft Corporation. The NASA Administrator himself eventually

explained the principal reason for the final choice:

The reason for choosing McDonnell over Grumman was the fact that
Grumman was heavily loaded with Na_ T projects in the conceptual stage. It
did not appear wise to select Grumman in view of its relatively tight manpower
situation at the time, particularly since that situation might be reflected in a
slow start on the capsule project regardless of priority. Moreover, serious
disruption in scheduling Navy work might occur if the higher priority capsule
project were awarded to Grumman? °

NASA informed McDonnell on January 12 that it had been chosen the prime

contractor for the Mercury spacecraft. Contract negotiations began immediately;

after three more weeks of working out the legal and technical details, the stickiest

of which was the fee, the corporation s founder and president, James S. McDon-

nell, Jr., signed on February 5, 1959, three originals of a contract. 1_ This docu-

ment provided for an estimated cost of $18,300,000 and a fee of $1,150,000. At

the time, it was a small part of McDonnell's business and a modest outlay of gov-

ernment funds, but it officially set in motion what eventually became one of the

largest technical mobilizations in American peacetime history. Some 4000 sup-

pliers, including 596 direct subcontractors from 25 states and over 1500 second-tier
subcontractors, soon came in to assist in the supply of parts for the capsule alone. '=

The prime contract was incompletely entitled "Research and Development

Contract for Designing and Furnishing Manned Satellite Capsule." The omis-
sion of an article before the word "manned" and the lack of the plural form for

the word "capsule" prefigured what was to happen within the next five months.

The original contract began evolving with the program, so that instead of 12

capsules of identical design, as first specified, 20 spacecraft, each individually

designed for a specific mission and each only superficially like the others, were

produced by McDonnell. Contract change proposals, or "CCPs," as they were
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known, quickly grew into supplemental agreements that were to overshadow the"
• 13prime contract itself.

The relative roles of STG and McDonnell engineers in pushing the state

of the art from design into construction are difficult to assess. Cross-fertilization

of ideas and, after the contract was awarded, almost organically close teamwork

in implementing them characterized the STG-McDonnell relationship. For a

year before the company's selection as prime contractor, original design studies

had been carried on with company funds. From a group of 12 engineers led by

Raymond A. Pepping, Albert Utsch, Lawrence M. Weeks, and John F. Yardley in

January 1958, the Advanced Design section at McDonnell grew to about 40

people by the time the company submitted its proposal to NASA. The proposal

itself stated that the company already had invested 32 man-years of effort in

the design for a manned satellite, and the elaborate three-volume prospectus
amply substantiated the claim. 14

In STG's 50-page set of final "Specifications for a Manned Space Capsule,"

drawn up in November, Faget and associates had described in remarkable

detail their expectations of what the capsule and some 15 subsystems should be

like. Now the McDonnell production engineers set about expanding the pre-

liminary specifications, filling gaps in the basic design, preparing blueprints and

specification control drawings, and retooling their factory for the translation of

ideas into tangible hardware. Specification S-6 had enjoined the contractor to

provide at his plant as soon as possible a mockup, or full-scale model made of

plywood and cardboard, of the capsule system. With high expectations the

Task Group awaited March 17, the date by which McDonnell had promised to

have ready their detailed specifications and a dummy Mercury capsule and

escape tower) '_ But the debut was not to be achieved easily.

Before the company could finish building the mockup, at least two technical

questions affecting the configuration had to be resolved: one was the type of

heatshield to be used; the other was the exact design for the escape system. A

third detail, the shape of the antenna canister and drogue chute housing atop the

cylindrical afterbody, was also tentative when STG and McDonnell engineers

began to work together officially on January 12, 1959. _"

HEATSHIELD RESOLUTION

To begin with, all capsule proposals had been evaluated on the basis of a

beryllium heat sink, but the search for an ablating heatshield continued con-

currently. George M. Low reported the tentative resolution of this conflict in

late January:

At a meeting held at I,angley Field on January 16 (attended by Drs.
Dry'den and Silverstein), it was decided to negotiate with McDonnell to design
the capsule so that it can be fitted with either a beryllium heat sink or an
ablation heat shield. It was further decided that McDonnell should supply
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a specified number (of the order of eight) ablation shields and a specified
number (of the order of six) beryllium heat sinks. It is anticipated that
flights with both types of heat protection will be made .... In case of a
recovery on land, the capsule with a beryllium heat sink will require cooling;
this is accomplished by circulating air either between the heat sink and the
pressure vessel, or by ventilating the pressure vessel after impactY

Regarding the escape system, McDonnell's proposal had carefully weighed

the relative merits of STG's pylon, or tower, type of tractor rocket with the alter-

native idea, which used three sets of dual-pod pusher rockets, similar to JATO bot-

tles, along either side of three fins at the base of the capsule. McDonnell chose the

latter system for its design proposal, but the STG idea prevailed through the

contract negotiations, because the Redstone was calculated to become aero-

dynamically unstable with the pod-type escape system, and the Atlas would likely

be damaged by jettisoning the pod fins.'" The escape system for an aborted

launch was intimately interrelated with the problems of the heatshield and of the

normal, or nominal, landing plans. By mid-March Robert F. Thompson's detailed

proposals for a water landing helped clarify the nature of the test programs to be
conducted.

While McDonnell agreed to design the capsule so that it could be fitted alterna-

tively with either a beryllium heat sink or an ablation heatshield, the prime con-
tractor farmed the fabrication of these elements to three subcontractors: Brush

Beryllium Company of Cleveland was to forge six heat-sink heatshields; General

Electric Company and Cincinnati Testing and Research Laboratory (CTL)

were to fabricate 12 ablation shields. The Space Task Group relied on Andre

J. Meyer, Jr., to monitor this critical and sensitive problem, the solution to which

would constitute the foremost technological secret in the specifications for the

manned capsule.

Meyer, one of the original STG members from Lewis in Cleveland, had been

commuting to Langley for 10 months. He soon discovered a bottleneck in

the industrial availability of beryllium. Only two suppliers were found in this

country; only one of these, Brush, had as yet successfully forged ingots of acceptable

purity. But ablation technology was equally primitive, so plans had to be

made on dual tracks. Meyer had had much experience with laminated plastics

for aircraft structures. He had previously learned, in consultations with the

Cincinnati Testing Laboratory, how to design a "shingle layup" for fabrication of

an ablation heatshield. While collecting all available information on both the

ablative plastic and the beryllium industries, Meyer listened to the Big Joe project

engineers, Aleck C. Bond and Edison M. Fields. They argued for ablation, spe-

cifically for a fiber glass-phenolic material, as the primary heat protection for the

astronaut. Before moving to Virginia in February, Meyer consulted on weekends

with Brush Beryllium in Cleveland, watching its pioneering progress in forging

ever larger spherical sections of the exotic metal, which is closely akin to the pre-

cious gem emerald. But Meyer, along with Bond and Fields, grew more skeptical
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of the elegant theoretical deductions that supported the case for beryllium. Mer-

cury would have a shallow angle of entry and consequently a long heat duration

and high total heat; they worried about the possibility that any heat sink

might "pressure cook" the occupant of the capsule. So Meyer, using CTL's

shingle concept, perfected his designs for an ablative shield. TM

There was something basically appealing about the less tidy ablation prin-

ciple, something related to a basic principle in physics, where the heat necessary

to change the state (from solid to liquid to gas) of a material is vastly greater

than the heat absorbed by that material in raising its temperature by degrees.

Meyer became convinced by March that beryllium would be twice as expensive

and only half as safe. Consequently, Meyer and Fields concentrated their efforts

on proving their well-grounded intuition that ablation technology could be brought

to a workable state before the Big Joe shot in early summery

While lively technical discussions over ablation versus heat sink continued

through the spring, the fact that Mercury officials had committed Big Joe to the

proof-testing of an ablative shield also rather effectively squelched any further

attempts at scientific comparisons. Whereas in January Paul E. Purser recorded

that "we will procure both ablation and beryllium shields . . . and neither will be

'backup,' they will be 'alternates,' " by the end of April technological difficulties

in manufacturing the prototype ablation shields became so acute as to monopolize

the attention of cognizant STG engineers. "1
Glennan and Silverstein in Headquarters therefore directed continuation of

the heat sink development as insurance, while STG gradually consigned the

alternative beryllium shield to the role of substitute even before the fiber gla_s-

phenolic shield had proved its worth. By mid-year of 1959, apparently only

the Brush Beryllium Company still felt confident that the metallic heat sponge

was a viable alternative to the glass heat vaporizer in protecting the man in space

from the fate of a meteor. The complicated glass-cloth fabricating and curing

problems for the ablation shield were mostly conquered by July. John H. Winter,

the heatshieId project coordinator at the Cincinnati Testing Laborator3_, delivered

his first ablation shield to NASA in Cleveland on June 22 under heav 7 guard. °-"

The critical question of whether to jettison the heatshield was active early in

1959. If the shield were a heat sink, it would be so hot by the time it reached the

lower atmosphere that to retain it after the main parachute had deployed would

be hazardous to the pilot. Also in case of a dry landing such a hot sponge could

easily start a prairie or forest fire. On the other hand, a detachable shield would

add complexity to the system and increase the rLsk of its loss before performing

its reentry job. In one of the early airdrops a jettisoned shield actually went

into "a falling leaf pattern after detachment. It glided back and collided with

the capsule, presenting an obvious potential hazard for the pilot in his vehicle late

in the reentry cycle." 2._ This incident prompted the decision that the heatshield

would be retained, although it might very well be lowered in the final moments

of the flight if it could help attenuate impact. The memory of this early collision
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after jettisoning continued to haunt STG engineers until they rejected the beryllium

heat-sink shield altogether.
Although the heatshield problem was highly debatable at the inception of

the project, there was consolation in the fact that at least two major development

areas were virtually complete. The two items considered frozen at the end of

January 1959 were the external configuration of the capsule, except for the antenna

section, and the form-fitting couch in which the astronaut would be able to endure

a force of 20 g or more, if it should come to that. _4 The Space Task Group was

pleased to have something as accomplished fact when so many other areas were
still full of uncertainties.

To George Low's ninth weekly status report for Administrator Glennan on

STG's progress and plans for Project Mercury was appended a tabular flight

test schedule that summarized the program and mission planning as envisioned

in mid-March 1959. Five Little Joe flights, eight Redstone, two Jupiter, ten

Atlas flights, and two balloon ,ascents were scheduled, the categories overlapping
each other from July 1959 through January 1961. The first manned ballistic

suborbital flight was designated Mercury-Redstone flight No. 3, or simply "MR-

3," to be launched about April 26, 1960. And the first manned orbital flight,

designated Mercury-Atlas No. 7, or "MA-7," was targeted for September l, 1960.

After that, STG hoped to fly several more, progressively longer orbital missions,

leading finally to 18 orbits or a full day for man in space. Although merely a

possible flight test plan, this schedule set a superhuman pace and formed the

basis for NASA's earliest expectations. _

APPLIED RESEARCH

By March I, Langley Research Center was formally supporting the Task

Group in conducting fivemajor programs of experimentation. The firstwas

an airdrop study, begun the previous summer, to determine the aerodynamic

behavior of the capsule in free fall and under restraint by various kinds of para-

chute suspension. By early January more than a hundred drops of drums filled

with concrete and of model capsules had produced a sizable amount of evidence

regarding spacecraft motion in free falls, spiraling and tumbling downward, with

and without canopied brakes, to impacts on both sea and land. 2G But what specific

kind of a parachute system to employ for the final letdown remained a separate

and debatable question.

A second group of experiments sought to prove the workability of the escape

system designs in shots at Wallops Island. On March 11 the first "pad abort," a

full-scale escape-rocket test, ended in a disappointing failure. After a promising

liftoff the Recruit tractor-rocket, jerking the boilerplate spacecraft skyward, sud-

denly nosed over, made two complete loops, and plunged into the surf.

So disappointing was this test that for several weeks the fin-stabilized pod

rocket escape system was almost reinstituted. _ Three Langley engineers, cha-
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grined by this threat to their work, conducted a full postmortem following the

recovery of the capsule. They blamed the erratic behavior on a graphite liner
that had blown out of one of the three exhaust nozzles. Willard S. Blanchard, Jr.,

Sherwood Hoffman, and James R. Raper, working frantically for a month, were

able to perfect and prove out their design of the escape rocket nozzles by mid-

April. At the same time they improved the pitch-rate of the system by deliberately

misaligning the pylon about one inch off the capsule's centerline. -_

The third applied research program was a series of exhaustive wind-tunnel

investigations at Langley and at the Ames Research Center to fill in data on

previously unknown values in blunt-body stability at various speeds, altitudes, and

angles of attack. Model Mercury capsules of all sizes, including some smaller

than .22 rifle bullets, were tested for static-stability lift, drag, and pitch in tunnels.

Larger models were put into free flight to determine dynamic-stability charac-
teristics. Vibration and flutter tests were conducted also in tunnels. The vari-

able location of the center of gravity was of critical interest here, as was also the

shifting meta-center of buoyancy. "_

Using the thunderous forced-draft wind tunnels at Langley and Ames, aero-

nautical research engineers pored over schlieren photographs of shock waves,

windstreams, boundary layers, and vortexes. Most of the NASA tunnel scien-

tists had long been airplane men, committed to "streamlined" thinking. Now

that H. Julian Allen's blunt-body concept was to be used to bring a man back

from I00 miles up and travelling about five miles per second, both thought and

facilities had to be redirected toward making Mercury safe and stable.

Albin O. Pearson was one such airplane-tunnel investigator who was forced

to change his way of thinking and his tools by the ever higher mach number re-

search program for Mercury. Pearson worked at Langley coordinating all aero-

dynamic stability tests for Mercury with blunt models at trans-, super-, and

hypersonic speeds. While exhausting the local facilities for his transonic static

stability studies, Pearson arranged for Dennis F. Hasson, Steve Brown, Kenneth

C. Weston, and other Langley, STG, and McDonnell aerodynamicists to use

various Air Force tunnels at the Arnold Engineering Development Center, in

Tullahoma, Tennessee. Beginning on April 9, 1959, a number of Mercury

models and escape configurations were tested in the 16-foot propulsion wind

tunnel and 40-inch (mach 22 capability) "Hot Shot" facility at Tullahoma.

During the next 16 months a total of 103 investigations utilizing 28 different

test facilities were made in the wind-tunnel program? °

A fourth experiment program concerned specifically the problem of landing

impact. Ideally touchdown should occur at a speed of no more than 30 feet

per second, but how to ensure this and how to guard against impacts in directions

other than vertical were exasperating problems. Landing-loads tests in hydro-

dynamics laboratories for the alternative water landing had only begun. The

anticipated possibility of a ground impact, which would be far more serious, de-

manded shock absorbers far better than any yet devised. Although there was
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still no assurance that the astronaut inside a floating capsule could crawl out

through the throat without its capsizing, this egress problem was less demanding
at the moment than the need for some sort of crushable material to absorb the

brunt of a landing on land.

Through April and May, McDonnell engineers fitted a series of four Yorkshire

pigs into contour couches for impact landing tests of the crushable aluminum

honeycomb energy-absorption system. These supine swine sustained acceleration

peaks from 38 to 58 g before minor internal injuries were noted. The "pig drop"

tests were quite impressive, both to McDonnell employees who left their desks

and lathes to watch them and to STG engineers who studied the documentary

movies. But, still more significant, seeing the pigs get up and walk away from

their forced fall and stunning impact vastly increased the confidence of the newly

chosen astronauts that they could do the same. The McDonnell report on these

experiments concluded, "Since neither the acceleration rates nor shock pulse

amplitudes applied to the specimens resulted in permanent or disabling damage,

the honeycomb energy absorption system of these experiments is considered suit-

able for controlling the landing shock applied to the Mercury capsule pilot." 3_

Fifth, and finally, other parachute experiments for spacecraft descent were

of major concern in the spring of 1959, because neither the drogue chute for

stabilization nor the main landing parachute was yet qualified for its task in

Project Mercury. Curiously, little research had been done on parachute be-

havior at extremely high altitudes. Around 70,000 feet, where the drogue chute

was at first designed to open, and down to about 10,000 feet, where the main

landing chute should deploy, tests had to be carried out to measure "snatch"

forces, shock forces, and stability parameters. Some peculiar phenomena--called

"squidding," "breathing," and "rebound" in the trade--were soon discovered

about parachute behavior at high altitude and speed. In March, one bad failure

of an extended.skirt cargo chute to open fully prompted a thorough review of

the parachute development program. Specialists from the Air Force, Langley,

McDonnell, and Radioplane, a division of the Northrop Corporation, met together

in April and decided to abandon the extended-skirt chute in favor of a newly

proved, yet so far highly reliable, 63-foot-diameter ringsail canopy. The size,

deployment, and reliability of the drogue chute remained highly debatable while

STG sought outside help to acquire other parachute test facilities. 32 The status

of most other major capsule systems was stiII flexibIe enough to accommodate

knowledge and experience gained through ongoing tests.

Two other major problems on which Langley also worked with STG, while

NASA Headquarters planned the role and functions of the new center in Belts-

ville, concerned the formulation of final landing and recovery procedures and

the establishment of a worldwide tracking network. Mercury planners had

assumed from the beginning that the Navy could play a primary role in locating

and retrieving the capsule and its occupant after touchdown. But a parallel

assumption that existing military and International Geophysical Year tracking
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Parachute development and qualifica-

tion was one of the areas that proved sur-

prisingly time-consuming and trouble-

some, considering the long prior history

o[ parachute use. The ring-sail para-

chute, shown at right in one o[ many

test [lights, was the type finally chosen

to use as the capsule's main parachute.

and communications facilities could be utilized with relatively slight modifications

had to be overhauled in the light of a more thorough analysis of Mercury

requirements.
The Navy's experience with search and rescue operations at sea could be

trusted to apply directly without much modification to retrieval of the Mercury

capsule. But a multitude of safeguards had to be incorporated in the capsule to
ensure its safety during and immediately after impact and to reduce the time

required for recovery to a bare minimum. William C. Muhly, STG's shop

planner and scheduler, was most worried about these recovery aids for the Big

Joe tests.33

The most serioustechnicaldecisionaffectingthe landing and recovery pro-

cedurcs concerned the feasibilityof using an impact bag to cushion the sudden

stop at the surfaceof Earth. Gilruth likedthe idea of using a crushable honey-

comb ofmetal foilbetween the shieldand the pressurevesselto act asthe primary

shock absorber. But a pneumatic bag, perhaps a large inner tube or a torus

made of fabricand extending below the capsule, eitherwith or without the

heatshieldas itsbase,was stillappealing. Associatedwith the recovery problem
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were innumerable other factors related to recovery operations. The seaworthi-

ness of the capsule, its stability in a rough sea, the kinds of beacons and signaling

devices to be used, and the provisions for the possibility of a dry landing were fore-
most among these worries?'

The second major area of uncertainty revealed in January 1959 came as

something of a surprise to Task Group people. They had assumed that the

world was fairly well covered with commercial, military, and scientific tele-

communications networks that could be a basis for the Mercury tracking and

communications grid. The Minitrack network established roughly north and

south along the 75th meridian in the Western Hemisphere for Project Vanguard
turned out to be practically inapplicable. On the other hand, the "Moonwatch"

program and the optical tracking teams using Baker-Nunn cameras developed

by the Smithsonian Institution Astrophysical Laboratory supplied invaluable data

during 1958. Tracking of artificial satellites showed that all previous estimates

of atmospheric density were on the low side? _ Trajectory studies for equatorial

orbits showed a remarkable lack of radio and cable installations along the projected

track. Much depended upon the precise trajectory selections and orbital cal-

culations for a Mercury-Atlas combination. New Atlas guidance equations that

would convert the ballistic missile into an orbital launch vehicle had been assigned

to the mathematicians of Space Technology Laboratories (STL) in Los Angeles.

But whatever these turned out to be, it was becoming apparent that the world

was far less well-wired around the middle and underside than had been thought.

Furthermore the medical teams were insisting on continuous voice contact with

the pilot. So by the end of February, Charles W. Mathews had convinced Abe

Silverstein that STG should be relieved of the monumental tracking job, and

NASA Headquarters drafted another contingent of Langley men to set up a

brand-new communications girdle around the world? 6

A large part of the Instrument Research Division at Langley, under the

directorship of Hartley A. Soul_, provided the manpower. Soulfi had previously

laid out a timetable of 18 months for completion of a tracking network. Now
he and the Langley Procurement Officer, Sherwood L. Butler, undertook to

manage the design and procurement of material for its construction, sT Ray W.

Hooker accepted the supervision of the mechanical and architectural engineering,

and G. Barry Graves began to direct the electronics engineering. By mid-March

the problem of providing a tracking network for Mercury was on the shoulders

of a special task unit that came to be known as the Tracking and Ground Instru-

mentation Unit, or by the barbarous acronym "TAGIU." Ahhough by this

time most of the other divisions at Langley were also acting partially in support

of Mercury, the Tracking Unit held a special position in direct support of the

Space Task Group. Indirectly it provided NASA with its first equatorial track-

ing web for all artificial satellites. Some 35 people in the unit went to work

immediately on their biggest problem, described by Graves as "simply to decide

what all had to be done." 38 By the end of April, Soul_ had seen the imperative
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The Rose Knot, one of the two

tracking ships used during Project
Mercury, is pictured at Maryland

Ship and Drydock, undergoing
modifications and installation o[

new equipment. When com-

pleted, the ship would have a
command transmitter as well as

FPS-I6 radar and other sophis-

ticated tracking and electronic

equipment. Below, activity in the

communications support area of

Goddard Space Flight Center just

before a manned mission got un-

derway. This was the relay point

for a[g tracking network communi-

cations to and from the Mercury

Control Center at Cape Canaveral.
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need for a high order of political as well as technical statesmanship to accomplish

his task on time. A detailed report to Silverstein outlined his operational plans? °

On March 17 and 18, 1959, at the McDonnell plant in St. Louis, the manu-

facturers presented to the Space Task Group for its review, inspection, and

approval the first full-scale mockup of the complete Project Mercury manned

satellite capsule. This "Mockup Review Inspection" represented a rough divid-

ing line between the design and development phases for the project. The "Detail

Specifications," 80 pages in length, provided a program for the customers. An-

other McDonnell document provided a written description of the "crew station"

procedures and capabilities. And the mockup itself showed the configuration

"exploded" into seven component parts: adapter ring, retrorocket package,

heatshield bottom, pressure bulkhead, airframe, antenna canister, and escape
rocket pylon. 4°

The chief designers, constructors, and managers of the program gathered

around the capsule to watch demonstrations of pilot ent_,, pilot mobility, accessi-

bility of controls, pylon removal, adapter separation, and pilot escape. The board

of inspection, chaired by Charles H. Zimmerman, then Chief of the Engineering

and Contract Administration Division of STG, included Gilruth, Mathews, Faget,

Low, Walter C. Williams, who was then still Chief of NASA's High Speed Flight

Station, and E. M. Flesh, the engineering manager of Project Mercury for
McDonnell. In addition, eight official advisers of the board and 16 observers

from various other interested groups attended the meeting. The president of the

corporation himself introduced his chief lieutenants: Logan T. MacMillan,

company-wide project manager; John Yardley, chief project engineer; and Flesh.

In consultation during the two days with some 40 McDonnell engineers, the Task

Group recommended a total of 34 items for alteration or study. Of these recom-

mendations 25 were approved immediately by the board, and the rest were
assigned to study groups. 41

Among the significant changes approved at this meeting were the addition of

a side escape hatch, window shades, steps or reinforced surfaces to be used as steps

in climbing out of the throat of the capsule, and a camera for photographing the

astronaut. Robert A. Champine, a Langley test pilot who had ridden the cen-

trifuge with Carter C. Collins and R. Flanagan Gray the previous summer to help

prove the feasibility of the Faget couch concept, suggested more than 20 minor

changes in instrumentation displays and the placement of switches, fuses, and
other controls. Also attending this mockup review were Brigadier General Don D.

Flickinger; W. Randolph Lovelace II; Gordon Vaeth, the new representative of

the Advanced Research Projects Agency; John P. Stapp, the Air Force physician

who had proved that man could take deceleration impacts of up to 40 g; and a

relatively obscure Marine test pilot from the Navy Bureau of Aeronautics by the
name of John H. Glenn, Jr.

When they returned to Langley Field, Task Group officials were aware as

never before of the magnitude of their tasks. Conversations with more than 50

F.
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The Mockup Re_,iew Inspection in St. Louis, March 17-18, 1959, was a clear-cut
intricacies o] climbing out o[ the hatch o[ the Mercury mockup capside (right).

Faget, one o[ the principal conceptual engineers [rom STG, brie[s on the concept

(Ie[t), and Gilbert North, McDonnell test pilot, is suited up and demonstrating the

intracacies o[ climbing out o[ the hatch o[ the Mercury mockup capsule (right).

McDonnell engineering group leaders had convinced them that more formal

contract-monitoring arrangements were needed. Working committees and study

groups had proliferated to such an extent that a capsule-coordination panel was

needed. Gilruth appointed John H. Disher in mid-March to head the coordina-

tion temporarily. But by mid-June the panel was upgraded to an "office" and

Disher was recalled to Washington by Silverstein to work with Low and Warren J.
North. _2

From a nucleus of 35 people assigned to STG in October 1958, the Group had

grown to 150 by the end of January 1959. Six months later, in July, about

350 people were working in or with the Task Group, although some were still

nominally attached to the research centers at Lewis or Langley? 3

The rapid growth of STG, fully endorsed by Washington, was only one of the

problems facing its management in the spring of 1959. Perhaps the most difficult
lesson to learn in the first year of Project Mercury was the psychological reorienta-

lion required to meet new economic realities. Aeronautical research engineers
who became administrators under NACA were still essentially group leaders of
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research teams. But when NACA became NASA and embarked on several

large-scale development programs, those in development, and in STG in particular,

became not primarily sellers of services but rather buyers of both services and

products. To manage a development program required talents different from

those required to manage a research program, if only because Government procure-

ment policies and procedures are so complex as to necessitate corps of experts in

supply and logistics. Senator Stuart Symington of Missouri, one of the knowledge-

able observers watching the transition at this time, remarked, "The big difference

between NACA and NASA is that NASA is a contracting agency." 44

COSTS AND CANCELLATIONS

Trying to estimate what it should cost to develop hardware from their designs
for a manned satellite, STG at first envisioned an expenditure of about $16 million

to manufacture the program's spacecraft. But well before the contractor had been

selected, Gilruth received a revised estimate based on new specifications, allowances

for overtime, the fixed fee plus the estimated construction costs, and comparing

capsule cost per pound with that of the X-15 and Dyna-Soar programs. George

F. MacDougall, Jr., the aeronautical research scientist who signed this revised
estimate, advised that the capsule costs should be raised to $22 million. Neither

an economist nor a cost accountant, he did foresee the possibility "that the current

estimated costs of $22,000,000 may be optimistically low." *_

The contract negotiated with McDonnell had compromised between the com-

pany's bid of $17,583,717, which was far from the lowest, and the more liberal

STG estimate, to settle on a price of $18,300,000 for manufacturing 12 capsules.

In view of this compromise upward, NASA officials were unprepared for the

sudden acceleration of costs that the contractor claimed was necessary for spare

parts, g-i-ound support, and checkout equipment. Before the ink was dry on the

prime contract, the scope of research and development work was found to have

mushroomed. In March, when McDonnell advised NASA that spares and test

equipment would more than double the total contract costs, Abe Silverstein

applied counterpressure, saying indignantly, "I will not tolerate increases such

as those above in the contrast for any reasons--utterly unreasonable to increase an

$18,000,000 contract to $41,000,000 by these devices." 40

Meanwhile STG and McDonnell representatives held a meeting at the working

level to consolidate and condense the requirements for spare parts and equipment.

Savings effected here were eventually greatly overridden by costs arising elsewhere.

No one could yet foresee that the basic contract for 12 spacecraft would have an

evolutionary history of its ownY Cost accounting for a development program

was recogmized as a hazardous occupation, but just how hazardous and where to
look for particular pitfalls took time to learn.

Whereas cynics might expect that the private-enterprise contractor for the

capsule might have underbid to gain the contract, the civil servants in STG were
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more surprised to learn that the public enterprise of furnishing the Nation's
ballistic missile defense systems should also have underestimated costs by approxi-

mately one third. Informed by the Air Force Ballistic Missile Division in January
that each Atlas booster would cost $3.3 million instead of $2.5 million, George Low

tried for two months to get a satisfactory explanation of this sudden inflation. 4_

When in May, however, the STG learned of an increase by $8 million in the

amount the Army Ballistic Missile Agency proposed to charge for the Redstones

and Jupiters, the time had come for a thoroughgoing review of cost effectiveness

and program requirements. Gilruth and Purser learned by investigation that the
Ballistic Missile Agency was billing NASA a "burden" surcharge for the benefit of

laboratory overhead costs at Huntsville. Purser's considered reaction to this was to
threaten cancellation of the Jupiter program. If NASA must pay for research

and development at the Redstone Arsenal, he said, then NASA, and STG in

particular, must be more frugal in the estimation of their needs.

The Jupiter rocket had been selected to boost a full-scale capsule to about

16,000 feet per second, a velocity midway between the capacities of Little Joe and

Redstone (6000 feet per second), and of Atlas (25,000 feet per second). But

rather than insist on this step, Purser argued that the Atlas should be harnessed to

duplicate the mission of the Jupiter flights. Since "the cost now equals or exceeds
the cost of an Atlas for the same mission" and the Jupiter system would not be a

"true duplicate of the Mercury capsule system," Purser recommended that the

two Jupiter shots be canceled?"

After further consideration and more negotiations, Purser's recommendation

was adopted by NASA Headquarters; the Jupiter series was eliminated from the

Mercury program. In the aftermath of this episode, Glennan made an official

complaint to the Secretary of Defense about the necessity to curtail proposed

launchings to control costs, describing the situation with some chagrin :

Members of the staff who have visited Redstone Arsenal report that excep-
tionally high overhead rates apparently result from the necessity of supporting
a large technical staff with a limited approved work program. The net result
to us has been the increased costs of a Jupiter launching to more than that of
an Atlas, whereas a Redstone launching is about $200,000 less than that of an
Atlas. The prices being 2.7 and 2.9 million respectively? _

At the same time Mercury engineers who were looking for an alternative

to the balloon flight program discovered that the altitude wind tunnel, the biggest

physical installation at Lewis Research Center, could be used to simulate environ-

mental conditions up to 80,000 feet. Therefore the balloon flight test program,

primarily designed to "soak" the capsule at comparable altitudes, was in effect

canceled by May. DeMarquis D. Wyatt and other NASA Headquarters staffers

preparing the budget requests for fiscal year 1960 now had evidence of STG's

cost consciousness. The cancellations of the Jupiter series and the balloon pro-

gram greatly simplified the program buildup toward manned space flight. STG

engineers were pleased by the resulting concentration of effort31
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One reason STG shed no tears over cancellation of Jupiter and the balloon

tests was that the Little Joe program was making good progress. Blueprint work

for the Little Joe airframe had begun early in 1959. North American had as-

signed A. L. Lawbaugh as project engineer; Langley Research Center had ap-

pointed Carl A. Sandahl as its representative for support of this test booster

program; and William M. Bland, Jr., was managing Little Joe for the Space Task

Group. Throughout the year 1959 these three men were primarily responsible

for Little Joe.

Two significant design changes for Little Joe early in 1959 undoubtedly de-

layed the program slightly but contributed greatly to its eventual success. The

first change, decided upon by Gilruth and Faget in January, required a switch

from straight to canted nozzles on all the forward-thrusting rocket motors. Little

Joe had no guidance system, and such a redesign would minimize any upset from

unsymmetrical thrust conditions. The other departure from the original design

was the addition of a so-called "booster destruct system." In the interest of

range safety there should be some provision to terminate by command the thrust
of the main motor units. Therefore Charles H. McFall and Samuel Sokol of

Langley devised a booster blowout system, which North American and Thiokol

Chemical Corporation, the manufacturers of the rocket motor components, added
to the forward end of each rocket combustion chamber? -_

By mid-February it was apparent that a development program for rocket

hardware, even of such limited scope and relative simplicity as the Little Joe

booster, demanded a far more sophisticated management organization than either

Langley or the Task Group had envisioned. Although informal arrangements

had sufficed to get the program started, funding allocations, personnel expansion,

and contract monitoring problems began to weigh heavily. Carl Sandahl la-

mented in one weekly progress report that the transfer of Caldwell C. Johnson

from Langley to the Space Task Group could "just about break up the Little Joe

Project." Langley's loss was STG's gain in this respect, however, and cooperation

continued to be encouraging. Indeed, in May, Bland reported that the delivery

of the first Little Joe booster airframe could be expected approximately two weeks
earlier than scheduled. '_

Parallel to the development of the Little Joe test booster, STG and Langley

engineers continued work on what now was called the Scout, the multistage, solid-

propellant research rocket being designed since the previous year for sounding,

probe, or small satellite missions. Langley had maintained its responsibility for

designing the Scout for the Air Force after NACA became NASA; and early in

1959, Robert O. Piland and Joseph G. Thibodeaux came to work with William

E. Stoney on the staging principles for the long, slim rocket. Although the Scout,

as a Langley project, was not an integral part of STG's activities in Project

Mercury, the Task Group held open the possibility of using this simple and

relatively inexpensive rocket to launch scale models of the Mercury configuration

and to probe for further critical data on heat transfer and stability. Thus the
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Scout's capability could fill research gaps that might arise in the manned satellite

project. _

Since January, when it had become apparent that the Army would not soon

relinquish to NASA its rocket development team at Huntsville, NASA Head-

quarters had encouraged the Space Task Group to proceed full speed on personnel

recruitment. The exact status of the organization and authority of STG was

left unspecified, while Headquarters felt its way toward the establishment of the

"space projects center" at Belt_,ille, just outside Washington. Although NASA

had a "hunting license" as a result of its enabling legislation, STG's managers

could not, without full support from President Eisenhower or Administrator

Glennan, know how far or how hard to push the Space Task Group toward a

permanent semi-autonomous establishment. 5_

STG's need for acquiring competent people without raiding established NASA

research centers was met in large degree by a fortuitous accident that dramatized

Anglo-European complaints about the "brain drain" of their scientific-technologi-

cal manpower to the United States. A group of over 100 Canadian and British

aeronautical engineers, who had been employed on a fighter-plane project for

the British A. V. Roe (AVRO) Company near Toronto, Canada, were out of

work. AVRO tried to find new jobs for them when the CF-105 Arrow project
was canceled as a result of the Commonwealth's decision that the Bomarc missile

made the Arrow obsolescent. Twenty-five of these engineers, led by James A.

Chamberlin, a Canadian, were recruited by STG and immigrated to work at

NASA's Virginia colony in mid-April. They were assigned jobs as individuals

with the existing teams wherever each could be most useful, and they quickly

proved themselves invaluable additions to making Mercury move. '_

At the same time, the chief busine_ administrator of the new NASA center

at Beltsville, Michael J. Vaccaro, was planning to accommodate a complement

of 425 people for fiscal year 1960 should Gilruth and. his manned satellite team

move to Maryland. On the first day of May 1959 the "space projects center,"

growing out of Naval Research Laboratory's Vanguard team, was renamed the

Goddard Space Flight Center, and Gilruth's second hat, as the Center's Assistant

Director for Manned Satellites, was reaffirmed. The Mercury program was

specified as one of the six dMsional offices at Goddard. _7

While many questions of personnel, network management, and contract

procedures for the capsule were still pending, Glennan made his first visit to the

Space Task Group at Langley on May 18, 1959. He was impressed by the

enormity of Project Mercury, by its working-level complexities, and by the

extraordinarily fine morale in STG. Glennan returned to Washington resolved

not to tamper with the esprit of STG. But he was also determined that NASA

as a whole should not become a "space cadet" organization.' _ The Admin-

istrator's resolution that NASA must not be overwhelmed by the complexities

of manned space flight led to a Headquarters policy of minimal interference with

the Task Group. During the next year, however, the weight of pressure from
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NASAAdministratorT. KeithGtennan,right,arrivesat LangleyField/or hisfirst
visitto theSpaceTaskGroup. HeisgreetedbyRobertR.Gilruth,le[t,Directoro[
SpaceTaskGroup,andFloydL. Thompson,Directoro[ LangleyResearchCenter.

the public press and the scope of intragovernmental coordination related to

Mercury was to strain this policy.

SUPPORTING AGENCIES AND INDUSTRIES

One of these complexities had been pointed up in the course of planning
operational procedures for launching. Back in November 1958 the Air Force

Missile Test Center had accepted Melvin N. Gough as director of NASA tests,

but it was May 1959 before the Center made any allowance for the functioning
of NASA's skeleton staff for the manned satellite program. When Herbert F.

York, thc Pentagon's Director of Defense Research and Engineering, testified

before Congress early in June, he alluded to the coordination problem between
the Department of Defense and NASA and admitted, "We haven't worked out

exactly how to do that yet." B. Porter Brown, the first STG man to take up

residence at the Cape, told his superior, Charles Mathews, that the administra-

tion of the launch complexes at the Atlantic Missile Range was as intricate as
the technical equipment there? °

On May 1, 1959, when NASA set up its own liaison office at Canaveral,

Brown and the STG were still trying to understand all the interrelationships
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existing between the Air Force (whose proprietorship stemmed from the estab-
lishment in 1950 of the Long Range Proving Ground), the Navy, and the Army.
The Air Force Missile Test Center (AFMTC) was the steward operating the
Atlantic Missile Range (AMR) for the Department of Defense. The Army had
established its subsidiary Missile Firing Laboratory on the Cape as an integral
part of its Ballistic Missile Agency. By the end of January 1959, Kurt H.
Debus, director of the firing lab, had appointed a project engineer and coordi-
nator for the Mercury-Redstone program, but the conversion of launch pads
Nos. 5 and 6 into "Launch Complex No. 56" to meet the requirements for

Mercury-Redstone launchings was less imperative than the need to prepare for
the Fourth of July launch of Mercury's Big Joe by an Air Force Atlas. c°

The palmetto-covered dunes at Canaveral had several dozen different kinds
of launch pads, but they were still in short supply and under heavy demands.
There were almost as many different military service and civilian contract orga-

nizations vying for them as there were pads. Proprietary interests were strongly
vested, security restrictions were rigorous, and the newly constituted space agency
was not yet accepted in the elite flight operations society there. Hangar S, in
the industrial area of the Cape, had been tentatively assigned as "NASA space,"
but the former Naval Research Laboratory team that had built Hangar S and

was still active with the Vanguard project was there first. Although now in-
corporated with NASA, the Vanguard team hoped to carry on with a new booster

development program named Vega. Another group of half-NASA developers,
the Jet Propulsion Laboratory, working with yon Braun's people, were likewise
seeking more room to convert Juno I (Jupiter-C) into Juno II (Jupiter IRBM)
launch facilities for more Explorer satellite missionsY 1

With space for space (as opposed to defense) activities at such a premium,
Porter Brown and his two advance-guard colleagues for STG at the Cape, Philip
R. Maloney and Elmer H. Buller, pressed for a higher priority in Hangar S.
But room was still scarce in early June when Scott H. Simpkinson with about
35 of his test operations engineers from Lewis Research Center arrived to set
up a preflight checkout laboratory for Big Joe. They found a corner fourth of

Hangar S roped off for their use, and instructions not to overstep these bounds. 62
Another problem arose over the scheduled allocation of launch pad No. 14,

which was one of only five available for Atlas launchings. Pad 14 was scheduled
to be used for the Air Force MIDAS (Missile Defense Alarm Satellite) launchings
throughout the same time period that the Mercury qualification flights were

expected to be ready. Although admitting that firing schedules for both the
Mercury-Redstone and the Mercury-Atlas programs were tentative, STG argued
that the same pad assigned for the Big Joe shot should be continuously available
for preparing all subsequent Mercury-Atlas launches.

The commander of the Air Force Missile Test Center disagreed. In the cause
of maximum utilization of Cape facilities, Major General Donald N. Yates ordered
switching of Mercury launches to various available launch stands. These initial
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conflicts of interests reached an impasse on June 24, when representatives of NASA

and the Advanced Research Projects Agency of the Department of Defense met

to decide whose shots to postpone. NASA was unable to obtain a concession:

the urgency of ICBM and MIDAS development took precedence. 63

The complexity of organizational problems at the Cape might have led space
agency leaders to despair but for an auspicious space flight on May 28. On that

date in 1959 an Army Jupiter intermediate range ballistic missile launched a nose

cone carrying two primate passengers--Able, an American-born rhesus monkey,

and Baker, a South American squirrel monkey--to a 300-mile altitude. At the

end of 15 minutes and a 1500-mile trajectory, along which the cone reached a

speed of about 10,000 miles an hour, the Navy recovered Able and Baker alive

and healthy. The medical experiments were conducted by the Army Medical

Sen'ice and the Army Ballistic Missile Agency with the cooperation of the Navy

and Air Force Schools of Aviation Medicine. Not only was the flight a triumph

for space medicine; it also demonstrated an organizational symbiosis of significant

proportions for all of the services and branches involved, c*

But the "interface" problems within NASA, and between NASA and other

agencies, continued to exist, particularly at lower echelons in the planning of oper-

ational procedures for flight control. Mathews and his staff in the Flight Oper-

ations Division of STG were required to plan and replan mission profiles, schedules,

countdown procedures, and mission directives while accommodating the procedures

of other divisions and organizations contributing to the operation. By mid-spring

these working relationships had become so invoh,ed that flight schedules had to

undergo radical revision. It gradually became clear that the original schedules

aimed at achieving a manned orbital flight early in April 1960 could not possibly
be met.

On top of that, the production of spacecraft hardware and flight equipment

began falling behind schedule. Only one month after the Mockup Review, it

became evident that capsule and systems production slippages were going to be-

come endemic. On April 17, 1959, Gilruth, speaking before the World Congress

of Flight meeting at Las Vegas, announced casually, "The first manned orbital

flight will not take place within the next two years." The first successful pad
abort using the tower-rocket escape system had just been completed on April 12--

two years to the day before Gagarin's orbital flight--but Gilruth cautiously re-
frained from pronouncing even the escape sequence firm. And he alluded to other

areas of uncertainty:

Although the Mercury concept is the simplest possible approach to manned
flight in space, involving a minimum of new developments, as you can see,
a great deal of research and development remains to be done. For flight
within the atmosphere, the capsule must he stable over the widest speed range
yet encountered by any vehicle--from satellite velocity to a very low impact
speed. And in orbital flight, all of the systems must function properly in a
weightless state. It must be compatible with the launch rocket and must be
at home on the sea while awaiting recovery2 _
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In May 1959 the Mercury managers drew up a new functional organization

chart dividing the supervisory activities of STG into five categories: capsules,

boosters and launch, "R and D" support, range, and recovery operations. The

design period for each of these areas having now evoIved into developmental work,
each area could more plainly be seen in terms of the contracts to be monitored

by STG personnel. Capsules were divided into three categories, the first of which

was the boilerplate models being built by Langley" for the Little Joe program.

For Big Joe, alias the Atlas ablation test, another boilerplate capsule was under

construction jointly, with the STG at Langley responsible for the upper section

and the STG at Lewis for the lower pressure-vessel section of the capsule. This

meant that Langley in conjunction with Radioplane would perfect the recovery

gear and parachute canister, while Lewis people would handle the automatic

control system, the heatshield, sensors, and telemetry, es

For the production model capsule under McDonnell's aegis, a number of

major subcontractors had long since been selected. Minneapolis-Honeywell Regu-

lator Company was deveIoping the automatic stabilization and control system;

the reaction control system was being built by Bell Aerospace Corporation; some

electronics and most radio gear were to be provided by Collins Radio Company;

and the environmental control system, the periscope, and the horizon scanner were

to be supplied by AiResearch, Perkin-Elmer Company, and Barnes Instrument

Company, respectively. The alternative heatshields, as previously noted, were

being provided by several different subcontractors; and the solid rockets for escape

by Grand Central Rocket Company and for the retrothrust package by Thiokol

Chemical Corporation.

With regard to boosters and launching, STG could rely on the extensive ex-

perience of the Ballistic Missile Division/Space Technology Laboratory/Convair

complex for the Atlas, and on the Army Ballistic Missile Agency and the yon

Braun/Debus team for the Redstones. Only the Little Joe shots from Wallops

Island would require extensive attention to launch problems because only Little

Joe was exclusively a NASA booster. North American, the prime contractor,

would provide whatever Langley could not for Little Joe.

Under the miscellaneous category "R and D support," however, Project

Mercury would not only require the help of all the other NASA research centers--

Langley, Ames, Lewis, and now Goddard---but also of the NASA stations for high-

speed flight research at Edwards, California, and for pilotless aircraft research at

Wallops Island, Virginia. At ]east 10 separate commands under the Air Force

would be closely involved, and various facilities of the Navy Bureau of Aeronautics,

especially the human centrifuge at Johnsville, Pennsylvania, would likewise be

extensively used.

The range and tracking network requirements being supervised by the alter

ego to STG, namely the Tracking Unit (TAGIU) or the Mercury network group

at Langley, gradually became clear as contractors began to report on their feasi-

bility and programming studies. The Lincoln Laboratory of the Massachusetts
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flight hardware were of course the
launch vehicle--the man-rated
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San Diego (le#) and the Mercury
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McDonnell Aircra[t Corporation

plant in St. Louis (below).
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Institute of Technology, the Aeronutronics Division of the Ford Motor Company,

Space Electronics Corporation, and the RCA Service Company held four study

contracts to help Soul6 decide on ground equipment, radar coverage, control

center arrangements, and the exact specifications for various contracts. Although

a preliminary bidders' briefing on the tracking, telemetry, and telecommunications

plans for Project Mercury took place at Langley on April 1, the basic design

document, "Specifications for Tracking and Ground Instrumentation System for

Project Mercury," did not appear until May 21. Consequently NASA did not

select the prime contractor for the tracking network until midsummerY

Finally, regarding recovery operations, a NASA and Department of Defense

working group decided on May 11 to make use of the investment already made by

Grumman Aircraft Corporation in operations research for its spacecraft bid pro-

posal on recovery requirements. Concurrently arrangements were being made

with the Chief of Naval Operations, the Commander in Chief of the Atlantic

Fleet, the Army Ballistic Missile Agency, the Strategic Air Command, the Atlantic

Missile Range, the Marines, and the Coast Guard for the specific help each could
render when the time should come for search and retrieval.

Although these relations appeared to have grown exceedingly complex, they

had only just begun to multiply. Gilruth, however, was confident that by careful

coordination and through the largely personal and informal working methods of

STG, he and his men couId handle the problems arising in the Mercury develop-

ment program. As an encouraging example, the booster and launch coordination

panels, established separately for the Atlas and the Redstone, had by mid-May

already achieved impressive understandings on what had to be done. In the case

of the Atlas, the coordination panel worked out the division of labor between

NASA, McDonnell, the Ballistic Missile Division, Convair, and STG. Panel

members simply discussed until they had resolved such key problems on their agenda

as general launch operations procedures, trajectories and flight plans for the first

two scheduled launches, general approach to an abort sensing system and pro-

cedures, range and pad safety procedures, general mechanical and electrical mat-

ing, blockhouse space requirements, general countdown and checkout procedures,

and velocity cutoff in the event of overshooting the orbit insertion point. Six Red-

stone booster and launch panels, established at an important coordination meeting

on February 11 with STG and McDonnell at Redstone Arsenal, likewise resolved

in monthly meetings many such items. _ For both boosters, many details remained

outstanding, of course, but the fact that pending problems were being identified

early and systematically in May 1959 gave the STG confidence that no further

schedule slippages could be charged to the lack of intelligent planning3 D

ASTRONAUT SELECTION

Now that the men had been chosen to serve as the focal points for all this effort,

new spirits animated the Space Task Group. Indeed, the Nation as a whole
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began to participate vicariously in Project Mercury when, on April 9, 1959, at a
press conference in Washington, Glennan introduced to the public the seven men
chosen to be this Nation's nominees for the first human voyagers into space. _°

They were to be called "astronauts," as the pioneers of ballooning had been
called "aeronauts," and the legendary Greeks in search of the Golden Fleece were
called "Argonauts," for they were to sail into a new, uncharted ocean. These

personable pilots were introduced in civilian dress; many people in their audience
forgot that they were volunteer test subjects and military officers. Their public
comments did not class them with any elite intelligentsia. Rather they were a
contingent of mature Americans, average in build and visage, family men all,

college-educated as engineers, possessing excellent health, and professionally com-
mitted to flying advanced aircraft.

Compared with the average, white, middle-class American male, they enjoyed
better health, both physically and psychologically, and they had far more experi-
ence among and above the clouds. Slightly short of average in stature, they were
above average in seriousness of purpose. Otherwise these seven seemed almost
random samples of average American manhood. Yet the names of Carpenter,
Cooper, Glenn, Grissom, Schirra, Shepard, and Slayton were perhaps to become as
familiar in American history as those of any actor, soldier, or athlete.

Despite the wishes of NASA Headquarters, and particularly of Dryden, Silver-
stein, and Gilruth, the fame of the astronauts quickly grew beyond all proportion
to their current activities and their preflight mission assignments. Perhaps it was
inevitable that the "crew-pool" members of STG were destined for premature
adulation, what with the enormous public curiosity about them, the risk they
would take in space flight, and their exotic training activities. But the power of
commercial competition for publicity and the pressure for political prestige in the
space race also whetted an insatiable public appetite for this new kind of celebrity.
Walter T. Bonney, long a public information officer for NACA and now Glennan's
adviser on these matters, foresaw the public and press attention, asked for an en-
larged staff, and laid the guidelines for public affairs policy in close accord with that
of other Government agencies. _

The astronauts were first and foremost test pilots, men accustomed to flying
alone in the newest, most advanced, and most powerful vehicles this civilization

had produced. They were talented specialists who loved to fly high-performance
aircraft and who had survived the natural selection process in their profession.

The demand for excellence in piloting skills, in physical health, and psychological
adaptability becomes ever more stringent as one ascends the ladder toward the elite

among military aviators, those senior test pilots with upwards of 1500 hours' total
flying timeY

Eisenhower's decision that the military services could provide the pilots greatly
simplified the astronaut selection procedure. From a total of 508 service records

screened in January 1959 by Stanley C. White, Robert B. Voas, and William S.
Augerson at the military personnel bureaus in Washington, 110 men were found to
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meet the minimum standards specified earlier. This list of names included five

Marines, 47 Navy men, and 58 Air Force pilots. Several Army pilots' records had

been screened earlier, but none was a graduate of a test pilot school. The selec-

tion process began while the possibility of manned Redstone flights late in 1959 still

existed on papery

The evaluation committee at Headquarters, headed by the Assistant Director

of STG, Charles J. Donlan, decided to divide the list of 110 arbitrarily into three

groups and to issue invitations for the first group of 35 to come to Washington at

the beginning of February for briefings and interviews. Donlan was pleased to

learn from his staff, White, Voas, and Augerson, that 24 of the first group inter-

viewed were happy with the prospects of participating in the Mercury program.

Every one of the first 10 men interrogated on February 2 agreed to continue

through the elimination process. The next week another group of possible pilot-

candidates arrived in Washington. The high rate of volunteering made it

unnecessary to extend the invitations to the third group. Justifying this action,

George Low reported:

During the briefings and interviews it became apparent that the final number
of pilots should be smaller than the twelve originally planned for. The high
rate of interest in the project indicates that few, if any, of the men will drop
out during the training program. It would, therefore, not be fair to the men
to carry along some who would not be able to participate in the flight program.
Consequently. a recommendation has been made to name only six finalists. TM

Sixty-nine men had reported to Washington in two groups by the middle of

February. Of these, six were found to have grown too tall. Fifty-six test pilots

took the initial battery of written tests, technical interviews, psychiatric interviews,

and medical history reviews. Those who declined or were eliminated reduced

the total at the beginning of March to 36 men, They were invited to undergo the
extraordinary physical examinations planned for them at the Lovelace Clinic in

Albuquerque. Thirty-two accepted and became candidates, knowing also that

they were scheduled to pass through extreme mental and physical environmental

tests at the Wright Air Development Center, in Dayton, Ohio, after being certified

as physically qualified by the Lovelace Clinic. The 32 candidates were assured

that the data derived from these special examinations in New Mexico and Ohio

would not jeopardize their military careers, since none of the findings was to go into
their service records.

Although the psychophysiological criteria for the selection of the best possible

pilots for manned space flight had been under discussion for several years, the

actual arrangement of the selection procedures for Mercur T was directed by a

NASA selection committee consisting of a senior management engineer, Donlan;

a test pilot engineer, North; two flight surgeons, White and Augerson; two psy-

chologists, Allen O. Gamble and Voas; and two psychiatrists, George E. Ruff and

Edwin Z. Levy. These seven men had done the screening of records and the

interviews and testing in Wa._hington, constituting phases one and two of the
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selection program, before remanding their pool of 32 candidates to the medical
examiners at the Lovelace Foundation. r_

individually each candidate arrived at Albuquerque to undergo approximately
a week of medical evaluations under each of five different schedules. In this

third phase of the program, over 30 different laboratory tests collected chemi-
cal, encephalographic, and cardiographic data. X-ray examinations thoroughly

mapped each man's body. The ophthalmology section and the otolaryngology
sections likewise learned almost everything about each candidate's eyes, and his
ears, nose, and throat. Special physiological examinations included bicycle er-
gometer tests, a totai-body radiation count, total-body water determination, and
the specific gravity of the whole body. Heart specialists made complete cardio-
logical examinations, and other clinicians worked out more complete medical
histories on these men than probably had ever before been attempted on human
beings. Nevertheless the selectees were so healthy that only one of the 32 was
found to have a medical problem potentially serious enough to eliminate him
from the subsequent tests at the Wright Aeromedical Laboratory. 76

Phase four of the selection program was an amazingly elaborate set of environ-

mental studies, physical endurance tests, anthropometric measurements, and psy-
chiatric studies conducted at the Aeromedical Laboratory of the Wright Air
Development Center. During March each of the 31 subjects spent another
week experiencing a wide range of stressful conditions. Voas explained phases
three and four: "While the purpose of the medical examinations at Lovelace

Clinic had been to determine the general health status of the candidates, the
purpose of the testing program at Wright Field was to determine the physical
and psychological capability of the individual to respond effectively and appro-
priately to the various types of stresses associated with space missions." T7 In addi-
tion to pressure suit tests, acceleration tests, vibration tests, heat tests, and loud noise
tests, each candidate had to prove his physical endurance on treadmills, tilt tables,

with his feet in ice water, and by blowing up balloons until exhausted. Continuous
psychiatric interviews, the necessity of living with two psychologists throughout
the week, an extensive self-examination through a battery, of 13 psychological tests
for personality and motivation, and another dozen different tests on intellectual

functions and special aptltudes--these were all part of the week of truth at
Dayton? s

Two of the more interesting personality and motivation studies seemed like
parlor games at first, until it became evident how profound an exercise in Socratic
introspection was implied by conscientious answers to the test questions "Who am
I?" and "Whom would you assign to the mission if you could not go yourself?"

In the first case, by requiring the subject to write down 20 definitional identifica-
tions of himself, ranked in order of significance, and interpreted projectively, the
psychologists elicited information on identity and perception of social roles. In
the peer ratings, each candidate was asked which of the other members of the
group of five accompanying him through this phase of the program he liked best,
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which one he would like to accompany him on a two-man mission, and whom he

would substitute for himself. Candidates who had proceeded this far in the selec-

tion process all agreed with one who complained, "Nothing is sacred any more." T9

Back at STG headquarters at Langley, late in March 1959, phase five began.

The final evaluation of data was made by correlating clinical and statistical infor-

mation from New Mexico and Ohio. Eighteen of the 31 candidates came recom-
mended without medical reservations for final consideration by Donlan and North.

According to Donlan, although the physicians, psychiatrists, psychologists, and

physiologists had done their best to establish gradations, the attrition rate was
too low. So the final criteria for selecting the candidates reverted to the technical

qualifications of the men and the technical requirements of the program, as judged

by Donlan, North, White, and finally Gilruth. "We looked for real men and

valuable experience," said Donlan. The selection tests, as it turned out, were

largely tests of tests, "conducted as much for the research value in trying to formu-

late the characteristics of astronauts as for determining any deficiencies of the

group being examined." The verbal responses at the interviews, before and

after the psychophysiological testing, therefore, seem to have been as important
final determinants as the candidates' test scores. 8°

Sitting in judgment over 18 finalists, Donlan, White, and North pared down

the final pool of selectees, choosing each to complement the rest of the group.

The going was so difficult that they could not reach the magic number six,

so Gilruth decided to recommend seven. Donlan then telephoned each of the

seven individually to ask whether he was still willing to accept a position as a

Mercury astronaut. Each one gladly volunteered again. The 24 who were

passed over were notified and asked to reapply for reconsideration in some future

program. Gilruth's endorsement of the final list was passed upward to Silver-

stein and Glennan for final review, and by mid-April the faces of America's

original seven spacemen were shown to the world.
As the astronauts lost their private lives, Project Mercury found its first great

public notice. An eighth military officer and pilot came aboard STG about the

same time to manage the public information and press relations that were already

threatening to intrude on the time and talent of STG. The eighth personality

was an experienced Air Force pilot who had flown extensively in World War

II, on the Berlin Airlift, and in Korea, and who also had proven himself a.s a

public information officer after 1954, when he was charged with ameliorating

public fears and complaints over jet noises, sonic booms, and the ballistic missile

programs, sl Lieutenant Colonel John A. Powers, USAF, came on board the STG

staff in early April 1959. Thereafter the mellifluous voice and impish grin of

"Shorty" Powers made his reputation as the primary buffer for STG in its rela-

tions with the press and the public. Throughout the Mercu_" program, he stood
before the news media and the people of the world as the one living symbol of all

the anonymous human effort behind the astronaut of the moment.

Powers propagated some oversimplified images in many instances, as it was
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his job to do, but no one man then or now could completely understand or

communicate the complexity of the myriad research, development, and operations

activities that lay behind a launch. Then, too, the caliber of the questions deter-

mined the quality of his answers, and all too often the questions asked were

simple. What was an astronaut really like? What did he eat for breakfast?

Which ones had been Boy Scouts? How did their wives take their commitment?

Such questions provoked many to abandon asking how these seven came to be

chosen and for what purpose they were entering training.

From the United States Marine Corps, Lieutenant Colonel John Herschel

Glenn, Jr., received orders to report to the Space Task Group at Langley Field,

on the first of May. He then found himself the senior astropilot in age and date of

rank. From the Navy, Walter Marty Schirra, Jr., and Alan Bartlett Shepard,

Jr., both lieutenant commanders, and Lieutenant Malcolm Scott Carpenter

reported aboard STG. And the Air Force assigned three captains, Donald Kent

Slayton, Leroy Gordon Cooper, Jr., and Virgil I. Grissom, to duty with NASA

as test pilots, alias Mercury astronauts.

On May 28, 1959, the astronauts were brought before the House Com-

mittee on Science and Astronautics in executive session. They were asked to

reassure the Congressmen that they were content with the orderliness, safety,

and seriousness of Project Mercury. This they did vigorously, together and

separately, before Schirra mentioned the "seven-sided coin" of competition over

which one should get the first flight, s°-

The first seven American astronauts were an admirable group of individuals

chosen to sit at the apex of a pyramid of human effort. In training to transcend

Project _Iercury astronauts pose for an in[ormal group portrait: From le[t to right,

John H. Glenn, Jr.; Donald K. SIayton; M. Scott Carpenter, Jr.; Virgil I. Grissom;

Walter M. Schirra, Jr.; Alan B. Shepard, Jr.; and L. Gordon Cooper, Jr.
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gravity they became a team of personalities as well as a crew of pilots. They were
lionized by laymen and adored by youth as heroes before their courage was truly

tested. In volunteering to entrust their lives to Mercury's spirit and Atlas' strength
to blaze a trail for man into the empyrean, they chose to lead by following the
opportunity that chance, circumstance, technology, and history had prepared for
them. Influential 20th-century philosophers as diverse as Bertrand Russell, Tell-
hard de Chardin, and Walter Kaufmann tell us that man's profoundest aspiration
is to know himseIf and his universe and that life's deepest passion is a desire to
become godlike. All men must balance their hubris with their humility, but, as
one of those aspiring astronauts said, "How could anyone turn down a chance to

be a part of something like this?" 8a
Shortly after the astronauts were introduced to the public, a literate layman

asked directions of Mercury for mankind in general:
Which way will heaven be then?
Up?
Down?
Across?
Or far within? 8_
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Man-Rating the Machines

(JULY--DECEMBER 1 9 5 9)

ADDLING ballistic missiles for manned space flight was in some respects like
trying to ride Sinbad s roc: the bird was not built for a topside burden, and

man was not meant for that sort of punishment. Once accepted in theory that

this fabulous bird could be domesticated and that some men could tolerate, even

enjoy, the strains and stresses of such a ride, practical questions of marrying the

separate abilities of man and machine demanded immediate answers. Engi-

neers in the Space Task Group and other NASA researchers at Langley, Lewis,

and Ames were providing some of these answers; engineers and technicians in

industry and in quasi-military organizations contributed equally important

answers. The primary task of the Task Group managing Mercury was to ask

the right questions and to insist on better answers from the industrial producers

of the parts and from the academic, industrial, and military suppliers of services.

In the latter half of 1959, as STG monitored the gathering momentum of the

various manufacturers, the urgent search for ways to reduce the ultimate risk

of sending a man for a ride in an artificial moon lifted by a missile gradually

became more systematic and better organized. The theme of this chapter is

the quest for reliability in the automatic machinery developed for the Mercury

mission. Making these devices safe enough for man took longer and exposed

more doubts than STG had expected originally. During the curiously quiet

first half of 1960, the flexibility of the Mercury astronaut complemented and

speeded the symbiosis of man and missile, of astronaut and capsule. Technology,

or hardware, and techniques, or procedures--sometimes called "software" by

hardware engineers--both had to be developed. But because they were equally

novel, reliability had to be built into the new tools before dexterity could be

acquired in their use?

At the beginning of 1959 NASA Headquarters had worried about three

scientific unknowns needing resolution before actual attempts to conduct manned
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orbital flights. In their contribution to a House Committee Staff Report prog-

nosticating for Congress on The Next Ten Years in Space, 1959-1969, Admin-
istrator T. Keith Glennan and the chief scientists at the helm of NASA in Wash-

ington listed these imperatives that must be investigated before man could go into

space:

The problems known to exist include (1) high-energy radiation, both pri-
mary and cosmic ray and the newer plasma type discovered in the IGY satellite
series; (2) man's ability to withstand long periods of loneliness and strain
while subjected to the strange environment of which weightlessness is the factor
least evaluated; and (3) reentry into the atmosphere and safe landing. The
reliability of the launching rocket must be increased before a manned capsule
is used as a payload. Once these basic questions have been answered, then we
can place a manned vehicle in orbit about the earth3

By July 1959 the engineers in the Space Task Group were no longer concerned

by the unknowns in each of these problematic areas. They had obviated the

need for high-energy radiation shielding by selecting a circular orbit around the

equatorial zone at an altitude between 80 and 120 miles, well above the strato-

sphere and well below the Van Allen belts. Loneliness would be no problem be-

cause the communications network would keep the astronaut in almost constant

voice contact with ground crews. Weightlessness, to be sure, was the factor least

evaluated, but by now this was the prime scientific variable that Project Mercury

was designed to answer. The psychological outlook was good anyway, argued

STG rhetorically, for does not everyone who has learned to swim enjoy the free-

dom and relatively "weightIess" state when immersed in water? As to reentry,

the strain of positive and negative acceleration forces had almost certainly been

conquered; only a few questions remained unanswered about actual reentry and

recovery stresses. Indeed, what Headquarters had left unnumbered in its pres-

entation and therefore seemed to have regarded almost as an afterthought, the

Task Group considered the paramount problem: the reliability of the rocket

boosters must be increased before manned capsules could be attached tothem.

The first major proof test of a critical part of the Mercury spacecraft design

occurred on April 12, 1959. After a dismal failure a month before, the escape-

tower rocket attached to a full-scale boilerplate model demonstrated its ability

to lift both man and capsule away from a dangerous booster still on the ground.

Giving first priority to providing an escape system in case of failure at launch was

evidence of a pervading lack of confidence in the reliability of the big rockets.

The men of the Space Task Group were not liquid-fuel propulsion experts; they

had to rely on missile technicians and managers to convert weapon systems into

launch vehicles for spacecraft. Since no one was expert in spacecraft engineering,

STG had to rely on itself and on McDonnell Aircraft Corporation to gain as

much experience as rapidly as possible with the capsule and its systems. This

high adventure of learning how, specifically, to orbit a man safely was shared

by a growing number of people supporting Project Mercury.
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MERCURY TEAM TAKES SHAPE

Although Robert R. Gilruth's Space Task Group was growing rapidly, it re-

mained small enough and intimate enough throughout 1959 to make everyone

feel his worth. The creative engineering challenge of the project inspired an

esprit that could be measured by the amount of voluntary overtime and vacation

time relinquished by the members of STG. Gilruth's administrative assistant for

staff sen'ices, 46-year-old Paul D. Taylor, died of a heart attack in May and was

mourned by his colleagues as a martyr who overworked himself in the cause?

According to its own estimates of present and future manpower requirements,

the Task Group was hard pressed to meet all its commitments in mid-1959. At

the beginning of the new fiscal ),ear on July 1, NASA authorized the Task Group to

hire another 100 persons, mostly recent college graduates. A total of 488

authorized positions was to be filled by the end of the calendar year. But STG

argued that only one of its three major divisions at work on Mercury--Operations,

under Charles W. Mathews--was fairly equal in numbers to the tasks at hand

so far. The Flight Systems Division, under Maxime A. Faget, was called "greatly

understaffed," and the Engineering and Contract Administration Division, now

under the acting leadership of the Canadian James A. Chamberlin, was in "such

urgent need" of more technical and administrative help that the Space Task

Group requested 200 additional positions, to be filled within the next three

months. Estimates of increased Langley and Lewis support activities for Project

Mercury almost doubled this personnel request. The sheer size and immense
scope of industrial and military personnel required to support Mercury stirred

STG to a premonition of precarious control:

In summary, a detailed study of staffing requirements for Project Mercury
shows that the presently authorized complement of 388 should be increased
by 330 positions during fiscal year i960 in order to maintain the project sched-
ules. Thi,; staff of 718 should be available by September of 1959, but orderly
recruitment and integration of the additional staff would defer the filling of the
complement until April of 1960. It is believed that everything practicable in
the line of contracting on Project Mercury has been done without going to the
extreme of effectively relinquishing control of the project. Failure to obtain
the additional personnel shown must result in either major slippage of the
schedule or in NASA effectively losing control of the project to the military
or to industry?

Because there was still no official commitment to manned space flight pro-

grams beyond Mercury and because hope was still high that manned orbital flight

could be accomplished by the end of 1960, the Task Group accepted its tem-

porary status and planned to phase out the people working on Project Mercury

beginning in June 1961. Such plans were tentative, of course, and did not reckon

with the technical and organizational problems that were to stretch out the pro-

gram, nor with the _ustronautical and political events that were to change the

course and expand the role of NASA's manned space flight efforts in 1961.
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Nevertheless, by early August 1959, Gilruth was able to put his own field

element of the Goddard Space Flight Center in much better order through a

major reorganization. 5 His new title, Director of Project Mercury, was indica-

tive of the expanded size and activity of the Task Group. The functions of

"project manager" for engineering administration devolved upon Chamberlin,

who also headed the new Capsule Coordination Committee. Addition of staff

services and elaboration of branch and section working group leaders after

August 3 made STG's organization charts much more detailed. But the block

diagrams, while helpful to new recruits and to industrial visitors at the crowded

old brick administration building at the eastern entrance to Langley Field, showed

rather artificial separations of activity and authority within STG. The intimacy

of the original group had suffered inevitable attrition as the result of an eightfold

increase in size in less than a year, but the "inner circle" still operated personally

rather than formally. Outside relationships, even those with Langley Research

Center, on the other side of the airbase, were rapidly demanding more formality.

A partial solution to these problems, which in time grew to be one of the

most important organizational decisions ever made for Project Mercury, was the

informal agreement made in August 1959 between the Defense Department and

NASA to select two men to act as "single points-of-contact." DOD appointed

Major General Donald N. Yates, Commander of the Air Force Missile Test

Center, to become in October its representative for military support activities

for Project Mercury. The job of mobilizing and coordinating such diverse activi-

ties as Air Force prelaunch and launch support, Navy search and recovery

operations, Army tracking and communications facilities, and joint service and

bioastronautics resources demanded systematic, formal organization. 6 In turn,

Hugh L. Dryden for NASA asked the chief of the High Speed Flight Station,

Walter C. Williams, to join Gilruth to act as the contact point with Yates. Ef-

fective September 1, 1959, Williams and his colleagues Kenneth S. Kleinknecht

and Martin A. Byrnes accepted transfers from NASA's High Speed Flight Sta-

tion-shortly to be renamed the NASA Flight Research Center--to the Space

Task Group. Having pioneered since 1945 in airborne launches of rocket re-

search aircraft, Williams was a _enior convert to the vertical ground launch cause

of Mercury. Faget especially welcomed him. A personable and forceful leader,

Williams took a position on a level with Charles J. Donlan. Each was an asso-

ciate director for Project Mercury, Williams specializing in operations and Donlan

in development. Williams had guided the NACA-NASA role in the flight opera-

tions of the X-15 rocket plane to a point just two days short of its first powered

flight, on September 17, with North American Aviation's test pilot A. Scott Cross-

field at the controls. When Williams, Kleinknecht, and Byrnes took up the

higher national priority and professional challenge of working with spacecraft

rather than aircraft, they brought to STG valuable operational and development

experience with the highest-performance manned flight vehicles then in existence. 7
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Although there was pressure to get on with operations planning, engineering

the Mercury capsule was still the primary task during these days. McDonnell

and STG had swapped permanent field representatives during the spring in the

persons of Frank G. Morgan and Wilbur H. Gray. Morgan came to live in a

motel at Langley. Gray found a residence in St. Louis near the north side of
Lambert Field, where the McDonnell plant was spread around the perimeter

of the municipal airport. Though their technical liaison work was heavy, Morgan

and Gray acted as hosts and guides as much as consultants, because visits by

exchange delegations of engineers were so frequent. Just as the coordination of

these meetings and trips for the development of the capsule became imperative

among the aircraft and spacecraft designers and developers, so were closer, more

orderly relations required with the developers of the ballistic missile boosters.

Aerospace engineers often used one word to express the adaptation of systems,

modules, organizations, and even technologies to one another: that word was

"interface"; it connoted problems of integration, convergence, and synthesis of

indeterminate magnitude.

CONVERGING TECHNOLOGIES

The problem of man-rating the Redstone rocket was tackled with character-

istic gusto by Joachim P. Kuettner, the man Wernher von Braun had called

in 1958 to lead the Army's effort if Project Adam had been authorized. Kuettner

had earned doctorates in law, physics, and meteorology before he became a flight

engineer and test pilot for Messerschmitt during the Third Reich. Having been
one of the first to test a manned version of the V-1 in 1944, Kuettner had made

further use of his avocation as a jet aircraft and sailplane pilot for the U.S. Air

Force Cambridge Research Center before joining the Army Ballistic Missile

Agency (ABMA) at Huntsville.

In retrospect Kuettner has generalized about the problem of "Man-Rating

Space Carrier Vehicles" in terms relating his experience with both aviation and

missile technologies:

While it is admittedly an oversimplification, the difference between the two
technologies may be stated in the following general terms. From an aviation
standpoint, man is not only the subject of transportation, and as such in need
of protection as a passenger; but he is also a most important integral part of
the machine over which he truly has control. His decisions in expected and
unexpected situations are probably the greatest contributions to his own safety.
Aviation, to the best of our knowledge, has never seen the necessity for a fully
automatic initiation of emergency escape.

In contrast, rocket technology has been for 20 years a missile technology gov-
erned by the requirements of target accuracy and maximum range. As such,
it had to develop automatic controls. Unlike a human payload, a warhead
has no use except on the target. Once the missile fails, it may as well destroy
itself during flight. (For this reason, missilery has accepted aerodynamically
unstable vehicles which, in case of loss of thrust, flip over and break apart,
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destroying themselves in the air.) There has been no need to save the pay-
load after a successful flight or in case of a catastrophe.

The development of manned space flight is not just a matter of replacing a
warhead by a manned cabin. Suddenly, a switch is thrown between two
parallel tracks, those of missile technology and those of aviation technology,
and an attempt is made to move the precious human payload from one track
to the other. As in all last-minute switchings, one has to be careful to assure
that no derailment takes place, s

In the spring of 1959, while Kuettner was still signing himself the "Adam-

NASA Project Engineer," he and his deputy, Earl M. Butler, began a series of

triangular conferences, with Kurt H. Debus and Emil P. Bertram of ABMA's

Missile Firing Laboratory" at the Cape, in one corner, and Charles Mathews and

Jerome B. Hammack, the Mercury-Redstone project engineer for STG, in the

Langley corner. Between these informal discussions and six formal study panels

inaugurated by von Braun, a consensus was supposed to arise on, among other

things, the sort of emergency detection system necessary- to warn of impending

cataclysms in the booster and to trigger some sort of automatic ejection. Pre-

liminary_ agreements on a design for an abort or safety system began early in good

accord. But the uncertain reliability program, booster recovery proposal, capsule

design changes, and electrical interface problems fouled the subsequent develop-

ment of the Redstone abort-sensing system. "_ In this respect the Atlas was more

nearly ready than the Redstone by the end of the year.

Many factors contributed to the slippage in the Mercury-Redstone schedule,

but one significant cause for delay grew out of a subtle difference between ABMA

and STG in their approach to pilot safety and reliability. The role of the astro-

naut was clearly at issue here longer than anywhere else. Conditioned by their

designs for Project Adam, the Huntsville rocketmen thought of the astronaut

throughout 1959 as merely an "occupant" or "passenger." The Adam proposal

for an escape system during off-the-pad aborts would have ejected a biopack

capsule laterally into a tank of water alongside the launch pad. Having less trust

than STG in the reliability of "Old Reliable," the Re&tone engineers insisted on

putting safety first and making it fully automatic wherever possible. Reliability,

they insisted, is only a concept and should be secondary to safety. This attitude

was illustrated in the introductory" paragraphs of the ABMA proposal for the

Redstone emergency detection system. The author, Fred W. Brandner, began

by saying that the use of missiles for transporting man would demand an automatic

escape system to assure pilot safety:

This system has to rely on emergency sensors. There are an enormous number
of missile components which may conceivably fail. Obviously, it would be
impractical and actually unsafe to clutter up the missile with emergency
sensors. However, many malfunctions will lead to identical results, and, in
sensing these results and selecting the proper quantities, one can reduce the
number of sensors to a few basic types. 1°

172

i i'J
ii

J_



The Mercury astronauts received their first detailed briefing on the Redstone booster

at the Army Ballistic Missile Agency, Huntsville, Ala., in ]une 1959. Facing the

brie[er, ]oachim P. Kuettner, the Mercury-Redstone project engineer under yon

Braun, are: le# to right, Glenn, Shepard, Schirra, Carpenter, SIayton, Grissorn, and

Cooper. Kuettner touches the fin-stabilized Redstone model, explaining the purpose

and construction of the carbon jet vanes barely visible below the single engine nozzle.

Brandner proposed to measure only three basic quantities: the control system

attitude and angular velocity, the 60-volt control and 28-voh general electrical

power supplies, and the chamber pressure of the propulsion system. To ensure

"a high degree of passenger (pilot) safety" on the Mercury-Redstone rocket, if

operational limits set on these sensors should ever be exceeded the capsule would

eject from the booster and be lowered by parachute.

Brandner's modest proposal stated the issue but not the solution to the general

question of man-machine relationships in Project Mercury. In 1959 the technical

debate was still inextricably mixed up with previous attitudes toward the precise

role of man in a manned satellite. Could the pilot test the vehicle or should the

vehicle test the pilot? Mercury was NASA's program and STG's responsibility,

but at this stage of development the military establishment and missile industries

still knew, or thought they knew, more about the technological path for man's

first climb into space than NASA-STG did. 1i
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From the Pentagon, for example, Brigadier General Homer A. Boushey,

Director of Advanced Technology for the Air Force, had predicted in January

that the most important key to space flight in the next decade would be not simply

manned but rather piloted spacecraft:

By piloted spacecraft, I refer to a vehicle wherein the pilot operates controls
and directs the vehicle. This is quite a different concept from the so-called
man-in-space proposal which merely takes a human "along for the ride" to
permit observation of his reactions and assess his capabilities. The high-speed
flight experience of the NACA and the Air Force has shown that piloted craft
return research data more effectively and more economically than do unmanned
vehicles. While there is a place, certainly, for automatic, instrumented
vehicles, I believe man himself will prove "the essential payload" to the full
utilization of space. Orbital rendezvous, controlled landing after reentry,
and space missions other than the simplest sensing and reporting type, will
require man. If for no other reason than that of reliability, man will more
than pay his way. 1:

Boushey's percipient remarks illustrated the persistent residue of misunder-

standing remaining from interagency competition for the manned satellite project

in the pre-NASA, pre-Mercury period. Task Group officials felt compelled to

defend the distinctive nature of Mercury and to emphasize that NASA astronauts

were never intended to be passive passengers. Rather, they were to prove their

full potential as pilots, within limits prescribed by the mission requirements

programmed into the automatic systems. Although there were long and hard

arguments within STG as to whether man should be considered "in the loop" or

"out of the loop" in performing various tasks, the preponderance of NAgA-bred

aeronautical engineers in STG usually voted for as active an astronaut as possible.

Outside pressures from scientists and missile engineers also helped unify and

consolidate opinion within STG. The distinguished research chief of Bell Tele-

phone Laboratories and one of the fathers of communication satellites, John R.

Pierce, summed up the argument for automation: "All we need to louse things

up completely is a skilled space pilot with his hands itching for the controls." ,a

The problem of man-rating the Atlas was preoccupying another task force of

still larger proportions than the one concerned with the Redstone. The industrial

and military' engineers in southern California and at the Cape who were trying

to make the Atlas meet its design specifications could and did mobilize more
resources than either STG or ABMA could command. A few indMduals stood

out as leaders in the vast effort. Kuettner's counterpart for the Air Force was

Bernhard A. Hohmann, another former test pilot at Peenemuende ]_rest, who had

been project engineer on the first two models of the Messerschmitt-163, one of
the first rocket-powered aircraft, in August 1959, Major General Osmond J.

Ritland of the Air Force Ballistic Missile Division (BMD) assigned him the job

of supervising the systems engineering at Space Technology Laboratories (STL)

for a pilot safety and reiiabilit T program on the Mercury-Atlas series. As

Brandner did for the Redstone, D. Richard White, an STL electronics engineer,
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made the preliminary designs for the Atlas emergency detection system. White

was inspired, he said, "one Sunday in May when I imagined myself sitting atop
that bird." Edward B. Doll, STL's Atlas project manager, could never imagine

anyone foolish enough to sit on an Atlas, but he allowed Hohmann and White
to proceed with their commitments?" STL performed an overall technical di-
rection over the associate contractors for the Atlas similar to that performed by

STG for NASA, but with significant differences. STL had not been involved in
the original MX-774 design behind the Atlas, and although it became closely
associated with conceptual development of Atlas as a weapon, ultimate responsi-
bility remained with the Air Force Ballistic Missile Division. Both STL and STG
were systems engineering organizations, but STG had a deeper background in
research and was directly responsible for the development of the project it

managed; STL had broader experience in systems engineering, missile develop-
ment, and business management.

Hohmann and his assistant, Ernst R. Letsch, huddled closely with the reliability
statisticians at STL, led by Harry R. Powell, and with BMD's Mercury project
liaison officer, Lieutenant Colonel Robert H. Brundin, also appointed by Ritland

in August 1959. But the main responsibility for detail design, development, and
production work fell on the shoulders of the manufacturers, General Dynamics
(formerly Convair)/Astronautics (GD/A or CV/A) of San Diego. The details,
tooling, and implementation of the emergency detection or abort sensing system
for the Atlas were guided by Charles E. Wilson, Tom E. Heinsheimer, and Frank
Wendzel. Their boss, Philip E. Culbertson, the Mercury project manager for
General Dynamics/Astronautics, conferred repeatedly and sometimes heatedly
with Hohmann, Brundin, Doll, and his own factory production engineers, Johr

Hopman, Gus Grossaint, Frank B. Kemper, and R. W. Keehn. 15
Here, too, a triangular dialogue was going on during initial considerations for

man-rating the Atlas. But STG engineers were far away, busy with other matters:,
and knew well how little they knew about the Atlas. NASA and the Air Force,
like STG and the Army, informally had agreed to divide developmental re-
sponsibility and labor at the capsule-separation point in the trajectory. So STG
was not directly involved in the tripartite workings of the so-called "BMD-STL-
GD/A complex" in southern California.

Looking at Project Mercury from the West Coast in 1959 gave a set of very
different perspectives on the prospects for accomplishing the program on time and
in style. South of Los AngeIes International Airport there was no consensus and
precious little communication of the confidence felt across the continent on the
coast of Virginia. But STL, Convair, and Air Force representatives at the Cape
gradually diffused some of the contagious enthusiasm of STG while commuting
between home and field operations. More important still, the sense of desperate
military urgency to develop an operational ICBM still pervaded the factories
and offices devoted to the Atlas in southern California. Motivation already mo-

bilized might easily be transferred if only the Atlas could be proved by the end
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of the year. STG was more sanguine about this forthcoming proof than the

Atlas people, and NASA Headquarters seemed even more optimistic.

Perhaps symbolic of the profound Air Force distrust of the "bare Atlas" ap-

proach and indicative of lingering doubts about the competence of the STG

neophytes who had stolen the march on man in space was the acronymic name

imposed by Air Force officers on the abort sensing system. White and Wilson

wanted to call it simply the Atlas "abort sensing system." No, someone in authority

insisted, let's make the name more appropriate to STG's plans to use the Atlas

"as is." _6 So this play on words, "Abort Sensing and Implementation System,"

became the designator for the ordy part of the Atlas created solely for the purpose

of man-rating that missile. Reliability was truly designed into the "ASIS"; once

this component was proven and installed, the Atlas ICBM should, it was hoped, be

electromechanically transformed into the Mercury-Atlas launch vehicle.

H. ]uIian Allen, Ames Research Center aerodynamicist who pioneered in hypersonic

wind tunnel development and provided the concept o[ blunt reentry bodies, which

was a major contribution to ballistic missile nose-cone technology and to the Mercury

capsule, brie[s a delegation [rom the National Aeronautics and Space Council visiting

Ames on August 3, 1959. Visitors are, le[t to right, ]ohn T. RettaIiata, Alan T.

Waterman, Executive Secretary FrankIyn W. Phillips, William A. M. Burden,
NASA Administrator T. Keith Glennan, and Center Director Smith DeFrance.
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Astronaut Donald K. Slayton defended his prospective role and STG's stance
on the issue of automation when he addressed his brethren in the Society of Ex-

perimental Test Pilots on October 9. By his own admission, these were some
"stubborn, frank" words:

First, I would like to establish the requirement for the pilot .... Objections
to the pilot range from the engineer, who semi-seriously notes that all prob-
lems of Mercury would be tremendously simplified if we didn't have to worry
about the bloody astronaut, to the military man who wonders whether a col-
lege-trained chimpanzee or the village idiot might not do as well in space as
an experienced test pilot. The latter is associating Mercury with the Air Force
MISS or Army Adam programs which were essentially man in a barrel ap-
proaches. The answer to the engineer is obvious and simple. If you elimi-
nate the astronaut, you can see man has no place in space. This answer doesn't
satisfy the military skeptic, however, since he is not questioning the concept
of a man in space but rather what type man. I hate to hear anyone contend
that present day pilots have no place in the space age and that non-pilots
can perform the space mission effectively. If this were true, the aircraft driver
could count himself among the dinosaurs not too many years hence.

ak -1_ ak

Not only a pilot, but a highly trained experimental test pilot is desirable . . .
as in any scientific endeavor the individual who can collect maximum valid
data in minimum time under adverse circumstances is highly desirable. The
one group of men highly trained and experienced in operating, observing, and
analyzing airborne vehicles is the body of experimental test pilots represented
here today. Selection of any one for initial space flights who is not qualified
to be a member of this organization would be equivalent to selecting a new
flying school graduate for the first flight on the B-70, as an example. Too
much is involved and the expense is too great27

Slayton's defense of Mercury before his professional colleagues outside NASA
was echoed time and again in the next two years by NASA spokesmen. But

many critics remained skeptical because it was obvious that Mercury was being

designed to fly first without man. Flight controllers and electronics engineers

who had specialized in ground control of supersonic interceptors and who had

confidence in the reliability of remote control of automatic weapon systems were

the least enthusiastic about allowing the pilots to have manual overrides. Chris-

topher C. Kraft, Jr., the chief fight director for STG, preceded Slayton on the

same program at the meeting of the experimental test pilots. He reviewed the

range network to be provided and the operational plan to be used for the Mercury
orbital mission. At that time, Kraft circumspectly avoided any public indication

of his personal views on the role the astronaut would play, but years later he
confessed his bias:

The real knowledge of Mercury lies in the change of the basic philosophy of
the program. At the beginning, the capabilities of Man were not known, so
the systems had to be designed to function automatically. But with the addi-
tion of Man to the loop, this philosophy changed I80 degrees since primary
success of the mission depended on man backing up automatic equipment that
could fail. 's
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In public, the managers of NASA and of Mercury, who had to request funds

and justify their actions before Congress and the people, appeared as optimistic

as possible and pointed out what could be achieved with successful missions. Pri-

vately, they not only had doubts, they cultivated a group of professional pessimists

whose job it was to consider every conceivable malevolent contingency. John P.

Mayer, Carl R. Huss, and Howard W. Tindall, Jr., first led STG's Mission Analysis

Branch and set a precedent for spending ten times as much effort on planning for
abnormal missions as for normal ones. 1_

Although not always obvious to STG, there also were differences in attitudes

within the space medicine fraternity. Since mid-1958, men like Siegfried J.

Gerathewohl and George R. Steinkamp had led the school of thought that be-
lieved that man was more nearly machine-rated than machines were man-rated.

Conversely, the chief of the space medicine division of the Air Force's School of

Aviation Medicine, Colonel Paul A. Campbell, influentially asserted his belief

that "in these past two or three years the situation has suddenly changed, and the

machine capability has advanced far beyond man's capability." 2o Other biol-

ogists and medical college specialists also had doubts about the peculiar combina-

tion of stresses--from high to zero to high g loads that the man in Mercury must

endure. Whatever the majority medical opinion might have been, the Task

Group felt itself beleaguered by bioastronautical specialists who wanted to "animal-

rate" the space flight machines all the way from amoebas through primates before

risking a man's life in orbit.

APPROACHES TO RELIABILITY

"Reliability" was a slippery word, connoting more than it denoted. Yet

as an engineering concept it had basic utility and a recognized place in both avia-

tion and missile technology. The quest for some means of predicting failures

and thereby raising the odds toward success began modestly as a conscious effort

among STG and McDonnell engineers only in mid-1959, after design and develop-

ment work on major systems was well under way. Other engineering groups

working in support of Project Mercury also began rather late to take special care

to stimulate quality control and formal reliability programs for booster and capsule

systems. Mercury would never have been undertaken in the first place if the
general "state-of-the-art" had not been considered ready, but mathematical anal-

yses of the word "reliability" both clarified its operational meaning and stirred

resistance to the statistical approach to quality control.

The fifties had witnessed a remarkable growth in the application of statistical
quality control to ensure the reliability of weapon systems and automatic ma-

chinery. The science of operations analysis and the art of quality management

had emerged by the end of the decade as special vocations. Administrator Glen-

nan himself, as president of Case Institute of Technology, had encouraged the

development over the decade of one of the nation's foremost centers for operations
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research at Case. -"1 STG executive engineers studied an almost pedestrian ex-

ample of these new methods for more scientific management of efficiency; it was

one given by an automobile executive who compared the reliability of his corpora-

tion's product over 32 years before 1959 :

If the parts going into the 1959 car were of the same quality level as those
that went into the 1927 car, chances would be even that the current model
would not run.

This does not mean that the 1927 car was no good. On the contrary, its
quality was excellent for that time. But it was a relatively simpIe product,
containing only 232 critical parts. The 1959 car has 688 such parts. The
more the critical parts, the higher the quality level of each individual part must
be if the end product is to be reliable. 2-_

In view of the fact that estimates showed over 40,000 critical parts in the

Atlas and 40,000 more in the capsule, the awesome scale and scope of a relia-

bility program for Mercury made it difficult to decide where to begin.

To organize engineering design information and data on component per-

formance, someone had first to classify, name, or define the "critical parts." To

create interrelated systems and to analyze them as separate entities at the same

time was difficult. The Space Task Group and McDonnell worked on creation

at the expense of analysis through 1959. Gradually NASA Headquarters and

Air Force systems engineers steered attention to certain "semantic" problems in

the primitive concepts being used for reliability analyses. For instance, what

constitutes a "system"? How should one define "failure"? What indices or co-

efficients best "measure" overall system performance from subsystem data? _a

These and other features of reliability prediction were so distasteful to creative

engineers that many seriously questioned the validity and even the reliability of

reliability predictions. "Reliability engineering," admitted one apologist in this

field, "may seem to be more mysticism and black art than it is down-to-earth

engineering. In particular, many engineers look on reliability prediction as a

kind of space-age astrology in which failure rate tables have been substituted for

the zodiac." -_ Around STG this skeptical attitude was fairly representative.

But at NASA Headquarters, Richard E. Horner, newly arrived in June 1959

as Associate Administrator and third man in command, had brought in a small

staff of mathematicians and statisticians. It was led by Nicholas E. Golovin, who

transferred from the Air Force to NASA some of the mathematical techniques

lending quantitative support to demands for qualitative assurance. Theory-in-

Washington versus practice-at-Langley were in conflict for a year until the nature

of "reliability" for pilot safety on the one hand and for mission success on the

other became more clearly understood by both parties. The pressure exerted by

Golovin and NASA Headquarters to get the Task Group and McDonnell to change

its approach to raising reliability levels became a significant feature in redesign

and reliability testing during 1960. -_:'

Scientists, statisticians, and actuaries, working with large populations of
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entities or events, had long been able to achieve excellent predictions by defining

reliability as a probability, but in so doing they' sacrificed a,y claim to know what

would happen in a unique instance. Engineers and managers responsible for

a specific mission or project tended to ridicule probability theory and to call
it invidiously "the numbers game." Being limited to a small set of events and

forced by time to overlap design, development, test, and operations phases, they

could not accept the statistical viewpoint. The), demanded that reliability, be

redefined as an ability. The senior statistician at Space Technology Laboratories

for the Atlas weapon system, Harry Powell, recognized and elaborated on this

distinction while his colleagues became involved with man-rating the Atlas.
His remarks indicated that STL and Convair/Astronautics faced the same

divergence of opinion that NASA Headquarters and STG confronted:

If reliability is to be truly understood and controlled, then it must be thought
of as a device, a physical property which behaves in accordance with certain
physical laws. In order to insure that a device will have these physical prop-
erties it is necessary to consider it first as a design parameter. In other words,
reliability is a property of the equipment which must be designed into the
equipment by the engineers. Reliability cannot bc tested into a device and it
cannot be inspected into a device," it can only be achieved i[ it is first designed
into a device. Most design engineers are acutely aware that they are under
several obligations--to meet schedules, to design their equipment with certain
space and weight limitations, and to create a black box (a subsystem) which
will give certain outputs when certain inputs are fed into it. It is imperative
that they also be aware of their obligation to design a device which will in fact
perform its required function under operation conditions whenever it is called
upon to do so. _'G

There is a rule in probability theory that the reliability' of a system is exactly

equal to the product of the reliability of each of its subsystems in series. The

obvious way to obviate untrustworthy black boxes was to connect two black

boxes in parallel to perform the same function. In other words, redundancy

was the technique most often used to ensure reliability.
After the cancellation of Mercury-Jupiter, Kuettner and others at ABMA

set about a serious effort to develop a parachute system to recover the Redstone

booster. They also began to concentrate on the simplifications nece_ary for the

sake of reliability to custom-build a man-rated Redstone. Starting with the

advanced, elongated version of the rocket, which had been renamed the "jupi-

ter-C" in 1956 for the Army's ablation research on reentry test vehicles, Kuettner

called upon the expertise of all who could spare time from the Saturn program

to help decide how to man-rate their stock. The fundamental change made to

the Jupiter-C airframe was the elimination of its staging capability. Other

modifications stripped it of its more sophisticated components while permitting

it to retain greater performance characteristics than the original single-stage
Redstone? _

The designers of the Redstone and Jupiter missile systems proposed an exten-
sive list of basic modifications to adapt the vehicle to the Mercury capsule. The
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elongated fuel tanks of the Jupiter-C had to be retained for 20 extra seconds of

engine burning time, especially since they decided to revert to aIcohol for fuel
rather than use the more powerful but more toxic hydyne that fueled the Jupi-

ter-C. Another high-pressure nitrogen tank to pressurize the larger fuel tank

and an auxiliary hydrogen peroxide fuel tank to power the engine turbopump
also had to be added. To increase the reliability of the advanced Redstone,

they had to simplify other parts of the Jupiter-C system. Instead of the sophisti-

cated autopilot called ST-80, one of the first inertial guidance systems (the

LEV-3) was reinstalled as the guidance mechanism. The after unit of the

payload on the old Redstone, which had contained a pressurized instrument

compartment, became the permanent forebody of the main tank assembly, there

being no need to provide terminal guidance for the new payload. A spacecraft

adapter ring likewise had to be designed to simplify interface coordination and

to ensure clean separation between capsule and booster. At the other end of

the launch vehicle it was necessary to use the most recent engine model, the A-7,

to avoid a possible shortage of spare parts. Hans G. Paul and William E.

Davidson, ABMA propulsion engineers, took the basic responsibility for "man-

rating" this engine. 2s
Although STG engineers bought the Redstone in the first place because it

was considered an "off-the-shelf" rocket, they gradually learned through Ham-

mack's liaison with Butler that the Mercury-Redstone was in danger of being

modified in about 800 particulars, enough to vitiate the record of reliability

established by the earlier Redstones and Jupiter-Cs. Too much redesign also

meant reopening the Pandora's box of engineering "trade-otis," the compromises

between overdesign and underdesign. Von Braun's team tended in the former

direction; Gilruth's in the latter. To use Kuettner's distinction, ABMA wanted

"positivi: redundancy" to ensure aborts whenever required, whereas STG wanted
more "negative redundancy" to avoid aborts unless absolutely essential. 2D This

distinction was the crux of the dispute and the essence of the distinction between

"pilot safety" and "mission success."

On July 22, 1959, STG engineers received a group of reliability experts from

von Braun's Development Operations Division at Huntsville. Three decades

of rocket experience had ingrained strongly held views among the 100 or so

leaders of this organization about how to ensure successful missions. The

ABMA representatives told STG that they did not play the "numbers game"

but attacked reliability from an exhaustive engineering test viewpoint. Their

experience had proved the adequacy of their own reliability program, carried

out by a separate working group on a level with other engineering groups and

staffed by persons from all departments in the Development Operations Division

of ABMA. In conference with design engineers, ABMA reliability experts

normally set up test specifications and environmental requirements for proving

equipment compliance. STG felt sympathetic to this approach to reliability,

but systems analysts at NASA Headquarters did not.
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As for the prime contractor's reliability program, in the first major textbook

studied by the astronauts, McDonnell's "Project Mercury Indoctrination"

manual, distributed in May 1959, the pilots read these reassuring words:

The problem of attaining a high degree of reliability for Project Mercury has
received more attention than has any other previous missile or aircraft system.
Reliability has been a primary design parameter since the inception of the
project. 3°

Accompanying reliability diagrams showed over 60 separate redundancies de-

signed into the various capsule systems, allowing alternate pilot actions in the
event of equipment malfunctions during an orbital mission.

McDonnell specified three salient features of its reliability program in this

preliminary indoctrination manual. First, by making reliability a design re-

quirement and by allowing no more than a permissible number of failures before

redesign and retesting were required, reliability was made a conscious goal from

the beginning of manufacture. Second, five separate procedures were to imple-

ment the development program: evaluations, stress analyses, design reviews,

failure reporting, and failure analysis. Third, reliability would be demonstrated

finally by both qualification and reliability testing.

These assurances did not seem adequate; STG, as well as NASA-Washington,

requested McDonnell to clarify its reliability policy in more detail and to hold a

new symposium in mid-August to prove the claim that "reliability is everybody's

business at McDonnell." McDonnell responded by changing its "design objec-

tive" approach to what may be called a "development objective" approach.

The new program, drawn by Walter A. Harman and Eugene A. Kunznick,

explicitly set forth mean times to failure and added more exhaustive demonstra-

tions, or "life tests," for certain critical components. More fundamental assump-
tions were made explicit, such as: "the reliability of the crew is one (1.0)," and

"the probability of a catastrophic explosion of the booster, of any of the rockets,

of the reaction control system, or of the environmental control system is negli-

gible." 31 McDonnell's presentation at this symposium stressed new quality con-
trol procedures and effectively satisfied STG for the moment. Golovin and his

NASA Headquarters statisticians were pleased to note refinement in sophistica-

tion toward reliability prediction in the capsule contractor's figures for the

ultimate 28-hour Mercury mission. At the August 1959 reliability symposium,

McDonnell assigned impressively high percentage figures as reliability goals for

both mission and safety success:

Mission Sa[ety
Boost ...................................... 7917 .9963

Orbit ..................................... 9890 .9999

Retrograde ................................. 9946 .9946

Reentry ................................... 9992 .9992
Overall .................................... 7781 .9914
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To John C. French, who began the first reliability studies for Gilruth's group,

this kind of table represented the "numbers game," mere gambling odds that
might deceive the naive into believing that if not the fourth, then the third,
decimal place was significant. French was an experienced systems engineer who
recognized that numbers like these did mean something: obviously the authors
felt the weakest link in the chain of events necessary to achieve mission success

was the launch vehicle. McDonnell believed the safety of the astronaut would
be ensured by the escape system, but the coefficient ".7917" diluted the confidence
in overall mi,_sion success to ".7781." McDonnell and STG agreed that the onus
was on the Atlas to prove its safety and reliability as a booster for the Mercury
mission.

That point was not disputed by the men responsible for the Atlas. They
professed even less confidence in their product for this purpose than the capsule
contractor had. Not until November 13, 1959, did representatives of the Air
Force Ballistic Missile Division and Space Technology Laboratories visit Langley
to present in detail their case for a thoroughgoing plan to man-rate the Atlas as

a Mercury booster. Harry Powell had prepared a carefully qualified chart that
estimated that the reliability of the Mercury booster would reach approximately

75 percent only in mid-1961, and the first upbend (at about 86 percent) on that
curve was to occur another year later?-" Such pessimism might have been over-

whelming to STG except that no abort-sensing system was yet computed as a
factor in this extrapolation. Also STG and STL agreed never to entertain the
idea of "random failure" as a viable explanation.

Because aircraft designers and missile experts held different opinions about
which systems should be duplicated, redundancy itself was often a subject of

dispute. Passenger aircraft were provided with many redundant features, in-
cluding multiple engines and automatic, semi-automatic, and manual control
systems, so that commercial flight safety had been made practically perfect. But
in the military missile programs of 1959, redundancy to ensure mission success
had been relegated to the duplication of the complete missile, "by making and
launching enough to be sure that the required number will reach each target." 83
In the age of "overkill," one out of four, for instance, might be considered quite
sufficiem to accomplish the destructive mission of the ICBM. Both McDonnell

and the Task Group placed more faith in quality control procedures and in
redundant system development than in mathematical models for reliability
prediction during design.

In the course of further symposia and conferences during the autumn, the
Space Task Group, working with military systems analysts and industrial quality
controllers, learned more than it taught about improving reliability programs.
Abe Silverstein, whose Headquarters office was retitled Space Flight Programs
(instead .of Development) at the end of the year, was especially eager to see STG

set up its own reliability program, with procedures for closer monitoring of
subcontracts. 34
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But before STG could presume to teach, it had to learn much more about
the mechanics of the Redstone and the Atlas. Mathews had his own mathe-

maticians check the case histories for failures of every Redstone, Jupiter, and
Atlas that had ever been launched. A statistical population of over 60 Redstone
and about 30 Atlas launches yielded clinical diagnoses for generalizing about

the most likely ways these boosters might fail. Gerald W. Brewer, Jack Cohen,
and Stanley H. Cohn collected much of this work for STG, and then Mathews,
Brandner of ABMA, White of STL, and others formulated some ground rules
for the development of the two abort-sensing systems.

All the investigators were pleasantly surprised to find relatively few cata-
strophic conditions among the failures. Their biggest problem was not what
to look for or when to allow the escape rocket to blast away but rather how to
avoid "nuisance aborts." Such unnecessary or premature escapes would arise
from overemphasis on pilot safety or "positive redundancy" at the expense of
mission success. Long arguments ensued over several questions: How simple
is safe? How redundant can you get and still have simplicity? How do you

design a fail-safe abort-sensing system without overdesigning its sensitivity to
situations less than catastrophic? 3_

Without trying to define every term, Mathews and his associates agreed that
only imminent catastrophic failures were to be sensed, that reliability should be
biased in favor of pilot protection, and that all signals from abort sensing should

be displayed in the spacecraft. Application of these ground rules to the Redstone
led to development of an automatic abort-sensing system (AASS) that sensed
"downstream" or fairly gross parameters, each of which was representative of
many different types of failures. Merely "critical," as opposed to "catastrophic,"
situations were not allowed to trigger the escape system automatically. Such

merely "critical" situations as partial loss of thrust, a fire in the capsule, deviation
from flight path, or loss of tank pressure might possibly be corrected or tolerated.
But catastrophic situations were defined as existing where there were no seconds
of time for intelligent decisions, corrective actions, or manual abort. The abort
system for the Mercury-Redstone sensed and was activated by such typical cata-
strophic situations as excessive attitude deviations or turning rates (leading to
high angles of attack during high dynamic pressures and resulting in a structural

breakup), as sudden loss of tank or bulkhead differential pressure in pressure-
stabilized structures, as loss of electrical power in the control and instrument
system, and as loss of thrust immediately after liftoff. 3_'

If any of these situations should arise, the automatic abort-sensing system was
supposed to initiate an explosively rapid sequence of events. First, the engine of
the Redstone would cut off (except during the initial moments over the launch

site). Then the capsule would separate from the booster. And this would be
followed by the ignition of the escape rocket, with acceleration up and away from

the booster, and finally by the normal sequencing of events in the recovery phase
of the launch profile.
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During August, September, and October, the Task Group improved its under-
standing of the interrelated parts and procedures being developed for Mercury.
New definitions were formulated in hardware and words. Some old worries--the

heatshield, for instance--were abandoned as newer concerns replaced them. The
success of Big Joe and the promise of Little Joe shots promoted confidence and
sustained enthusiasm. At the end of this period optimistic forecasts were the
rule, not only for booster readiness but also for firm operational schedules. The

first Mercury-Redstone and Mercury-Atlas qualification flight tests were scheduled
for launchings in May 1960. Even the final goal of Project Mercury, the achieve-
ment of manned orbital flight around Earth, still appeared possible by March
1961.3T

But as autumn blended into winter in 1959, optimism cooled along with the
weather. The job of keeping snow clear of its own drive was difficult enough,

but heavier equipment than that possessed by the Task Group was necessary to
plow aside the drifts that sometimes covered the streets of interagency cooperation.
In particular, the Mercury-Redstone schedule began to look progressively more
snowbound in the early winter of I959, largely because the capsule and the Atlas
commanded primary attention.

At the end of August, Gilruth had proposed to Major General John B. Medaris,
commanding ABMA, that the first attempt at a Mercury-Redstone launch from
the Cape be set for February 1, 1960. This proposal represented a slippage of
about four months since February 1959, when the initial understanding between
ABMA and STG had been reached. But the prospects for rapid accomplishments
in the next six months were brighter at Langley than at Huntsville, St. Louis, or

the Cape. Plans to use eight Mercury-Redstones for ballistic training flights
between February and October 1960 were still in effect, and STG also hoped to

complete six manned Redstone flights by March 1961 before launching the first
of the manned Mercury-Atlas configurations. Such optimism was not entirely

the result of youthful naivete or of underestimates of complexity. In large part,
target dates were set deliberately at the nearest edge of possible completion periods
to combat Parkinson's Law regarding bureaucratic administration, that work
expands to fill the time allotted for its completion? _

Much of the fault for Redstone slippages must revert to STG for having
canceled the Mercury-Jupiter series rather precipitously, thereby unceremoniously
relegating the 4000 members of yon Braun's division at Huntsville almost to "task
element" status as far as Mercury was concerned. Although the Jupiter program
per se was being phased out at ABMA, its sires, who sparked the entire Army
Ordnance team, were sensitive to criticism of their strange love for space travel. 39

STG engineers should not have been surprised that the cancellation of the Mercury-
Jupiter series would cause a reaction in Huntsville that would reverberate to the
Cape and through Washington. r°

Although NASA Headquarters had carefully coordinated STG's recommenda-
tion in this matter, many other factors contributed to the change in the Mercury
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program management plans that forecast the slip of MR-I past MA-1 on the
flight test schedule. There were at least three technical reasons for the Mercury-
Redstone slippages as well as several other, perhaps more important, psychological

and policy-planning reasons for this change in the "progressive buildup of tests"
principle.

Foremost among all causes of delay was the fact that the pacing item, McDon-

nell's production model of the Mercury capsule, took longer to build than anyone
supposed it would. 41 Because systems integration within the spacecraft was
lagging by several months, every other area would be delayed also to some degree.
Secondly, the design and development of the abort-sensing systems for the Redstone

and Atlas were attacked separately and not cross-fertilized. The basic dispute
over safety versus success, or positive versus negative redundancy, could be settled
onty with actual flight test experience.

A third technical reason for the fact that the Redstone team, with its ready
and waiting boosters, failed to lead off the series of qualification flight tests was
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related to the Teutonic approach to reliability. Long years of experience with

rockets, together perhaps with some native cultural concern for meticulous crafts-
manship, gave the yon Braun group high confidence that most so-called "relia-
bility" problems could be obviated by hard work, more flight tests, and intensive
engineering attention to every detail. Elaborate operational checkouts were to be
made at Huntsville and the Cape. STG agreed to these procedures in August,

but by November time was clearly in contention between Huntsville and Langley.
The Task Group wanted to launch its first three Redstones for Mercury during
May and June 1960, but if this were possible, it was hardly advisable from ABMA's
point of view? 2

By then, however, this could be considered a family dispute among step-
brothers within NASA. On October 21, 1959, President Eisenhower announced

his decision, pending congressional approval, to transfer the von Braun group and
the Saturn project from ABMA to NASA. If this decision solved a morale
problem among members of the Development Operations Division at ABMA, it
undoubtedly complicated certain institutional and political problems. Jockeying
for position probably intensified rather than abated, as plans for the future use of
the Saturn launch vehicle overshadowed Mercury for the moment. Another five

months were required to complete a transfer plan, and eight months would elapse
before the official transfer was completed on July 1, 1960. 43

Although the plans for the escape of a pilot from a malfunctioning Redstone
were complex, plans for a similar emergency detection system on the Atlas were
several times more complicated. Three engines, rather than one, with an overall
range and thrust capability well over three times greater, and with guidance,
gimbaling, and structural separation mechanisms far more complex than those to
be used on the Redstone--these were some of the factors that put the problem of
man-rating the Atlas on a higher plane of difficulty.. The Mercury' capsule escape
system was, of course, the same for both boosters, but the emergency detection
systems had to be tailored to the differences between the launching vehicles. The

single-stage Redstone was a piece of battlefield artillery that could stand on its own
four fins, for example, whereas the fragile "gas-bag" Atlas would crumple if not
pressurized. And in flight, the Atlas' outboard engines must stage properly and

drop away from the central sustainer engine before the escape tower could
be jettisoned.

While Charles Wilson and his crew at Convair in San Diego worked out the

detailed design and hardware for ASIS, Richard White led Space TechnologT
Laboratories through more detailed analyticaI studies and simulation tests at El
Segundo. Their concurrent efforts ensured that the airborne emergency detection
system for the Mercuo'-Atlas evolved, as Powell insisted it must, with the steadfast
goal of reliability. Inspection and test programs were inaugurated separately by
Hohmann, beginning in October, but reliability was designed into the ASIS black

box from May onward. Wilson and White soon discovered that their biggest
problem concerned the prevention of recontact between booster and capsule after
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separation. Alan B. Kehlet and Bruce G. Jackson of STG had the primary respon-

sibility to determine the proper thrust offset of the escape rocket and to ensure

against recontact, but "Monte Carlo" probability analyses were done by both
Convair and the Space Task Group. '4

In addition to the ASIS, the Atlas D had to be modified in a number of other

ways before it could carry a man. Because the Mercury-Atlas configuration was

taller by approximately 20 feet than the Atlas D weapon system, the rate gyro

package for the autopilot had to be installed 20 feet higher on the airframe, so it

would sense more precisely the rate of change of booster attitude during launch.

The Atlas would not need posigrade rockets to assist separation because the Mer-

cury capsule would embody its own posigrade rockets inside its retrorocket package.

Because the capsule's posigrade rockets could conceivably burn through the thin
skin of the liquid-oxygen dome, a fiber-glass shield covering the entire dome was

attached to the mating ring. The two small vernier rocket engines, which on the

ICBM had thrust on after sustainer engine cutoff, or "SECO," for last-minute

trajectory corrections, were regoverned to delete the "vernier solo" phase of oper-

ation, thus saving more weight and complexity. In addition to the use of older,

more reliable types of vah,es and special lightweight telemetry, only one other

major booster modification was considered at first. The man-rated Atlas D would

use the so-called "wet start" instead of the newer, faster "dry start" method of
ignition. A water pulse sent ahead of the fuel into the combustion chambers

would effect slower and smoother initial thrust buildup, minimizing structural stress

on the engine before liftoff. This change saved approximately 60 pounds, by

enabling the use of a thinner skin gauge in the Atlas airframe. But the "thin-

skinned" Atlas soon proved to be too thin-skinned, and the weight saved was lost
again in 1961, when a thicker skin was found to be essential in the conical tank

section just under the capsule; The longer, lighter spacecraft payload proved a

cause of additional dynamic loads and buffeting problems, calling for more stren_h

in the Atlas forebody. 4_

After additional study of the idiosyncracies of the Atlas missile, Mathews,

Wilson of Convair, and White decided on the parameters most in need of monitor-

ing for abort indications: ( 1 ) the liquid oxygen tank pressure, (2) the differential

pressure across the intermediate bulkhead, (3) the booster attitude rates about all

three axes, (4) rocket engine injector manifold pressures, (5) sustainer hydraulic

pressure, and (6) primary electrical power.

Dual sensors gauging each of these catastrophic possibilities were fairly easily

developed. If any one of these conditions should arise or any system should fail,

the ASIS would by itself initiate the explosive escape sequence. But any one of

four men with their fingers poised over pushbuttons also could abort the mission:

the test conductor, the flight director in the control center, the range safety officer,

or the astronaut with his left thumb would be able to decide if and when the escape

rocket should be ignited. But these manual abort capabilities were only supple-

ments, with built-in time delays, to the automatic abort sensing and implementation
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system. During the portion of the flight powered by the Atlas, human judgment

was to be secondary to a transistorized watchdog autopilot. Their moral obligation

to pilot safety made the Atlas redesigners reduce man-control to this minimum.

Culbertson later explained, "While it was true that mission success provided pilot

safety, provision for pilot safety did not always improve the probability of mission
Success?' ,16

One of the most important analytical tasks in man-rating the Atlas was the

careful and continuous study of the mathematical guidance equations for the launch

phase of al[ the missions. Three men at Space Technology Laboratories shared

this responsibility, C. L. Pittman, Robert M. Page, and Duncan McPherson.

While Convair was learning that it cost approximately 40 percent more to build

a man-rated Mercury-Atlas than a missile system, STL's mathematicians and

systems engineers, like Hohmann and Letsch, were working out their differences

on how to control quality and augment reliability. By the end of 1959, Hohmann
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had sold his plans for pilot safety. They were based on applying supercharged

aircraft production techniques to industrial practices for military missile produc-
tion. To live with the Atlas required no less and eventually much moreY

CRITICAL COMPONENTS OF THE CAPSULE

Basic as the boosters were for successful manned space flight, they were not

the only machines that had to be certified for safety before a man's life could be

entrusted to them. The capsule with all its systems and subsystems, designed to

operate automatically on unmanned test flights at first, would also have to have

reliable provisions for operation with a normal, or even with an incapacitated or

unconscious, man aboard. Man-rating the spacecraft, therefore, involved the

paradoxical process of dehumanizing it first for rehumanizing later.

When the seven Mercury astronauts first visited the McDonnell Aircraft Cor-

poration laboratories and factory, for three days in May 1959, each was handed

an indoctrination manual and given opportunities to inspect the mockup capsule
and to review the requests for alterations made by the Mockup Review Board in

March. Immediately they expressed some uneasiness about the poor visibility

afforded by the two remotely placed portholes and about the difficulty of climbing

out the bottleneck top of the capsule/s So, based on these and numerous other

criticisms expressed by the men for whom these machines were being built, redesign

studies were begun.

Just as Maxime Faget was the chief NACA NASA designer of the capsule con-

figuration and mission concept, so John F. Yardley, his closest counterpart in the

McDonnell organization, was the chief developer of the Mercury capsule. Neither
Faget nor Yardley was the nominal leader of the vast team within which each

worked, but both animated the technical talents of their colleagues, from design

through the final development stages of the Mercury hardware. John Yardley

held a master's degree in applied mechanics, had worked for McDonnell since

1946 as a stress analyst, strength engineer, and project leader, and he was excep-

tionally talented in his capacity for work and for synthesizing technical knowledge.

By telephone, teletype, and face to face, Faget and Yardley consulted each other

about the multitude of detailed design and development decisions involved in

production throughout 1959. But their bilateral agreements were restricted to

details. Larger decisions regarding the development of systems or interaction

between subsystems were reserved for the 17 different working groups in STG and

the I0 or so at McDonnell. James Chamberlin instigated this capsule coordina-

tion system and gradually replaced Faget in relations with Yardley during the

next yearY

In 1959 the McDonnell Aircraft Corporation became the 100th-largest indus-

trial company in the United States, employing approximately 24,000 people to

produce goods (primarily the F4H-1 Phantom twin-jet fighter for the Navy) and

services (mainly computer time, electronic equipment, and systems engineering)
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valued at $436 million. Within this corporate context, the contract with NASA

for about $20 million to manufacture 12 or more spacecraft, requiring only 300 or

400 workers and representing less than five percent of McDonnell's annual sales

volume, appeared rather minuscule. The president of the corporation, J. S. Mc-

Donnell, in September 1959 wrote for his twentieth annual report to stockholders

that "there is no need to stampede away from the aircraft business." 5o

When the prime contract for Mercury was awarded to McDonnell, the Cor-

poration's vice-president for project management, David S. Lewis, assigned Logan

T. MacMillan, a tall, tactful test pilot and mechanical engineer with a winning

manner, to be companywide project manager with authority to mobilize the re-

sources of the Corporation for the new venture. MacMillan, of the same age and

rank as Faget, soon found it difficult to reconcile McDonnell's development and

production phases with NASA's concurrent research and test phases. Time, cost,

and quality control were interdependent, and now the astronauts and STG had
called for major design changes in the window size and placement, the side

entrance-exit hatch, the instrument panel, and switch accessibility. To his top

management, MacMillan reported on July 18, 1959:

The Space Task Group is a rather loosely knit organization of former Research
Engineers. The Coordination Office is an attempt to channel and control
information and requirements against MAC more closely and is a good move.
It is clear, however, regardless of whether or not it succeeds, the NASA
philosophy of investigation and approval of the smallest technical details will
continue, and request for changes will also continue. We will continue to
handle this by being responsive to requests for studies and recommendations
and to be as flexible as we possibly can to incorporate changes. It is imperative
that we continue to improve our capability to make these studies promptly,
submit change proposals to cover the increased work as soon as possible, and
evaluate the effect of changes on delivery schedules rapidly?'

A month later MacMillan complained by teletype message directly to Paul E.

Purser that coordination meetings were being held too frequently for effective

action on items from preceding meetings. He suggested that later meetings be
scheduled "for one month from time minutes are received at MAC." But the

pace did not slow significantly ; the finish line simply moved farther away.
MacMillan and Yardley, together with Edward M. Flesh and William

Dubusker, two older, more experienced production engineers, supervised the bulk

of the load for McDonnell in tooling up, making jigs and fixtures, and organizing

their craftsmen and procedures for production. Kendall Perkins, McDonnell's

vice-president for engineering, had deliberately assigned Yardley and Flesh, com-

bining youthful enthusiasm and experienced caution, to start the manufacture--

literally the handmaking--of the first spaceframe. The subsequent design and

technical development at McDonnell was carried out under their direction? 2

By July 1959, Dubusker, the tooling superintendent, had completed McDon-

nell's first surgically clean "white room" for the later manufacturing phases, had

taken on the job of manufacturing manager for Mercury, and had moved some
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200 workmen onto the new production lines. Learning to fusion-weld titanium

.010-inch thin in an encapsulated argon atmosphere was his first challenge and

proudest accomplishment. But before the year was over, Dubusker had to con-

tend with retooling for other unusual materials, with rising requirements for clean-
liness, with stricter demands for machined tolerances, and with higher standards for

quality control.

Flesh, the engineering manager, and Dubusker drew on all of McDonnell's

experience with shingIed-skin structures around jet afterburners for heat protec-

tion. Their machinists had previously worked with the patented metal, Ren6 41,

a nickel-base steel alloy purchasable only from General Electric, but arc-jet tests

of the afterbody shingles on the outer shell of the capsule showed a need for some

ingenious new fabricating techniquesP 3

While Yardley and Flesh concentrated on developing the most critical com-

ponents for the Mercury capsule, two other McDonnell employees began to play

significant roles in man-rating this machinery. The company was fortunate to

have its own so-called "astronaut" in the person of Gilbert B. North, another test-

pilot engineer but one with a unique relationship for the NASA contract. He was

always being confused with his identical twin brother, Warren J. North, who served

Silverstein and George M. Low in Washington as NASA Headquarters participant

and monitor in astronaut training. Gilbert North served McDonnell as chief

human guinea pig in the St. Louis ground tests. Warren and "Bert" North

actively promoted the incorporation of test-pilot concerns in the Mercury program

from two standpoints outside STG.

Most of the astronauts and test pilots, including the North twins, instinctively

resented the "interference" of psychologists and psychiatrists in Project Mercury.

Willing to wager their careers and perhaps their necks on the automatic systems of

the capsule and booster, the pilots preferred to study the reliability of the machines

and to assume themselves adaptable and self-reliant in any situation. They were

thus unprepared to discover that psychologists would be among their strongest allies

in gaining a more active role for man during Mercury missions. Throughout

1959, arguments over the necessity for the three-axis handcontroller, as opposed

to the more traditional two-axis stick and one-axis pedal control system, demon-

strated these pilots' confidence in themselves. Distrusting what they regarded as

tender-minded psychology and psychiatry, the astronauts-in-training studied hard

to become more tough-minded electromechanical engineers. And indeed their

first complaints regarding spacecraft design resulted in changes adopted formally

during September for later models of the capsule? 4

John Yardley fortunately was not quite so tough-minded and recognized early

an imbalance in detail design considerations. He insisted on having the cross-

fertilization of parallel human engineering studies. McDonnell hired in February

a "human engineering" expert, Edward R. Jones, to conduct studies of pilot tasks

and to analyze the various ways in which the man might fail his machines. Propos-

ing straightaway a thorough training regimen for the astronauts in procedures
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simulators, Jones went on to program a statistical computation of the human-

factors implications of failures in the automatic systems in the Mercury capsule.

By November 1959, Yardley and Jones together had convinced a majority of

McDonnell engineers that man should more often be in the automatic loop than
out of it. 55

Part of thc problem faced by Jones, Yardley, and the astronauts in regard to

human factors and the "inhuman" automatic control systems was the initial posi-

tion taken by seven members of a study group at the Minneapolis-Honeywell

Regulator Company in March 1959. Assigned to recommend approaches to

mission analysis and cockpit layout, this group, led by John W. Senders, James

Bailey, and Leif Arneson, had reported to McDonnell that since "this vehicle does

not behave like an airplane .... There is no apparent need for a complex,

highly integrated display configuration at a sacrifice of reliability." 56 Jones stud-

ied the Minneapolis-Honeywell reports carefully and said they expressed a "wooden

man" approach. Assuming pilot safety would be provided for, Jones believed

more provisions should be made for the pilot to assure minion success. In August,

Jones and a colleague, David T. Grober, wrote for Yardley a description of the

quantifiable differences between flying this spacecraft and flying aircraft. They

admitted: "Primary control is automatic. For vehicle operation, man has been

added to the system as a redundant component who can assume a number of

functions at his discretion dependent upon his diagnosis of the state of the system.

Thus, manual control is secondary." _7 But Jones and Grober pointed to at least

eight ways in which automation for reliability could interact with the autonomy

of the astronaut to vary the chances both for pilot safety and for mission success.

They warned McDonnell's reliability engineers against assuming, as they had in

their latest formal reliability program given STG, that the reliability of the astro-

naut is unity:

it has been assumed naively by those who are not familiar with the capsule
that the operation of the systems will not be difficult because of the automatic

programming of the normal mission and because of an assumed simplicity of
the systems. However, preliminary analysis indicates that the operation of the
capsule, considering the stringent mission requirements and the physiological
environment, will be as difficult or probably more difficult than high per-
formance aircraft. A vast number of different potential malfunctions may
occur in the capsule's systems, and the isolation of these malfunctions can be
extremely difficult. Mission reliability determinations assume the astronaut
can detect and operate these systems without error.

Only three months later Jones read a paper before the American Rocket So-

ciety that, while not a reversal of primary and secondary" control modes for the

manned satellite, marked a symbolic shift from automation to monitored automatic

flight. Man's function in space flight, argued Jones, should now be recognized

as something more than secondary, if still less than primary:
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Serious discussions have advocated that man should be anesthetized or tran-

quillized or rendered passive in some other manner in order that he would not
interfere with the operation of the vehicle .... As equipment becomes avail-
able, a more realistic approach evolves. It is now apparent with the Mercury
capsule that man, beyond his scientific role, is an essential component who can
add considerably to systems effectiveness when he is given adequate instru-
ments, controls, and is trained. Thus an evolution has occurred . . . with
increased emphasis now on the positive contribution the astronaut can make? s

Jones spoke, presumably, of the general attitudes prevailing around McDonnell.

His fellow psychologist in STG, Robert B. Voas, supported his evaluation.

Nevertheless, until some Mercury missions were flown automatically to qualify

the integration of all systems, man would not be allowed to fly one. Of all the

critical systems in Mercury, therefore, the automatic cbntrols, a part of which was

the "autopilot," were most crucial for man-rating the capsule.

Guidance and control engineers in Project Mercury were often plagued by

semantic confusions between the different electromechanical systems they designed

and developed to stabilize, guide, control, or adjust relative motion. Their no-

menclature helped confound confusion by the similarity of initials in officiaI use to

denote their orientation systems: ACS, ASCS, RCS, and RSCS all looked similar

to men with other concerns, but some evolutionary reasons help explain the

technical differences behind the initials. ACS, for Attitude Control System, ap-

plied specifically only to the Big Joe capsule, becoming a generic term in Mercury

nomenclature after that launch in September 1959. In its place the redundant

designation ASCS, for Attitude (or Automatic) Stabilization and Control Sys-

tem, grew up as a name for the autopilot, an airborne electronic computer that

compared inputs of electronic sensory information with any deviation from preset

reference points on gyroscopes or with the horizon. Outputs from the autopilot

could then command small jets called thrusters to spew out small quantities of

hot gas in order to maintain balance in space. These hydrogen peroxide jets, their

fuel tanks, plumbing, and valves were called simply the RCS, or Reaction Control

System. _ The last of this quartet of initials, RSCS, requires a more thorough

explanation.

In August and September 1959, the stabilization controls and drag-braking

drogue chute were proving troublesome, and everyone in STG knew this. Pro-

visions for the astronaut, or "human black box," in the control loop complicated

every facet of the system, and yet the pilot had little choice over its operation.

Robert G. Chilton, Thomas V. Chambers, and other STG controls engineers

reconsidered the several different ways in which the Mercury capsule was being

designed to act by chemical reflexes with complete self-control.

From the very beginning of controls design for a manned ballistic satellite,

Honeywell had suggested using the same digital electronic system, for simplicity's

sake, to control all Mercury flights. But this "simple" equipment was unneces-
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sarily complicated for the first flight tests and could cause some unnecessary prob-

lems. Also, a direct mechanical linkage to a completely independent, completely

redundant reaction control system had been provided to ensure that the pilot could

adjust manually and proportionally his capsule's attitude in orbit. But this over-

weight and oversize manual redundancy, fundamental to the Mercury objective

of testing man's capability as a pilot in space, was an exceedingly uneconomical

part of the original design.

McDonnell and Honeywell controls engineers moved ahead with their develop-

ment of the digital system while Chilton wrestled with the problem of raising the

efficiency of the thirsty manual proportional thrusters. A wired jumper from the

handcontroller to the jets for the ASCS should enable the astronaut to tilt or

rotate his craft in its trajectory by electrically switching on and off the tiny sole-

noid valves that supplied hydrogen peroxide gas to the automatic thruster com-
bustion chambers. Because this "fly-by-wire" system completely circumvented

the autopilot, inserting the astronaut's senses and brain in its stead, it was not

automatic. Rather, it operated semi-automatically; it would allow the pilot to

aid or interfere with the automatic adjustment of rotation around his pitch, roll,

and yaw axes. Thus in the autumn of 1959 the automatic attitude control sys-

tem was already compromised by the addition of the semi-automatic fly-by-wire
feature.

But this redundancy still seemed inadequate for mission success. Both Mc-

Donnell and STG controls engineers proposed various approaches to other attitude

control systems for the Mercury capsule in the spring and summer, but Logan

MacMillan resisted all such suggestions, awaiting NASA's formulation of a definite

policy for judging the urgency of contract change proposals. Every change would

invite inevitable delays, and the long leadtime for a new alternate control system

(an AASCS!) made MacMillan, Yardley, and Flesh very skeptical of that

approach._°

The fresh insight of one of the Canadians in STG's flight controls section,

Richard R. Carley, helped Chilton to see the need for a second completely inde-

pendent rate-command orientation system. Together they wrote a compromise

proposal early in July that served as the midwife for a "rate damping" system for
stabilization control :

There is a natural reluctance to relinquish the mechanical linkage to the
solenoid valves but the redundant fly-by-wire systems offer mechanical simplifi-
cation with regard to plumbing and valving hydrogen peroxide so the overall
reliability may not change appreciably. In fact, considering the controlability
of the capsule as a factor in mission reliability, a net gain should result. Simu-
lation tests indicate that manual control of the capsule attitude during retro-

grade firing will be a difficult task requiring much practice on the part of
the pilot. By changing the command function from acceleration to rate, the
task complexity will be greatly reduced and the developmental effort on display
and controller characteristics can be reduced accordingly. ';1
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Out of interminable meetings and proliferating technical committees, a com-

promise did finally emerge. Chilton's group, together with J. W. Twombly of
McDonnell, worked out the design for a semi-automatic rate augmentation system.
By connecting three more wires from the handcontroller to the three pairs of
solenoid valves guarding the fuel flow to the manual reaction jets, the designers
built a bench version of a rate-command control system that utilized the small rate
gyros formerly supplying the references only for cockpit instruments. For the
production model, rate command fuel would be taken only from the manual

supply tank. By the end of October, Chilton's group and Minneapolis-Honey-
well had completed preliminary designs of this rate orientation system, now offi-
cially sanctioned as contract change No. 61 and called the "RSCS." But the
difficult electrical circuit for its independent rate logic system was only in the

breadboard stage: wires had been stretched over the two-dimensional drawings
as a preliminary test of the circuit designs.

The manual proportional method of slewing the capsule around required an
extravagant use of fuel, but the rate mode relegated the manual to a last-ditch
method of attitude control. Now with "rate command," essentially another

fly-by-wire system superimposed on the manual reaction controls, the astronaut
might control precisely his movements in pitch, yaw, and roll by small spurts of
gas that would tip him up or down, right or left, and over on one side or the

other. The exact attitude of the capsule at the critical time of retrograde firing
could be held by this method, and the slow-roll stabilization of the capsule during

reentry also could be accomplished by this system. Thus the quest for reliability
led to four different methods of orienting the capsule by the end of 1959. Making
both the automatic mode (through fly-by-wire provisions) and the manual mode
(through the rate command, or RSCS) redundantly operable gave the astronaut
three out of four options.

McDonnell and STG already were working with nine major subcontractors

and 667 third-tier vendors, and the effort to man-rate all their products and all

these subsystems--indeed each part from tiny diodes to the pressure vessel--re-

quired thawing out and refreezing the specification control drawings several

times. When at the beginning of October NASA approved the funds for installa-

tion of an explosive side-egress hatch, a trapezoidal observation window, and

another stabilization and control system, McDonnell engineers had already under-

taken these and consequent redesign requirements. This independent advance
action was evidence of a more advanced approach to the need for concurrent

development and production. 6-_

To save weight without sacrificing reliability, the electronic specialists--like

all other Mercury design engineers--looked for microminiatufized, solid-state com-

ponents. But they found less than they hoped. Miniature parts were evolving

rapidly into microminiaturized parts, but the latter did not have good reliability

records yet. Collins Radio Company, for example, holding the subcontract for
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capsule communications equipment, emphasized the conservative use of minia-

turized but not superminiaturized components to achieve greater reliability. "3

Since the beginning of the development program the target of an effective capsule

launch weight of 2700 pounds had been overshot continuously, primarily because

of slight but cumulative increments in electrical circuitry weights. Vendors con-

sistently seemed to underestimate the weights of the parts they supplied. At

the beginning of October the effective capsule weight was estimated at 2859

pounds. This seemed likely to grow to 3000 pounds unless firm action was taken.

A special coordination meeting in St. Louis at the beginning of October established

a weight-reduction diet for the capsule development program and admonished

NASA "all along the line to decide how much weight reduction should be sought

and what items of capsule equipment should be sacrificed in order to achieve the
desired reduction." 6_

At the time STG was considering the RSCS, it was also thinking of eliminating

the 17.5-pound drogue parachute in the interest of weightsavlng. The "fist-

ribbon" drogue stabilizer, six feet in diameter and composed of concentric and

radial strips of nylon, was being tested at Edwards Air Force Base and at the E1
Centro Naval Parachute Test Facility, at subsonic and transonic speeds and at

altitudes down from 70,000 feet over the Salton Sea. One of the first canopies,

released at a speed of mach 1.08 from an F-104 jet fighter at an altitude above

10 miles, plummeted into denser air whipping, fluttering, and spinning so badly

that it disintegrated after a minute of this punishment. This test had put a

special premium on development of the rate stabilization control system.

The recent decision to substitute a ring-sail for the extended-skirt main

landing parachute made Gilruth fear that there might not be enough experience

with big parachutes to determine whether they had similar bad characteristics.

Gilruth and Donlan were so unsettled by the chute tests in general that they

appealed to Washington for an expansion of applied research programs aimed

at the development of more reliable parachute systems :

It is apparent that the large load cargo type of parachute is far from as reliable
as the personnel parachute that most people are familiar with. Part of this
lack of reliability is due to unknown scale effects, perhaps. However, it is
known that a great deal of this loss of reliability is due to the various fixes that
are employed on large parachutes to attenuate the opening shock. Such fixes
as extended skirts, slots, reefing, and other devices are designed to cause a para-
chute to open more slowly. Therefore, it is not surprising that this tendency
to open slower is also accompanied by a tendency not to open at all5 "_

Continued tests of the main parachute revealed few additional problems, but

the drogue chute tests were getting worse. By the end of September the problem

of drogue behavior at relatively high altitudes and barely supersonic speeds was

so critical that th.e director of Langley thought it might be "easier to avoid than

to solve." _e All sorts of alternatives, including a flexible inflatable-wing glider

proposed by Francis M. Rogallo of Langley, a string of discs trailing like a Chinese
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kite, and simple spherical balloons, were proposed as possible means of avoiding
the instability of porous parachute canopies at high altitudes, where the air to
inflate them is so rare.

Toward the end of 1959 still another lesson learned from studies of the aero-

dynamic stability of the capsule in the rarefied upper atmosphere added a slight

refinement to the Mercury configuration. To break a possible "freeze" if the

stable capsule should reenter the atmosphere small end forward, a spring-loaded

destabilizing flap was installed under the escape pylon. Donlan and Purser asked

George Low to explain around Washington why this "mousetrap" destabilizing

flap was added to the antenna canister and why this innovation would require
further wind tunnel tests:

The Mercury exit configuration (antenna canister forward without escape
tower) has been shown to be statically stable at roach numbers greater than
four. This stability is undesirable because of the possibility of the capsule
reentering the atmosphere antenna canister forward. Tunnel tests at a roach
number of six have indicated that a destabilizing flap prevents this undesirable
stability region. It is therefore necessary to know the effect of this destabilizing
flap at subsonic and supersonic speedsP 7

Continued poor performance of the fist-ribbon drogue convinced Faget, Cham-

berlin, and Yardley by the end of 1959 that the drogue chute should be eliminated

altogether, but Gilruth and Purser, among others, saw as yet no cheaper insurance

and no more workable alternativeY The mousetrap destabilization flap and the

rate stabilization system would help to fill only the mid-portion of the gap in the

reentry flight profile. It was still a long way down from 100,000 to 10,000 feet

above sea level--roughly 17 miles as a rock might drop. But by this time, the

big questions concerning the first part of the reentry profile had been answered

by the Big Joe flight.

BIc JoE SHOT

On the same day, September 9, 1959, both the major prellminary flight test

of Project Mercury and the final qualification flight test of the operational Atlas

ICBM occurred, in separate launches from opposite sides of the United States.

While NASA and STG were focusing their attention on the performance of

Atlas booster No. 10-D, being launched from Cape Canaveral, most of the men

behind the Atlas were watching missile No. 12-D being launched from Vanden-

berg Air Force Base in California. A novitiate crew of Strategic Air Command

(SAC) officers and men had groomed No. 12-D for this critical test flight south-

westward over the Pacific Missile Range. Likewise, neophytes from NASA stood

by their payload on the Atlas 10-D, awaiting the results of its southeastward flight

over the Atlantic Missile Range. If all went well this day, the Atlas would have

proved Itself capable both as an operational ICBM and as a launch vehicle for

a Mercury ballistic flight. Reliability was something else again, but capability

could be proved with one demonstration.
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The men from Space Technology Laboratories; from Convair/Astronautics;

Rocketdyne; General Electric; Pan American, who managed the "housekeeping"

of the Atlantic Missile Range; and numerous other contractors supporting the

Air Force development of the Atlas, deserved to be called experts. They had had

experience in launching this rocket. By contrast, NASA personnel were even

greener than the SAC crew going through the countdown at Vandenberg. NASA

did not intend to learn to launch its own Atlases, but STG did hope to gain some

expertise for living through its launches. The job of launching Big Joe belonged

to the Air Force, supported by the Convair/Astronautics team at the Cape--

Byron G. McNabb, Travis L. Maloy, Thomas J. O'Malley, C. A. Johnston, and
others. Charles Mathews, the STG mission director, learned much about his

operational requirements working with these men on Big Joe.

Few people outside the military-industrial teams working on the Atlas could

have known what was happening in the ICBM program in mid-1959, c9 The

fourth and supposedly standard version of the Atlas ICBM, designated the Atlas D,

rapidly supplanted the third development version, called Atlas C, during the

summer of 1959. Earlier A and B models, fired in 1957 and 1958, had phased

through C and into D concurrently. The Air Force had committed itself in

December 1958 to supply NASA with standard Atlas Ds for all Mercury mis-

sions. The first installment on this commitment came due in September, at the

same time that the weapon system was to prove itself operational. Since April 14,

1959, when the first series-D missile exploded 30 seconds after liftoff, only four

other Atlas Ds had been launched, the second and third of which were partial

failures or partial successes, depending upon one's point of view. _°

In July and August, however, the two successful Atlas-D launchings were

supplemented by exceptionally encouraging flights of the last two series-C Atlases.

Atlas 8-C had flown on July 21, bearing "RVX-2," or the first ablative reentry

nose cone adapted to the Atlas. It was especially welcome to STG officials; both

the flight and the recovery provided demonstrative evidence to reinforce STG's

commitment to the ablation principle for the Mercury heatshield, rl

Joe is a common name, but there was nothing common about the big Atlas

missile and the Mercury payload that stood poised upright at launch complex 14

at Cape Canaveral on September 9, I959. Some had hoped that Big Joe would

skyrocket on July 4, but the launch date was postponed until mid-August by the

Air Force because the booster did not check out perfectly at first. Then it was

put off until early September by STG engineers, who were stymied by troubles in

the sophisticated instrumentation and telemetry. Finally, on the evening of

September 8, Atlas 10-D, the sixth of this model to be flight tested, stood on its

launch pad at Cape Canaveral with a replica of the Mercury capsule (minus an

escape tower) at its tip. All NASA waited for the countdown to begin at mid-

night. About a fourth of the Space Task Group members were at the Cape for

the "Atlas ablation test." From this first full-scale, full-throttle simulatibn of the

reentry problem, every member could expect further task definitions.

200

Ji



MAN-RATING THE MACHINES

If Atlas 10-D should fail, if the boilerplate capsule should fail its test or be

lost, then a backup shot, Big Joe II, would have to be made. But without proof

that the ablation heatshield could actually protect a man from the intense fric-

tional heat of reentry, and without dynamic evidence that the frustum-shaped

spacecraft would actually align itself blunt-end-forward as it pierced the atmos-
phere, all the rest of the "R and D" invested in Faget's plan would avail little.:'-'

The nose-cone-capsule for Big Joe, handcrafted by NASA machinists, had

no retrorocket package. The inner structure held only a half-size instrumented

pressure ve_el instead of a pressurized cabin contoured to the outer configuration.

Built in two segments, the lower half by Lewis and the upper by Langley crafts-

men, the main body of the spacecraft replica was fabricated of such relatively

thin sheets of corrugated Inconel alloy in monocoque construction that the

appellation "boilerplate" capsule was especially ironic. 7'_

For this model of the Mercury payload, more than a hundred thermocouples

were installed around the capsule skin to register temperatures inside and under
the heatshield, sides, and afterbody. Jacob Moser and a group of instrumenta-

tion specialists from Lewis had developed a nmltiplex system for transmitting

data over a single telemetry link from all thermocouples plus 50 other instruments,

including microphones, pressure gauges, and accelerometers.

Back in Cleveland, three controls engineers, Harold Gold, Robert R. Miller,

and H. Warren Plohr, had designed a "cold-gas" attitude control system, using

high-pressure nitrogen for fuel. They had worked directly with Minneapolis-

Honeywell to devise the gyros, logic, and thrusters for the critical about-face

maneuver after separation. It was essentially unique in its use of cold-gas nitro-

gen thrusters rather than the "hot-gas" hydrogen peroxide systems that Bell Aero-

systems had developed for the X-15 program. TM

To STG novices watching the launch preparations, the Atlas and the orga-

nization of people it required to get off the ground seemed incredibly complex.

But they themselves were not well organized even for their sole responsibility with

the payload. Big Joe had three bosses, all at work under Mathews. Aleck C.

Bond, the Langley heat-transfer specialist, had accepted from Faget almost a year

ago the responsibility for the overall mission success. B. Porter Brown, the

Langley engineer first sent to pave the way for STG at the Cape, acted as STG's
chief liaison with the Air Force-Convair team. And Scott H. Simpkinson, lead-

ing the group of about 45 test-operations people from Lewis, had been living

with the capsule for Big Joe in a corner of Hangar S since the second week in

June, when checkout and preflight operations tests began. The NASA-Goddard

crew still held most of the hangar space in preparation for Vanguard III, their

culminating launch, scheduled later in September. 7_
Porter Brown bore the title of NASA Atlas-Mercury Test Coordinator and

worked--along with NASA Headquarters representative Melvin Gough--under
nominal direction from the Missile Test Center. To fathom the complexity of

launch operations and organizations at the Cape required expertise, tact, and
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Sketches by C. C. Johnson o[ comparative boilerplate Mercury capsules used in Big
Joe and Little Joe test flights. The sketches, dated February 26, 1959, show the

transition [rom the original Big Joe capsule design (le[t) to the one actually used
(center), which in turn would be a precursor o[ the capsules used in Little Joe launches.

drive. Security restrictions were so strict for the Atlas, and agencies and launch
crews so compartmentalized, that horizontal or interpersonal communications in
the lower echelons were virtually nonexistent. Brown had to keep vertical
communications open and establish STG's "need-to-know" at every step. TM

To launch a missile required a stack of documents almost as tall as a gantry.

Documents called "preliminary requirements," "operations requirements, .... opera-
tions directives," "test directives," and innumerable other coordinating catalogs
had to be circulated and their orders followed before, during, and after getting
a rocket off the ground. To active young engineers with a mission, this paper-
work could only be frustrating, but Air Force experience had shown the value of
the documentation system in imposing order on a chaotic situation. 77

Atlas 10-D was programmed to rise, pitch over horizontally to the Atlantic
before it reached its ]00-mile peak altitude, then pitch down slightly before
releasing its corrugated nose cone at a shallow angle barely below the horizontal.
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In the near vacuum of space at that altitude, tiny automatic thrusters in the

capsule should make it turn around for a shallow reentry into the stratosphere.
The friction of the air, graduaily braking the speed of the descent, would dis-

sipate the kinetic energy imparted to the capsule by the Atlas. An incandescent

cauldron of this transformed energy would envelop the capsule llke a crucible as

it penetrated denser air. It was hoped that enough of this heat would be deflected

by the slip stream and boiled away into the turbulent boundary layer of the

shock-wave to protect the capsule from vaporization. This flight should simulate

closely what a man must ride through if he was to live to talk about an Atlas-

boosted, Mercury-returned orbital flight around Earth.

About 2:30 a.m., a 19-mlnute hold in the countdown was called to investigate

a peculiar indication from the Burroughs computer that was to guide the launch.
A malfunction was found in the Azusa impact prediction beacon, a transponder
in the booster. Since there were several redundant means, including an IBM

machine that was part of the range safety system, for predicting the impact point,

the trouble was ignored, the countdown resumed, and liftoff occurred at
3 : 19 a.m. TM

It was a beautiful launch. The night sky lit up and the beach trembled with

the roar of the Rocketdyne engines. For the first two minutes everyone was

elated. Then suddenly oscillograph traces indicated that the two outboard

booster engines had not separated from the centerline sustainer engine,

as they were supposed to do when their fuel was exhausted. Flight controllers
and test conductors in the blockhouse and control center began to worry about

"BECO" (or booster engine cutoff) as contradictory signals appeared on their

panels and computer readout rolls. Apparently all systems within the capsule

were performing as planned, but the capsule seemed not to do its half-somersault.
The added weight of the booster engines retarded velocity by 3000 feet per second.

The Burroughs computer predicted an impact point about 500 miles short. All

eight reaction control jets seemed to be working perfectly, yet the reentry attitude
could not be verified before the telemetry blackout occurred as the capsule

skidded back into the atmosphere. _ No one could ascertain what had happened

during that 20-rninute flight unless the recovery forces downrange could retrieve

the capsule and its onboard tape recordings.
Six ships of Destroyer Flotilla Four began racing uprange at flank speed.

Patrol and tracking planes started flying their search patterns. Before dawn,

tracking ships and downrange tracking stations detected the solar bomb explosion

underwater, and provided new coordinates for the point of impact. As the sun

rose over the sea, a Navy P2V Neptune patrol plane, homing in on a sarah beacon

signal, reported sighting the capsule bobbing in the water. It vectored the nearest

destroyer, now still over 100 miles away, to the green-dyed area for retrieval. It

was still too early to tell whether the primary objectives of Big joe had been

achieved. But as the morning progressed, more evidence from the range made

it appear that all telemetry had functioned properly. If the capsule could be
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recovered before it sank, the most important objective, finding out how well*the

capsule's ablation shield had endured reentry, could be evaluated quickly.
While eager newsmen at the Cape were being cautioned to avoid erroneously

identifying this custom-built prototype as the Mercury capsule, technicians wcrc

busily analyzing "quick-look" data that would give more information about

booster and payload separation performance, thc attitude control system, the

internal and external temperature history of the model, noise and vibration levels,

telemctry and tracking effectiveness, and acceleration and deceleration peaks.

About seven hours after launch, exultation swept over the Big Joe launch team

at the Cape when thc destroyer Strong reported that she had netted the precious

capsulc intact and secured it on deck. The terrestrial return trip by water and

air required another 12 hours. As soon as the transferring cargo plane arrived

at Patrick Air Force Base, the capsule was loaded onto a dolly, and a police escort

clearcd the way for the shrouded trailer bearing the tangiblc rcmalns of the Big

Joe mission along the 15 miles through Cocoa Beach to Cape Canaveral.

When the capsule arrived back home in Hangar S, about midnight, cv/_ry

NASA person at the launch site that day gathered around the capsule for a joyous

autopsy. GiIruth, Fagct, Mathcws, Bond, Brown, and Simpkinson stood by as

someone dropped the canvas veiling the secret hcatshield. The group marveled

at the superb condition of their archtype. Bond ran his fingers over the now

cool glass beads on the face of the ablation shield, noticed that thc afterbody was

bareIy singed. Brown scratched the whhe-paint legend "United States" and

found it hardly discolored. Although one of the afterbody recovery eyes was

welded shut by reentry heating, a piece of masking tape, which Simpkinson had

allowed to remain, was still intact inside the outer conical shell. A tired but

happy crew unscrewed the two halves of the inner pressure vessel and handed to

Gilruth a letter that had been sealed inside and signed by 53 people under Mathcws

in anticipation of this occasion :

This note comes to you after being transported into space during the successful
flight of the '_Aig Joe" capsule, the first full-scale flight operation associated
with Project Mercury. The people who have worked on this project hereby
send you greetings and congratulations, s°

Within a week, data reduction made possible the reconstruction of the inflight

history of Big Joe. As suspected, the outboard engines had failed to stage after

booster engine cutoff, and the additional weight degraded the Atlas velocity about

3000 feet per second. This meant the trajectory of the flight path had been

steeper and slightly lower than planned and that the sustainer engine had

powered the capsule into a steeper downward course before burnout. Without

a positive force to divide thc two objects in frcc fail, the capsule had separated

from the booster about 138 seconds late, after all of its high-pressure nitrogen

fuel was expended in trying futilcly to turn both booster and spacecraft around

for reentry. When it finally broke loose from the launch vehicle at an altitude
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of 345,000 feet and at a space-fixed speed of almost 15,000 miles per hour, the
capsuIe was an exhausted, passive, free-falling body. Yet by virtue of its con-
figuration and center of gravity, the capsule turned itself around without the aid
of either thrusters or damping controls and reentered the atmosphere successfuIIy.
The dynamic stability of the capsule configuration was so good that doubt of its

ability to damp out its entry oscillations was also ended.

The heat pulse sustained in the actual Big Joe trajectory was shorter but con-
siderably more severe than planned. If STG had been testing a beryllium heat
sink shield, these untoward conditions would not have proved anything. For the
ablation heatshield, the length of the heat pulse was sufficient to prove the value

of the approach. The sequencing, structures, instrumentation, and cooling sys-
tem had all worked well. The recovery of the capsule inspired so much confidence
among STG leaders that Big Joe II, the backup launch, was canceled within three
weeks.

Virticol gyto

\

\

The Mercury capsule Automatic Stabilization and Control System.

Pitch fore myro

Rofl rate gyro

Ampfif;er cal;bral©r
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Cores and slices taken from the conservatively designed heatshield at many

locations proved that the heating was uniform over its face and that its structural

integrity had survived impact without compromise. The depth of ablation char-

ring was shallow enough to leave at least two-thirds of the fiber-glass material in

pristine condition. Bond and Andre J. Meyer were especially pleased with the

large margin for error represented by the thickness of the heatshield remaining.

Subsequently, they were able to reduce the thickness and the weight of the shield

by almost one half.

One note of caution remained in all the jubilation following Big Joe. Leonard

Rabb, the head of Faget's theoretical heat transfer section, signed a memo on

October 7 demanding action to prove that the short heat pulse on Big Joe could be

disregarded. "Calculations indicate," said Rabb, "that the present Mercury

heatshield will not survive a reentry due to natural decay." If retrorockets should

be lost or become inoperative and if the ablation shield in orbit should have to

sustain and dissipate the long, slow building of the heat pulse over 24 hours or so,

catastrophe would result, Rabb warned :

Under no circumstances should the weight of the heat shield itself be shaved.
Recent calculations cast doubt on the shield's performance, not only for natural
decay reentry but for the one retro [rocket instead of three or two] case as
well. 81

By the end of October, the working papers giving the results of Big Joe were

published, and gradually the lessons learned from this shot were incorporated in a

number of major redesign decisions. The features that became standard for

Project Mercury as a result of Big Joe have been summarized by AIeck Bond :

(1) In view of the excellent performance of the ablation shield, the back-up
beryllium heat sink shield was dropped from further consideration for Mercury
orbital missions.

(2) The basic heat shield fabrication techniques employed for the Big Joe
shield were adopted for the Mercury heat shield.
(3) The detailed temperature measurements made on tile Big Joe shield pro-
vided for an efficient design thickness for tile Mercury shield.
(4) The afterbody heat transfer measurements indicated a need for heavier
external thermal protection than had been provided for the Mercury space-
craft, and as a result the shingles on the conical afterbody were thickened and
on the cylindrical afterbody the original Ren6 shingles were replaced with the
thick beryllium shingles in order to handle the high heating loads in this region.

The ability of the spacecraft to survive the severe test of reentry from near-
orbital velocities in spite of its unprecedented release conditions, is certainly
worthy of note. The heat shield performance was excellent and the results
indicated that the original design concepts were sound. The spacecraft per-
formance as a freebody reentry vehicle was exceptional. An important char-
acteristic of the Mercury design was demonstrated; that the spacecraft could
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Big Joe

Sept. 9, 1959

Big Joe was a critical flight in Mercury, combining a test

o[ the reentry concept employing the ablating heatshield

and a test o[ the as yet only hall-tested launch vehicle,

the Atlas D. At right, Big Joe on the launch pad at Cape

Canaveral, being groomed /or the big event. Below,

AIeck C. Bond (lelt), Big Joe project engineer, and

Scott H. Simpkinson, who had been in charge o[ capsule

checkout at the Cape, kept track o[ their charge during

the [light. Below right, the slightly singed but gloriously

intact Big Joe capsule alter its retrieval [rom the Atlantic.
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reenter the atmosphere at high angles of attack and maintain the heat shield
forward attitude without the aid of a control system! 82

The elation of the Task Group over the dynamic proof of its passive design of

Mercury was not shared by the Atlas people. Their booster 10-D, having failed

to stage, performed only marginally and in fact was classed a failure by the Air

Force and STL. But across the country, on the Pacific Coast, Atlas 12-D,

launched by the SAC crew under the tutelage of Convalr/Astronautics and STL,

performed as a true ICBM on a 5200-mile flight to its target in the South Pacific.

Immediately thereafter the Air Force announced the Atlas was now operational.

Apparently the force-in-being totaled only the two missiles erected in training

gantries at Vandenberg, but the delicate balance of power could not wait for the

buildup of numbers3 _

LITTLE JOE SERIES

While the results of the Big Joe launch were being studied, a five-man investi-

gating committee at Langley was trying to learn why the first Little Joe shot, on

August 21, 1959, had miscarried so badly. Out at Wallops Island that Friday

morning several weeks earlier, the first Little Joe (LJ-1) had sat on its launcher,
tilted toward the sea, with a full-sized model capsule and escape system on top. Its

test mission was to determine how well the escape rocket would function under the

most severe dynamic loading conditions anticipated during a Mercury-Atlas

launching. At 35 minutes before launch, evacuation of the area had been pro-

ceeding on schedule, and the batteries for the programmer and destruct system in

the test booster were being charged. Suddenly, half an hour before launchtime,

an explosive flash and roar startled several photographers and crewmen into diving
for cover.

No one was injured, but when the smoke cleared it was evident that only the

capsule-and-tower combination had been launched, on a trajectory similar to an

off-the-pad abort. The booster and adapter-clamp ring remained intact on the

launcher. Near apogee, at about 2000 feet, the clamping ring that held tower to

capsule released and the little pyro-rocket for jettisoning the tower fired, s4

The accident report on LJ-1, issued on September 18, blamed the premature

firing of the Grand Central escape rocket on an electrical leak, or what missile

engineers were calling "transients," "ghost" voltages or currents, or simply a

"glitch" in a relay circuit. The fauit was found in a coil. It had been specially

designed as a positive redundancy to protect biological specimens from too rapid

an abort and as a negative redundancy to prevent inadvertent destruction of the

test booster. Again the problem of Upgrading the machines to provide safety for

animal payloads as well as to ensure mission success had created unexpected prob-

lems. This first trial of the brand-new Little Joe test booster apparently had been

too ambitious. Fortunately the momentum of the Little Joe test series was not

disturbed by the debacle of the boilerplate payload on Little Joe No. 1.
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NorthAmericanAviationfinishedandshippedonSeptember25,1959,itssixth
andlastairframefortheLittle Joe booster as promised. The Space Task Group

therefore had available at the beginning of October all the Little Joe test boosters

it had ordered. Designed primarily to man-rate the escape system operating from

a Mercury-Atlas already in flight, the Little joe booster also was committed to per-

form some biological research before fulfilling its primary mission ?5

More by coincidence than by design, the next three Little Joe boosters were

launched from Wallops IsIand exactly one month apart in the autumn of 1959.

Still the primary aerodynamic test objectives remained unfulfilled. But the fourth

shot, in January 1960, finally worked precisely as planned. STG was satisfied

that its own pilot safety provisions were viable under the worst possible aero-

dynamic conditions. The same kind of test on McDonnell's finished product,

rather than on boilerplate demonstration capsules, perhaps could be made the

following summer.

On October 4, 1959, the same booster that had been jilted by the capsule and

escape rocket in August was finally fired, this time with a double dummy--an

uninstrumented boilerplate model fitted with an inert escape rocket system. After

the fiasco of LJ-1, the more modest purpose of this test, which later became known

as Little Joe 6 (L J-6), was to prove the "re/iabi_ity" of the whole booster propul-

sion cluster. All four Pollux motors, plus four smaller Recruit motors, were set to

fire in sequence. Little Joe 6, 55 feet tall and weighing 20 tons at liftoff, blasted

up to a peak altitude barely short of 40 miles; then it was intentionally destroyed

after two and a half minutes of flight to prove the destruct system. Impact was

over 70 miles from Wallops Island. All went well? 6

Satisfied that Little Joe had proved itself as a booster, the supervisory team of

NASA engineers, consisting of John C. Palmer from Wallops, and Roland English,

James Mayo, Clifford Nelson, Charles McFaU of Langley, and William M. Bland

and Robert O. Pi/and of the Space Task Group, prepared for a new effort to check

the correct operation of the abort escape system at maximum loading conditions.

The region called "max q" (for maximum dynamic pressure) by aerodynamicists

is the portion of the flight path at which relative speed between the vehicle and

the atmosphere produces the greatest air resistance on the vehicle. Many vari-

ables were involved, but roughly both Little Joe and the Mercury-Atlas were ex-

pected to experience dynamic pressures of almost 1000 pounds per square foot at
an approximate altitude of six miles after about one minute of flight time.

For the second attempt at this primary mission, Little Joe 1-A (LJ-1A)

needed to propel another dummy capsule and pylon to the max q region.

Both drogue and main parachute behavior were to be carefully studied on this

flight. Surprised by the insistent demands from the news media to witness these

developmental flight tests, STG gave the press a careful enumeration of situations

that might call for a "hold" or a "scratch" of the shotY

On November 4, 1959, when the second Little Joe booster was successfully

launched, newspapermen could see nothing wrong. The flight looked straight and
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true until the rocket was out of sight. But the test engineers in the control center
observed that the escape motor did not fire until 10 seconds after the point of
maximum dynamic pressure. The parachutes and recovery operations performed
well enough to fulfill secondary and tertiary objectives, but precisely why escape
was too slow was never fully understood. Later analysis showed only that the

delayed ignition of the escape rocket caused the separation of capsule from booster
at a pressure only one-tenth of that programmed, s_ Because the next scheduled
launch of a Little Joe booster was already committed to a test for certain aero-
medical objectives and was now in a late stage of preparation, the primary
aerodynamic test of the escape system was postponed until January, when a third
try, to be called Little Joe l-B, could be made.

Back in May, STG had begun planning with the Air Force School of Aviation
Medicine to include some biological packages in later Little Joe flights. The

booster designated No. 5 was reserved specifically to qualify all systems in the
McDonnell capsule, carrying a chimpanzee occupant and escaping from a simu-
lated Atlas explosion at the point of max q.S9

After the disappointment of Little Joe l-A, Donlan, Bland, and Piland decided
to pull out the stops on Little Joe 2 and allow the aeromedical specialists to run
all the experiments they wanted on a high-powered flight. The School of Aviation
Medicine had made ready a biological package for its primate passenger, a small
rhesus monkey named "Sam," after his alma mater. In addition to Sam's special

capsule for rocket flight, the military physicians now prepared barley seeds, rat
nerve cells, neurospora, tissue cultures, and insect packets to measure the effects
of primary radiation, changes in appearance and capacity for reproduction, and
ova and larvae responses to the space environment.

Little Joe 2 promised to be a spectacular flight if everything went as planned.
The engineers could see how the capsule escape system would function under

conditions of high mach number and low dynamic pressure; more important
technically, they could measure the motions, aerodynamic loads, and aerodynamic
heating experience of the capsule entering from the intermediate height of about
70 miles. The Air Force medical specialists might also learn about other things,
but their chief interest was to see how well Sam himself would withstand weight-

lessness during the trip. This was also the chief interest of Alan B. Shepard and
Virgil I. Grissom, who came to see this launch. °°

On December 4, 1959, just before noon, the third Little Joe, LJ-2, ripped
through the air under full power and burned out at an altitude of 100,000 feet.
The tower and capsule separated as planned and the escape rocket gave an
additional boost, throwing the capsule into a coasting trajectory that reached its
zenith just short of 280,000 feet, or 53 miles. This peak height was about 100,000
feet lower than expected because of a serious windage error, so Sam experienced

only three minutes of weightlessness instead of four. He survived the mild reentry,
the not-so-mild impact, and six hours of confinement before he was recovered by
a destroyer and liberated from his inner envelope. 91
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Little Joe 2

Dec. 4, 1959

A launch [rom Wallops lsland was

a quieter, simpler affair than at the

Cape. This photo o[ L]-2 being

readied [or launch shows the un-

pretentious gantry and service

structure. The live payload [or
the flight, Sam, the rhesus monkey,

is shown be[ore the Iqight strapped

into his miniature replica o[ the

Mercury astronaut couch.
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All preliminary indications reflected a highly successful flight. For the first
time Little Joe had achieved full success on all three orders of its programmed
test objectives. Congratulator)' letters sped around the circuit among those
responsible. It was a satisfying way to close out the year. But STG engineers
knew that this full-performance test of the Little Joe was not the most crucial case
for man-rating the Mercury escape system. They still had to prove that at

max q, where everything conspired to produce failure, the escape system could
be relied upon to save the life of any man who ventured into this region aboard
an Atlas.

Later evaluations of Little Joe 2 were somewhat less sanguine. Biologists were

disappointed: although results were better than on any previous biological space
flight, they were still not good enough. STG engineers still awaited the more
crucial test of the escape system under maximum aerodynamic stress. And the
Mercury managers were disappointed at the way the news media had dramatized

the anlmal experiments at the expense of the equally significant demonstration of
technological progressS-

Public information officers John A. Powers of STG and E. Harry Kolcum of
NASA Headquarters tried to correct the "misplaced emphasis" in the news stories
before the fourth Little Joe shot, Little Joe l-B, occurred in January. By this
time, Gilruth wished the press would note "the relatively minor role of this

particular task in the context of the total Mercury program." 9._ But again, to the
reporters the star of the event was "Miss Sam," the female counterpart to the
occupant of L J-2, whose life was at stake and whose nervous system was to be
tested in psychomotor performance tasks during the short but severe flight. Some
of the newsmen perhaps knew or divined that several of the astronauts wanted to
ride one of the next Little Joes into space.

Finally, on January 21, 1960, with the fourth launching of the Little Joe series,
the escape system performed as planned at the point of max q.9_ Propelled bv
two Pollux main motors, Little Joe I-B blasted up to the nominal altitude of
slightly less than nine miles and attained a maximum velocity slightly Over 2000
miles per hour. Then the escape rocket kicked on the overdrive for an additional
250 feet in one second to "rescue" the Mercury replica from a simulated booster

failure at that point. Over a range of 11.5 miles out to sea, Miss Sam, in her
biopack prepared by medical technicians from Brooks Air Force Base and its
School of Aviation Medicine, not only survived these severe g loads but also
performed well (except for a 30-second lapse) at her business of watching for
the light and pulling the lever. After 8.5 minutes of flight, during which the

sequence system and capsule landing systems worked perfectly, Miss Sam touched
down. She was recovered almost immediately by a Marine helicopter, and was
returned in excellent condition to Wallops Station within 45 minutes after liftoff. _5

For half a minute after the escape rocket fired, the little rhesus monkey had
been badly shaken up and did not respond to stimuli, but otherwise Miss Sam
acted the role of the perfectly trained primate automaton throughout the flight.
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Evidence of nystagmus after escape rocket firing and after impact on the water did

cause concern, for it suggested that an astronaut's effectiveness as a backup to the

parachute system might be impaired. The internal noise level proved to be higher

than expected, likewise causing some other worries over the provisions for com-

munications and pilot comfort? G

To this point, the Little Joe series of five actual and attempted flights had

expended four of the six test boosters North American had made for NASA

and five prototype capsules made in the Langley shops. The primary test objec-

tives for these solid-fuel-boosted models were an integral part of the develop-

ment flight program conducted within NASA by the Space Task Group, with

Langley and Wallops support. Now onIy two Little Joe boosters remained for the

qualification flight tests. North American had manufactured seven Little Joe

airframes, but one of these had been retained at the plant in Downey, California,

for static loading tests. STG ordered the refurbishment of this seventh airframe

so as to have three Little Joe boosters for the qualification flight program. The

success of Little Joe 1-B in January 1960 meant that the next flight, the sixth, to

be known as LJ-5, would be the first to fly a real Mercury capsule from the

McDonnell production lineY In passing from development flight tests with

boilerplate models to qualification flight tests with the "real McDonnell" capsule,

the Space Task Group moved further away from research into development

and toward operations.

ONE WORLD NETWORK

From the beginning of 1959, the United States' first manned space flight

program was committed to manned ballistic suborbital flights as prerequisite to

a manned orbital flight, and to a world-wide tracking and communications net-

work as a safeguard for its man in orbit. Both of these distinguishing features

were means of man-rating its machines. The second began to be implemented

only in the latter half of 1959, after NASA Headquarters had relieved STG of
the burden of the network.

Neither suborbital flight nor the tracking network for Mercury was established

with any real notion of what the Soviets were doing toward a manned space flight

program. But that the Soviets were doing something toward this end was made

perfectly clear by Premier Nikita Khrushchev during his autumn tour of the

United States. Having presented President Eisenhower with a medallion of the

Soviet coat-of-arms borne by Lunik II, the first manmade object to hit the Moon,

Khrushchev visited Hollywood, Iowa cornfields, and the Presidential retreat at

Camp David. His departure coincided with press announcements that Soviet

pilots were training for an assault on the cosmos. The first pictures of the back

of the Moon, made by Lunik III on October 4, demonstrated impressive Soviet

sophistication in guidance, control, and telemetry, if not in photography? 8

If various American government agencies late in 1959 knew more than the

public did about the probable speed and direction of the Soviet manned space
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program, this information was not passed down to the Space Task Group. Top

administrators in Washington were undoubtedly accorded "need-to-know" brief-

ings on Soviet progress, but at the working level around STG at Langley there

was no such privileged information on the so-called "space race." In fact, not

until mid-December did STG learn some of the operational details of Air Force

programs then being conducted on the West Coast. Even the Dyna-Soar pro-

gram, so heavily influenced by Hartley A. Soul_, John W. Becker, and others at

Langley, seemed at times to be out of reach to Mercury engineers? _

In the "spirit of Camp David" the seven astronauts themselves proposed an

exchange of visits and information with their Soviet counterparts, but to no

avail. Proof that the United States and the Soviet Union could agree was shown

in the Antarctic Treaty signed by 12 nations, including the two giants, on

December 1, 1959. In the same spirit only a week later the NASA Adminis-

trator offered the services of the Mercury tracking network in support of any

manned space flight the U.S.S.R. might care to undertake, but this offer also was

stillborn. So sparse seemed available official information on Soviet manned

space plans that Paul Purser, as special assistant to Gilruth, assumed an extra duty

by beginning a scrapbook of published accounts relating to Soviet manned space

flight plans. 1°° It would have been "nice to know" in more detail what the

Soviets were planning and how well they were proceeding, but STG's "need to

know" was mainly psychological curiosity. Such information, if available, prob-

ably would have made little difference to the technological momentum of Project

Mercury at the end of 1959. The impetus generated for the project by that time

was truly formidable and still accelerating.

NASA Headquarters had relieved STG of developing the global range net-

work in the spring of 1959, believing that the Tracking and Ground Instru-

mentation Unit (TAGIU) at Langley and the communications center at Goddard

Space Flight Center together could develop radar and radio facilities more

expeditiously. The wisdom of this assignment would prove itself; the communi-

cations network was never a cause for delay in Mercury operational schedules.

The decision to build an extensive new tracking network girdling the globe had

derived largely from Langley studies of operational tracking requirements made

by Edmond C. Buckley, Charles Mathews, Howard C. Kyle, Harry H. Ricker,
and Clifford H. Nelson in the summer of 1958. Then followed four extensive

and independent studies by Massachusetts Institute of Technology, Ford, Space

Electronics, and Radio Corporation of America in the spring of 1959. Many

interrelated technical, operational, and diplomatic considerations were involved

in the evolution of the network, with pilot safety and limited capsule battery power

setting the first standards.

Next to manufacturing the capsule itself, the Mercury network was the most

expensive part of the entire program. But that network represented a capital

investment in tracking and communications ability that NASA would also use

effectively for scientific satellites and space probes. The full compass of the
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tracking range and communications network built for Project Mercury is beyond

the scope of this volume, but salient features of the chain of tracking stations,

of the communications grid, and of the ground instrumentation planned for Mer-

cury set other basic parameters for the project. Hartley A. Soul_, the aero-

nautical scientist who directed Langley's part of the establishment, made a

circumnavigation of the Earth to prepare the circumferential path for orbital
overflights. TM

When Christopher Kraft spoke to the Society of Experimental Test Pilots

on October 9, 1959, he explained certain of the major criteria used to choose the

orbital plane for Mercury and to select ground stations to monitor the man in orbit.

"Since the first manned orbital flight will be a new type of operation involving

many new experiences," Kraft said, "it would be desirable to keep the time in

orbit as short as practical, while at the same time making an orbital flight."
Emphasizing the necessity to secure an accurate and almost instantaneous determi-

nation of the potential orbit before actual insertion, as well as an exact retrofiring

point and thereby a low-dispersion "footprint," or recover)' area, Kraft explained
how the first manned orbital mission should shoot for three rather than one or two

orbits. He also listed four specific reasons why the best orbit inclination to the

equatorial plane would be 32.5 degrees and the most desirable launching azimuth,

or direction, would be 73 degrees true: (1) maximum use should be made of

existing tracking stations and communications facilities; (2) the Atlantic Missile

Range should be used for both the launching and the planned recovery area;
(3) the orbital track should pass directly over the continental United States as

much as possible to maximize unbroken tracking, especially during reentry; and

(4) the orbital path should be planned to remain over friendly territory and
temperate climatic zones? °_

These criteria constrained the choice of both Mercury's orbital plane and its

launching azimuth. East-northeast was an unusual firing direction from Cape
Canaveral, where ballistic missiles were normally shot southeastward down the

Atlantic range. Taking the sinusoidal track displaced for each orbit as it would

look on a Mercator world projection, Sould, Francis B. Smith, and G. Barry

Graves of Langley, Mathews, Kraft, and Kyle in STG, and many others resolved

the complex trades between the Atlas booster characteristics, capsule weight limi-

tations, launch safety considerations, suitable recovery areas, existing Defense
Department tracking and communications networks, and available land for locat-

ing instrument stations. Soul_ and his Tracking Unit at Langley shouldered most

of the responsibility for the compromises between what should and could be done

with electronic communications and telemetry to promote pilot safety and ensure
mission success.

While STG delegated such decisions as whether to select sites in Kenya or

Guadalcanal, where to use C- or S-band radars, and whether to lay a cable or

build a redundant control center on Bermuda, it kept tight control on all matters

affecting control of the missions and especially of the decisions on orbital param-
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eters. John Mayer and Carl Huss, leading STG's Mission Analysis Branch, had

learned their celestial mechanics from the traditions established by Johannes

Kepler, Sir Isaac Newton, and Forest R. Moulton, but from 1957 through 1959

more and more data from various artificial satellites continually refined their

calculations. Keeping in close touch with STL on the improving Atlas perform-

ance characteristics, Mayer's group sought to establish the ideal "launch window"

or orbital insertion conditions. Not until May 1960 were these parameters
established, a°_

John D. Hodge, another Anglo-Canadian, who helped Mathews learn how

the Defense Department launching and tracking teams operated at the Atlantic

and the Pacific missile ranges, explained how the major compromise on man-rating

the worldwide network was achieved in 1959. Physicians like Lieutenant Colonel

David G. Simons, of Project Manhigh fame; Major Stanley C. White, on loan to

STG from the Air Force; and Colonel George M. Knauf, the staff surgeon at the

Air Force Missile Test Center, had argued for continuous medical monitoring

and complete voice and television coverage around the world. Physicist-engineers,

like Sould, Smith, and Graves, saw these demands as virtually impossible. The

doctors were forced to retreat when asked what could possibly be done after

diagnosis had been made on an ailing astronaut in orbit. Twenty minutes would

be the absolute minimum time required to return him to Earth from orbital

altitude after retrofiring. "Aeromedical clinicians finally had to agree late in

t959," said Hodge, "that they could do little if anything to help the astronaut

until he was recovered." Once in orbit the pilot's safety primarily depended upon

mission success. Mission success depended at this stage primarily upon positive

control over reentry and recovery operations. The ground command and tracking

systems were consequently more important than complete voice or telemetry
coverage. TM

Aside from the tight security surrounding the Atlas ICBM, perhaps the most

closely guarded operational secret in Project Mercury was the ground control

command frequencies established at strategic points around the Earth tO enable

flight controllers to retrieve capsule and astronaut from space in case of extreme

necessity. Unlike the technological secret of the heatshield, this highly reliable

command system was not classified as an industrial production secret, but rather

to avoid any possible tampering or sabotage by electronic countermeasures? °_

Once the specifications for the tracking and ground information systems for

Project Mercury had been drawn up and distributed at a bidders' briefing on

May 21, 1959, the Tracking Unit at Langley proceeded to select a prime con-

tractor for the tracking network. In mld-June the organization, membership,

and procedures for a technical evaluation board and source selection panel were

specified. A month later the evaluation of industrial proposals was completed.

The Western Electric Company, supplier of the parts and builder of the network

for the American Telephone and Telegraph system, won the prime contract to

build the Mercury network. After NASA sent Western Electric a letter of intent
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onJuly, 30, 1959, Rod Goetchius and Paul Lein began organizing the resources

of Western Electric for Project Mercury. 1°_

Sould arranged for six site survey teams chosen from his group at Langley to

travel over Africa, Australia, various Pacific islands, and North America to choose

locations for communications command posts. Much of the traveling Soulfi did

himself; he enjoyed both the technical intricacy and the scientific diplomacy of

getting foreign scientists to urge their governments to cooperate for the tracking
stations.l°_

Meanwhile NASA Headquarters acquired from the National Academy of

Sciences Arnold W. Frutkin, who had had experience during the IGY in dealing

with the State Department and foreign governments for international coopera-

tion in scientific affairs. Beginning in September 1959, Frutkin laid the staff-

work basis with the United Kingdom for Mercury tracking stations in Nigeria

and Zanzibar. Zanzibar and Mexico in particular appeared reluctant to accept

at face value the United States' good--that is, civilian--intentions for Mercury.

The President's brother, Milton Eisenhower, personally obtained consent for full

Mexican cooperation? °8

By the end of November, preliminary designs for the Mercury tracking net-

work were almost completed and a five-company industrial team was developing

facilities. Western Electric had subcontracted to the Bendix Corporation for

the search radars, telemetry equipment, and the unique display consoles for each

site. Burns and Roe, Inc., took over the engineering and construction of the

buildings, roads, towers, and other structural facilities at 14 sites. International

Business Machines Corporation installed the computers at Goddard Space Flight

Center, the Cape, and Bermuda, and supplied programming and operational

services. Bell Telephone Laboratories, Inc., designed and developed the opera-

tions room of the Mercury Control Center at the Cape, and furnished a special

procedures trainer for flight controllers as well as overall network systems analysis.

Eighteen gound stations were chosen for terminals in the communications

network. Eleven of these sites, equipped with long-range precision radar equip-

ment, would double for the tracking system. Sixteen of the stations were to have

telemetry receivers, but only 8 of the 18 would be located on military missile

ranges where existing radar and other facilities could be used. One new station

(at Corpus Christi, Texas) would have to be established in the United States.

Two stations were mobile, located on tracking ships at sea; seven were built in

foreign countries. In November 1959, the total cost for the system was estimated

at $41,000,000. The target dates for operational readiness were set as June 1,

1960, for suborbital Atlantic missions and as New Year's Day 1961 for worldwide

operations.

The tracking and communications network for Project Mercury was a monu-

mental enterprise that spanned three oceans and three continents by means of

approximately 177,000 miles of hard-line communications circuitry. Although
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most of these wires were leased, the subtotals were likewise impressive: 102,000

miles of teletype, 60,000 miles of telephone, and over 15,000 miles of high-speed

data circuits--plus the microwave radio telemetry and telecommunications cir-

cuits, which are not so easily described in linear distances. Although colossal

in conception and execution, the Mercury tracking and communications network
fell far short of 100-percent voice contact, telemetry contact, or tracking capability,

not to speak of complete television coverage, which some aeromedical designers
would have included. 1°"

Despite NASA's boast about "real-time," or instantaneous, communications,

the historical novelty of the Mercury communications network lay less in the
temporal than in the spatial dimension. So-called "instantaneous" communi-

cations were born in the 19th century with the installation of "speed-of-light"

wired communications-the telegraph, submarine cables, and the telephone.

Neither radio nor radiotelephone of the 20th century brought strategic place-
ment of telecommunications installations into such a unified network that the

time of signals from antipodal sides of the world could be reduced to an "instant."

Transoceanic telephone conversations between Hong Kong and Houston, for

example, still delayed responses by enough time to give one the feeling of talking

to oneself. Synchronous communications satellites supposedly would soon change

all this, but surface communications used for Mercury operations cost some slight,

but nonetheless real, time in transmission. The real innovation of the Mercury

network lay in its combination of extremely rapid communications lines, linked

and cross-linked around the world, culminating in digital data processing, which

displayed its results in Florida virtually as soon as computed in Maryland. n°

Only the development of digital electronic computers in recent decades made

possible quick enough data digestion and display to allow communications en-

gineers to speak of "real-time" presentations for Project Mercury. Telemetry

grew more sophisticated separately in industrial and military circles until bio-

medical telemetry became by 1959 a recognized part of the margin of safety

for manned space flight. But computer technology did not suffer this kind of

bifurcated development. In fact, commercially sold digital computers were

ready and actually operating under canvas tents while workmen were laying

block and brick for the permanent building to surround them. No construc-

tion time could be lost if the communications and computing center was to be

completed at the Goddard Center early in I960. TM

Harry J. Goett, formerly chief of Ames' Full Scale and Flight Research

Division, took the reins as director of Goddard in September 1959. He found

that the nucleus of some 150 Vanguard people had grown to approximately 500

employees. After Vanguard III finally terminated that program successfully

on September 18, about one third of Goddard's complement turned to develop-

ing the facilities and teamwork for a space operations data control and reduction

center. Actual direction of all Mercury computer programming was done from
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The worldwide Project Mercury tracking network was designed to provide the lull

range o[ communications objectives--tracking, data collection, command and control,

and voice communication among ground points and with the capsule. I[ the Mercury

Control Center at Cape Canaveral was the intellect o[ ihe Mercury ]Tights, the

Computing and Communications Center at Goddard Space Flight Center, Greenbelt,
Md., was surely the nerve center. It acted as the communications link between the

remote stations and Mercury Control Center. Its two IBM 7090 computers, operating

in parallel, per[ormed the continuous computation involved in determining powered-

lqight tra#ctory parameters, the smoothed present position o[ the spacecra[t, continu-

ous prediction o[ [uture spacecra[t position, and constant data acquisition [rom all

stations. Finally the computers calculated and transmitted to Mercury Control the

quantities needed [or instantaneous board display o[ the mission situation.

Langley by J. J. Donegan and H. W. Tindall, Jr., of the Tracking and Ground

Instrumentation Unit. But in August 1959, John T. Mengel of Goddard con-

ferred with Soulfi; together with Edmond Buckley of NASA Headquarters they

decided to assign about 14 senior engineers to specific Mercury problems. From
October 1959 over the next 18 months this Goddard staff tripled in size and then

doubled again when the Tracking Unit's responsibility and key men were
transferred to Goddard. 11"

To raise the reliability of the computers and telemetry used in Project Mercury,

redundancy and cybernetics were again incorporated in design. For example,
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"real-time multi-programming" was the name for a technique and some hard-

ware developed as digestive aids for Mercury data processing machines. M.J.

Buist and G. M. Weinberg of Goddard tried to describe their efforts to achieve
"real-time" data:

The problem . . . is to develop a real-time computer system capable of receiv-
ing input arriving at asynchronous times and at different rates of transmission
with minimum delay. It must be capable of performing mathematical
computations while input is being received and edited. Simultaneously, it
must send out information to numerous sites in varied formats and at varied

speeds without human intervention, n3 ........

For this purpose two IBM 7090 transistorized computers were installed at

Goddard, in Maryland. Two older model IBM 709 vacuum tube computers, one

installed for NASA on Bermuda and the other an Air Force "IP" (impact pre-

dictor) for the Range Safety Officer at the Cape, were modified to handle a com-

puter logic designed with equivalent alternative programs rather than with the

usual subroutines. By means of special memory traps and automatic switching,

the most critical data reduction operations were redundantly programmed into
the IBM machines to ensure cross-checks on the man-rated machines in orbit.

Curiously, the difference between the IBM 709s and 7090s, so far as reliability

was concerned in 1959, was the same difference the Mercury team encountered

with miniaturization techniques. Although solid-state electronic devices like

transistors, printed circuits, and molectronic capacitors promised tremendous sav-

ings in space, weight, and trouble-free operation, they were as yet so new that

their reliability was not proved. The two 7090s at Goddard, therefore, were

necessary redundancies for the heart or brain of the global tracking and target

acquisition grid. The two independent and separate 709s at the Cape and

Bermuda, amply stocked with spare parts, had the more limited but no less critical

job of computing whether orbital launch conditions had been met. The two

new transistorized computers at Goddard should man-rate the worldwide Mercury
switchboard and data reduction. The older, more reliable vacuum-tube com-

puters in the Mercury launch area should ensure nearly perfect orbital insertion

conditions before the point of no return. TM

That point of no return was first selected as insurance against landing in Africa.

Later refinements to the "go/no go" decision point incorporated parameters from

the standardized atmosphere, better drag coefficients, perturbation theo_ _, pre-

ferred recovery areas, the improved Atlas booster, and the heavier Mercury capsule.

These and many other intertwined considerations made the efforts of man-rating

the machines for Mercury seem almost as limitless a task as space is a limitless

continuum. The)' had the effect of canceling, for the time being, STG's hopes

for an 18-orbit, or daylong, final Mercury mission.

By the end of 1959 Project Mercury was well under way on many different

fronts. The American astronauts, supposedly shifting from academically oriented

training to practical engineering and operational exercises, were widely known as
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menin trainingto challengetheimpressiveSovietperformancesin space. Most
recently,Lunik III had photographed the unknown side of the Moon for the

first time. A few Soviet names and faces appeared in Western publications as

challenging indications that the U.S.S.R. too was training pilots for space fights.

But the imagination and hopes of the American people were pinned on the seven
of their own, each of whom had the chance of being the first human being to

orbit Earth. Publicized in accord with the law and in response to public de-

mand, the plans and progress of Project Mercury were for the most part open
knowledge. NASA Headquarters was swamped with inquiries of all kinds from

all sorts of people. The field managers of Mercury had ruefully discovered that

people, or at least reporters, were more interested in people than machines, so

they allowed "Shorty" Powers to skew publicity toward machine-rating the men

rather than man-rating the machines. 115

221



1



mnu, ,nu ,,u ,,gu,,w,i WWUWUlUWlUWn_IIIWI_IU |_n

Machine-Rating the Men

(JANVARY--JUNE 1960)

UST as the safety of the pilot flying the Mercury mission depended primarily
on the reliability of the boosters, so the o_ erall success of the mission would de-

pend primarily on thc adaptability of the man inside the capsule. This proposi-
tion, recognizing man and machine as directly interdependent, had been far from
evident at the beginning of the project. But by the middle of 1960 the developers

of Mercury had encountered enough troubles with various automatic systems to
dissipate much of their faith in automata. They began to believe that it might
be simpler to train toward human perfection and safer to teach the operations team
to act automatically than to try to make electromechanical systems operate fault-
lessly. If the gaps left after technologically man-rating the machines could be
filled with techniques learned by machine-rating the men, then lack of experience

need not jeopardize either the man or the mission.

Early in 1960 two peerless feats in hydronautics complemented mankind's
first infantile steps toward astronautics. Two uncommon vessels named Trieste

and Triton, sponsored by the United States Navy, made voyages probing the
plenum of the seas only a year before men became able to venture upward into
the near vacuum. While "space" was being defined popularly as the region
above the atmosphere and below the ionosphere, man also conquered the aqueous
seven-tenths of Earth's surface space between the atmosphere and the lithosphere
for the first time in history. Demonstrating remarkable closed ecological systems
and significant integrations of men and machines, the Trieste descended to the
bottom of the deepest known point in the oceans and the Triton "orbited" thc
Earth underwater?

The Trieste and Triton voyages symbolized an accelerating translation of

science fiction into fact at the beginning of the sixth decade of the 20th century.
These voyages not only dramatically demonstrated man's ability to explore and
pioneer new frontiers but they also symbolized some complex interrelationships in
the sociology of science, invention, innovation, and discover)'. Project Mercury
likewise promised to exhibit the social energy of a civilization intimately interlocked
with industrial technology, governmental organization of manpower, and an

223



THIS NEW OCEAN

accumulation of usable knowledge. Motivationally, too, Mercury grew out of

the curiosity, courage, and creativity of individual men who wanted to do "un-

natural" deeds. An age-old question of humanistic inquiry--what is human

nature?- -seemed to become rhetorical, and, as preparations for manned space

flight neared completion, inverted: what is not natural to man?

No one doubted at the beginning of 1960 that someone was going upward

into space shortly, but precisely who, when, where, and even why were highly

controversial questions. NASA Administrator T. Kelth Glennan predicted the

first Mercury suborbital flight within the year. Soviet spokesmen previewed their

mid-January rocket tests over the Pacific as a preparation for placing man in

space. Winds from conflicting opinions expressed by political, military, scientific,

and industrial critics of American policy regarding space technology began to

brew some squalls when NASA asked that almost $108 million of its total budget

request of $802 million be appropriated for manned space flight development in

fiscal 1961. Whether Mercury would finally cost $250 or $350 million, as was

now variously estimated, it would still be a small fraction of the cost of the great

Saturn rocket, not to mention other NASA projects.-"

While the Eisenhower administration rejected the "space race" image attached

to Mercury, Congress pressed for a greater sense of urgency, NASA Headquarters

sought supplemental funds, and the Space Task Group concentrated on reconciling

schedules with quality control. There was a detente in the cold war until the

controversial U-2 incident in May 1960. But even during this thaw STG, as

the technical coaching staff for the prime American contestant, became steadily

more enmeshed in the confused competition between the United States and the

Soviet Union to be first with its man in space. While Maxime A. Faget was

being honored as one of the top 10 young men in government service for his designs

of the Mercury capsule, couch, and escape concepts, Abe Silverstein stated pub-

licly, "We feel no urgency to move the program unsafely." But the political

pressure to produce would increase rapidly as 1960 wore on?

At the end of January, Little Joe 1 -B finally, with a boilerplate capsule, proved

the basic aerodynamic viability of the Mercury abort concept. McDonnell Air-

craft Corporation's first production hardware, which happened to be capsule No.

4, was delivered on demand only half-finished to Langley, where it was fitted with

instruments like Big Joe's for the first flight to mate the Atlas booster with the

"real McDonnell" head. As it turned out, the only other flight test for Mercury

during this half year occurred at Wallops Island on May 9. There and then,

McDonnell's Mercury capsule No. l, so named because it had been first on the

assembly line, was yanked by its escape rocket from the beach abort position to

begin successfully the qualifying flights for the McDonnell capsule. It took only

14 months to build and deliver this first capsule with its most critical systems

ready to be qualified for basic technical performance. Meanwhile qualification

tests in laboratories began in earnest. No mechanisms were more difficult to

qualify than those most intimately related to the human system.
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CONTROLLING THE HOSTILE ENVIRONMENT

To replace the old warhead payloads with inhabitable cockpits on the missiles

used to transport man into space required reliable, lightweight means of sustaining

life beyond the atmosphere. When man ascends from the bottom of the ocean

of air where life as we know it has evolved, he must stay inside a pressurized cell

of air or die in the vacuum of space. Engineering the environmental cocoon to

provide the basic metabolic needs of man became, through 1959 and 1960, one

of the most complex and critical aspects in Mercury's development. Aristotle's

classical anthropocentric elements--earth, water, air, and fire--correspond

roughly to man's need for the gravisphere and atmospheric pressure, for hydration
and waste disposal, for oxygen to breathe through lungs and skin, and for tem-

perature and humidity control. Safety required that these life systems be redun-

dant wherever feasible. The oxygen envelope, for instance, should be contained

within the welded walls of the pressure vessel, but in case of leak, puncture, or

blowout, the astronaut would wear a suit that was a second inner casing, fully

capable of life support in a decompressed capsule. _

The environmental control system for Mercury, logically divided into the

cabin and suit subsystems, grew directly out of previous aviation experience in

maintaining men and machines at high altitudes. McDonnell had to seal her-

metically the pressure vessel within prescribed limits; a subcontractor developed

the dual air-conditioning system. Because the clothing needed for space travel

turned out to be unavailable from the shelves of government issue, another sub-

contractor was called upon to make a full-pressure suit that would in effect be a
secondary cabin.

When McDonnell and STG engineers first considered the problems of the

pressurized cabin, they sought the experience of the foremost company of indus-

trial specialists on the subject. AiResearch had grown since the 1930s into the

Manufacturing DMsion of the Garrett Corporation, the Nation's primary supplier

of the needs of the pressurized flight industry? In January 1959 the three groups

began to discuss the most realistic design criteria for ambient and partial gas

pressures, air and water regeneration methods, thermostats, and heat exchangers.

R. A. Fischer, Edward H. Olling, and Richard C. Nelson of Garrett, Herbert R.

Greider, John R. Barton, and Earl A. Reed of McDonnell, and Stanley C. White

and Richard S. Johnston of STG were the principal designers of this system.

While the process of fabricating the pressure-vessel shell by the fusion-welding

techniques of William Dubusker and his production engineers was cut and tried

on the factory floor, the important question of cabin atmosphere gas composition

was being debated by physicians and physicists. Should the cabin air and pres-

sure imitate "sea level" air mixtures of nitrogen and oxygen, or should the space

cabin endorse the experience of aviation and use at highest altitude whatever

would guarantee oxygenation? c Stanley White championed the latter position

forcefully, in response to rather late outside criticism that "shirtsleeve" environ-
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mental air might be preferable. John F. Yardley and Barton, Faget and Johnston

agreed emphatically that a five-pound-per-square-inch pressure of pure oxygen

would be far more practical for saving weight, controlling leakage, and avoiding

the extremely difficult problem of providing reliable oxygen partial-pressure sen-

sors. Faget explained STG's choice:

The most important consideration in choice of a single gas atmosphere is relia-
bility of operation. If a mixed gas atmosphere were used, a major increase in
complexity in the atmospheric control system and in monitoring and display
instrumentation would have resulted. Furthermore, the use of a mixed gas
system would have precluded the use of simple mechanical systems for a great
number of these functions which in itself would have decreased the reliability

of pefformanceJ

Reduced to practice, these designs had evolved into hardware for three spheri-

cal oxygen bottles, tested at 7500 pounds per square inch, with simple regulator

valves, a lithium hydroxide canister to remove carbon dioxide and odors, an

evaporator heat exchanger (its water would boil around 35 degrees F at a 100-mile

altitude), and a simple pulsating-sponge water removal system, all to be located

beneath the astronaut's legs. Blowers, a fan, snorkels, and plumbing were also

included to make the capsule livable under the extremely diverse conditions exist-

ing before, during, and after an orbital mission. The most novel parts of this

system were the high-pressure oxygen bottles, the use of lithium hydroxide, and

the "sponge squeezer" to collect perspiration and respiration water vapor from

the cabin atmosphere. Cleanliness in the manufacture of these components was

so important that AiResearch built the first "surgery," or "white room," for Mer-

cury fabrication in the summer of 1959.8

McDonnell and AiResearch engineers consulted the voluminous literature on

aeromedicine before imposing STG's specific requirements on top of the state of

their art. One of the best independent guides to that state was a report prepared

in mid-1959 by A. B. Thompson of Chance Vought Astronautics, entitled "Physi-

ological and Psychological Considerations for Manned Space Flight." Thompson

compiled a consensus on environmental parameters derived from a wide number

of sources; then he presented these factors systematically in the order of their

occurrence on a typical orbital mission. Concerning the internal atmospheric

environment, he drew heavily from submarine, as well as aviation, practice and

expressed particular concern over abnormal toxicities peculiar to space conditions.

Regarding temperature tolerance, Thompson wrote:

Man can exist and carry out simple tasks in environmental temperatures from
-40 ° to 1406 if suitable clothing is worn for the low, and if humidity is kept at
30-50% for the high. Time of exposure to high temperatures should be well
below man's tolerance limits. Up to 160°F can be withstood for 20 minutes.
Such temperature highs are possible at reentry into atmosphere. Insulation,
double walls, cabin temperature and atmosphere cooling should limit the heat
of cabin to less than 140°F even when skin temperature of the vehicle is much
higher. 9
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Between John Barton of McDonnell and Edward Olling of AiResearch, the

system specifications for environmental control began to emerge in mid-1959,

subject to continuous reappraisal as other systems also took shape. Their original

set of design parameters rather arbitrarily selected 400 British thermal units per

hour for one man's average heat production rate over 28 hours, and an ambient

pressure of 5 pounds per square inch circulating through the cabin, with a breath-

able supply of oxygen at the partial pressure of 3.8 pounds. An assumed oxygen

consumption rate of 500 cubic centimeters per minute allowed a slight margin for

suit leakage. Setting the average rate of perspiratory and respiratory water pro-

duction at 6 pounds per day dictated the weight and size of their system's hardware.

Particularly knotty for the development of the active air-conditioning system

and the passive insulation to control the cabin temperature was a problem that

Barton described in terms of applied thermodynamics:

Studies of launch, orbit and reentry heating effects disclosed that the insulation
requirements for the cabin side-walls for the orbit and reentry phases were
diametrically opposed. In orbit it is desirable to lose heat from the side-walls
and during reentry it is necessary to prevent the entry of heat. The reentry
phase, being more critical, dictated the side-wall insulation. In orbit, the in-
sulation becomes an almost perfect heat barrier and dictates that the cabin
cooling be primarily accomplished by the cabin heat exchanger, a°

At the end of July 1959, Barton and Frank G. Morgan, Jr., met with 18 STG

engineers, including all the astronauts, to describe the basic designs and develop-

mental problems, especially leaky instrumentation fittings, for the system now

known as "the ECS." Faget, White, William K. Douglas, William S. Augerson,

and Robert B. Voas, and the ECS systems engineers, Richard Johnston, Frank

H. Samonski, and Morton Schler, all warned that the design parameters were

set too low. They demanded larger margins of at least 1000 British thermal lmits

per hour for astronaut heat generation, at least 7 pounds per day assumed water

production, and certainly no less oxygen pressure in the suit than in the cabin. 11

Greider and Barton warned the astronauts to learn early and thoroughly the

symptoms of hypoxia in themselves so the), could take action soon enough to ensure

an emergency oxygen supply. Otherwise probe sensors of some sort in the nostrils
or the lungs might be necessary.

McDonnell hurried the building of a "man-rating" environmental system test

chamber through September 1959, so that a reliability test program for each sub-

system could be conducted, complete systems tests could be scheduled, and astro-

naut familiarization training could begin as soon as possible. By the end of the

month, Gilbert B. North, as McDonnell's test astronaut, had endured so man)'

failures or inadequacies in the bench testing that STG sought the aid of physiologists

from Duke University School of Medicine and from the Navy Air Crew Equipment

Laboratory in Philadelphia to help speed the man-rating of the environmental

control system. At the end of January 1960, neither the cabin nor the suit en-

vironmental control system had passed its test to operate as designed for 28 hours.
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Richard Johnston reported that experience with the system was still "rather

meager." He urged aeromedical investigators to provide more "realistic meta-

bolic data" for his engineers to use in system redesign. 12

Difficulties with the body ventilation and post-landing snorkel ventilation

subsystems continued troublesome through 1960. Extensive testing at AiResearch

and intensive manned tests at McDonnell beginning in June slowly eradicated

moat of the "bugs" plaguing the reliability of the environmental control system.

A robot "crewman simulator," designed primarily by Charles F. Jahn and Eugene

Wulfkehler at McDonnell, served to calibrate the physical parameters for average

human inputs and outputs to this closed ecological system. Then, too, Gilbert

North and Herbert Greider learned to outwit the peculiarities of the mechanisms

to avoid hypoxia, dysbarism, and hyperventilation. The initial manned tests of
the ECS hardware were endured by McDonnell volunteers; occasionally the

Mercury ,_stronauts would observe. Gas analysis problems delayed the accumula-

tion of reliability records and the verification of certain operational procedures,

such as ground purge and ground cooling, untiI early 196173

SUITING UP FOR SPACE

The pressure suit for Project Mercury was designed and first developed during

1959 as a compromise between the requirements for flexibility and adaptability.

Learning to live and move within aluminum-coated nylon and rubber garments,

pressurized at five pounds per square inch, was like trying to adapt to life within

a pneumatic tire. Led by Walter M. Schirra, Jr., whose speciality assignment

this was, the astronauts literally wrestled with the most elementary problem in

becoming machine-rated--wearing the suit.

Back in February 1959, Maxime Faget and Stanley White became convinced

that the so-called "pressure" suits being used by Air Force and Navy test pilots

were rather "high-pressure" and partially anti-g flying suits. Ever since 1947

the Air Force and the Navy, by mutal agreement, had specialized in developing

partial-pressure and full-pressure flying suits, respectively, but a decade later

neither type was quite satisfactory for the newest definition of extreme altitude

protection. Such suits would require extensive modifications, particularly in

their air circulation systems, to meet the needs of the Mercury space pilots. The

first suit conference on January 29, 1959, attended by more than 40 experts in the

art of tailoring for men engaged in high-altitude flying, had recommended an

extensive evaluation program? _ Through the spring three primary competitors--

the David Clark Company of Worcester, Massachusetts (a prime supplier for

Air Force pressure suits), the International Latex Corporation of Dover, Delaware

(a bidder on a number of government contracts invoMng rubberized material),

and the B. F. Goodrich Company of Akron, Ohio (suppliers of most of the

pressure suits used by the Nax_y)--competed to provide by the first of June their

best products for a series of evaluation tests.
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Few systems in the Mercury program
were modified as frequently or as

drastically as the space suit. Shown

here are an early model worn by

Slayton in 1960 (above) and the

end.of-Mercury model worn by

Cooper at the time of his flight in

May I963 (right). Cooper is fol-

lowed by suit technician Al Rochford.
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NASA had requested the Air Force Aeromedical Laborator3, at Wright Air

Development Center and the Navy Air Crew Equipment Laboratory in Phila-

delphia to plan and perform evaluations of the different test suits before mid-July.

The Clark and Goodrich suits ranked highest in both evaluation programs, but

predictably the Air Force favored the Clark suit and the Nax3, the Goodrich

suit. After an evaluation conference on July 15 at Langley, the chairman,

Richard Johnston, informed all parties of STG's decision to work with both the

Clark and the Goodrich companies for several more months to allow further con-

current devel_pment and evaluation of various combinations of suits and ventila-

tion systems. '_ By the end of August, William Augerson and Lee N. McMillion

of STG recommended that "the suit should not be expected to cope with al! the

deficiencies of the Mercury capsule." The close interface between pressure suit

and environmental control system caused enough problems to delay the formula-

tion of suit specifications until October, but Goodrich was awarded the prime

contract for the Mercury space suit on July 22, 19592 _'

One of the most senior employees of the Goodrich Company was Russell M.

Colley. In 1933, Wiley Post returned from the fi_t solo flight around the
world and wanted some kind of rubber suit that would enable him to fly his

famous aircraft Winnie Mac above the record 47,000-foot altitude. Colley had

designed an aluminum helmet resembling those used by marine divers and had

stitched together on h_s wife's sewing machine the first crude space suit. The

next ?,ear Colley and his company had desig-ned and developed a more flexible

flying suit for Wiley Post, with an off-center face plate to accommodate Post's one-

eyed vision. In 1952, Colley had designed and helped develop swivel joints of

air-tight bearings and fluted fittings for pressure suits fabricated by Goodrich for

the Naval Bureau of Aeronautics. In 1959, Colley, along with Carl F. Effler,

D. Ewing, and other Goodrich employees, was instrumental in modifying the

famous Navy Mark IV pressure suit for NASA's needs in orbital flight.

Although the decision to let the capsule itself provide primary, protection

minimized the difference between corseted, pressurized g suits and a "space suit"

for Project Mercur),, the redundant suit environmental control system required

complicated modifications and continual refittings.

The Task Group had discovered during 1959 that each Mercury capsule

would have to be specially tailored to its own mission objectives. Pressure suits

also were designed individually according to use--some for training, others for

evaluation and development. Thirteen operational research suits first were ordered
to fit astronauts Schirra and Glenn, their flight surgeon Douglas, the twins Gilbert

and Warren J. North, at McDonnell and NASA Headquarters, respectively, and

other astronauts and engineers to be specified later. A second order of eight

suits supposedly would represent the final configuration and provide adequate

protection for all flight conditions in the Mercury program.

The three major parts of the space suit--the torso coveralls, the helmet, and

the gloves--were fabricated by techniques and procedures similar to those already
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in use in the manufacture of full-pressure flying suits. But the air system operation

was unusual:

The Mercury headpiece is a single cavity design with suit ventilation air exit-
ing through the exhaust valve located in the right cheek area. This system is
known as the "closed" or "single gas" system and utilized one air source for
ventilation as well as breathing. This concept, which is desirable in space mis-
sions, permits simplicity of design and minimum weight of the ventilation and
respiration equipment. '7

According to Lee McMillion of STG's Life Systems Branch, the Big Joe

reentry heating test in September 1959 allowed the developers of the pressure suit
to remove much of the insulation previously thought necessary. This improved

somewhat the mobility of the astronaut under full pressurization. By the end

of the year McMillion, Colley, Schirra, and Glenn A. Shewmake, STG's "tailor,"

chose to modify the suit to facilitate mobility in the capsule rather than repattern

for a more generally mobile suit. Schirra had felt many pressure points and was

severely constricted in recent tests. His discomfort was traced to the design con-

servatism that had accepted the g suit and oxygen mask concepts used for the

Navy Mark IV and Air Force X-15 flying suits. Furthermore, each time these

prototype space suits were pressurized and worn, they stretched out of shape. TM

Throughout the spring of 1960, fittings and tests with new textiles, different

materials, and other human models continued until they finally solved the stretch-

ing problem. In mid-March a committee of eight members from STG, McDon-
nell, the Navy, and Goodrich decided on the final design features for the Mercury

space suits. All kinds of minor troubles with zippers, the visor, the segmented

shoulder, lacings, straps, snaps, seams, valves, underwear, gloves, microphones,
and neck dams continued. But after a "gripe session" in mid-May 1960, the

astronauts and their tailors essentially agreed on what the well-dressed man

should wear into space) 9

During an orbital flight, certain physiological limitations were expected to

establish the requirements for matching man and machine in one smoothly func-

tioning system. 2° In the area of noise and vibration, for example, research during
the 1950s had led to the conclusion that 140 decibels, in the broad spectrum

between 100 and 12,000 cycles per second, was the most that man could stand
for durations of four or five seconds. Acceleration tolerances were rising, thanks

to knowledge gained by centrifuge and rocket sled tests, but above 6 g pilots

could breathe only by forcing abdominal constriction and could move effectively

only their hands and fingers. An oxygen pressure inside the lungs corresponding

to that of 100 millimeters of fluid mercury was judged necessary to preclude any

symptom of hypoxia. To guard against the danger of "bends" (caisson disease

or dysbarism), the cabin pressure should not be more than twice the suit emer-

gency pressure of 180 millimeters of mercury. No more than two percent of

carbon dioxide by volume at sea level should be permitted? _ Other limitations,

including extremes of temperature, humidity, radiation, and accumulating toxic
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gases from carbon monoxide, ozone, metal, and plastic fumes, also became

"human parameters." Warning instruments in the capsule relied primarily on

stimulating the astronaut's senses of sight and sound; psychologists also

studied the feasibility of using his senses of touch and smell to aid him in

diagnosing malfunctions. 22
During the fifties academic and medical studies in sensoR" deprivation

made an important, if indirect, contribution to the building of the spacecraft and

the training of the astronauts. Made notorious by the experience of American

prisoners of war who had been isolated and "brainwashed" in North Korean

prison cells, the effects of isolation were attacked on many fronts. At McGill

University, in Canada, at the University of Rochester in New York, and at the
National Institute of Mental Health in Bethesda, Maryland, famous sensory

deprivation experiments reduced all physical stimuli to near zero. Suspend-

ing people in water of body temperature in blacked-out, soundproof rooms at
Bethesda revealed that normal men, regardless of their motivations, could hardly

stay both conscious and sane if deprived of all sensory stimuli beyond three hours.

Physicians and psychiatrists were warning in 1956 and 1957 that

if one is alone enough and at levels of human and physical stimulation low
enough, the human mind turns inward and projects outward its own contents
and processes .... Man's mental state is dependent on adequate perceptual
contact with the outside world .... Isolation produces an intense desire for
extrinsic sensory stimuli and bodily motion, increased suggestibility, impairment
of organized thinking, oppression and depression, and in extreme cases, halluci-
nations, delusions, and confusion33

Such background studies strengthened aeromedical demands, originating outside
NASA and STG, for continuous communications between the ground and an

orbiting man, for increasing the number of meaningful cues to be given the man

in space, and for accenting significant tasks to be performed by the man inside the

capsule. There was room for controversy here, but STG and NASA believed

the hypothetical risks did not justify the very large outlay of money, men, and

time that a continuous communication network would have required.

If outside advice of this type was not always taken, there was still a conscious

effort to solicit it. One of the most useful means of dialogue was the presenting

of papers at meetings of professional societies. The size, lead time, and innovating

nature of Project Mercury, together with the impetus from NASA's open infor-

mation policy, all reinforced the normal professional obligation to inform and

meet the judgment of one's colleagues. Thus it was that, on January 25, 1960,

several leading engineers from the Space Task Group were in New York for

the annual meeting of the Institute of Aeronautical Sciences and presented papers

reviewing the scope and recent results of their research and development pro-

gram. 24 In one of these, Charles W. Mathews set forth the operational plans

for the orbital mission. He did not mention the role of the pilot until the end
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of his remarks. He then offered a summary list of eight activities to illustrate

what the astronaut must be prepared to do: the Mercury pilot should com-

municate with ground stations, make scientific observations, monitor onboard

equipment, control capsule attitude, navigate and fire retrorockets, initiate emer-

gency procedures, activate escape system if necessary, and deploy landing para-

chute if required. Any one of these activities could conceivabIy save the mission. 25

The degree of control over his own destiny that the astronaut might have

during the first orbital flights steadily increased throughout 1959 by virtue of the

development of two new semi-automatic control systems: fly-by-wire, interposed

in the automatic stabilization and control system (ASCS), and the rate command

system (rate stabilization control system, or RSCS), superimposed on the manual

proportional control system. Further elaboration and sophistication of the hard-

ware took account of man's flexibility by providing for the use of more than one

system at a time. In addition to the "last resort," or manual-proportlonal, method

of attitude control, other uses of the astronaut as a source of mechanical power

were being incorporated to the mutual advantage of reliability and flexibility.

Turnkey handles and pull rings were added to duplicate virtually every automatic

function of the mission sequence.

In April 1960, Edward R. Jones, the chief psychologist at McDonnell, feeling

that a vigorous offense is the best defense, argued in public that man in the

Mercury capsule not only could act as an observer as well as the observed but

should be considered an integral part of the system to increase the probability of

mission success. Having just completed extensive studies of man's vision from

the new centerline window, Jones supervised studies of other expected sensations

during the Mercury orbital flight. 2_ As the hardware and manned capsule

systems tests progressed, Jones had more reason for his optimism about

man's ability to perform effectively in space, once his life-support requirements

were met. Concerning higher mental processes, Jones, speaking in a symposium

at the Iowa Academy of Science, where James A. Van Allen represented the

instrumentalists and John Paul Stapp represented the experimental physicians,

maintained his positive approach:

Most of the astronaut's tasks will involve complex mental activity even though
some may be on a near reflex level as a result of constant practice. It is not
expected that impairment of these functions will occur under normal vehicle
operation. Stress and an abnormal atmospheric composition, if present, could
cause some impairment of the higher mental functions.

It should be apparent that the training of the astronaut in the operation of
the space vehicle will be critical. Much of the physiological training and
conditioning will be given on a part task basis in human centrifuges, and pres-
sure and heat chambers. The operation of the vehicle can be practiced over
and over again in a capsule simulator . . . built for Mercury. Overlearning
far beyond the point that apparent progress stops seems to be the best guarantee
that the astronaut will have developed response patterns that are legist apt to
deteriorate under the stresses of orbital flight. _7
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SEVEN ASTRONAUTS-IN-TRAINING

When the astronauts first had reported to the Task Group at the end of April

1959, they had been oriented with a series of lectures covering every aspect of

STG's progress. Mter a welcoming general briefing by Paul E. Purser, Alan B.

Kehlet delivered their first lecture on April 29, explaining the configuration and

the escape system. Following two weeks of such lectures, the group began to visit

contractor facilities for familiarization with mockups, hardware, and manufactur-

ing processes. They went to the launch site at Cape Canaveral. At various

military and medical centers, each man learned to know himself still better

through training sessions in the pressure suit, in heat chambers, in heavy concen-

trations of carbon dioxide, and in parabolic flying. By July, Robert Voas, the

astronauts' training officer, had prepared tentative curricula and schedules; during

unscheduled times, each man was expected each week to fly for three hours, to

spend six hours on his specialty area, and to exercise at least four hours in athletics.

The primitive jury-rigged air-bearing platform trainer also was ridden by each

astronaut for two hours per week at first.

During August 1959, each man spent approximately two weeks at Johnsville

riding the centrifuge in "closeloop" (i.e., with man in the control circuit) simula-

tion of the exit and reentry profiles. In September each man spent a week at

McDonnell, another at the Cape for tlae Big Joe shot, and another at the Goodrich

plant in Akron being fitted for his pressure suit. And in October 1959, the seven

pilots, by now reluctant celebrities, traveled to Edwards and Vandenberg Air

Force Bases, to the AiResearch and Convair factories, and to the Naval School of

Aviation Medicine at Pensacola for different kinds of centrifuge runs and for

training in survival, disorientation, and communicationsY

Although everyone who read the news or looked at Life magazine knew that

the Mercury astronauts had been assigned specialty areas befitting their profession

as engineering test pilots, few could see the logic of those assignments. 29 M. Scott

Carpenter accepted responsibility for communications and navigation because as

a Navy lieutenant he had had special training in airborne electronics and celestial

pathfinding. Virgil I. Grissom, who had earned a degree in mechanical engineer-

ing from Purdue University in 1950, became the expert for the group on the

complicated electromechanical, automatic, and manual attitude-control systems.

The senior man in age and date of rank, John H. Glenn, Jr., had the most experi-

ence in flying varieties of aircraft and could therefore make the best contribution

to c.ockpit layout. Walter M. Schirra, Jr., born to a flying family and a graduate

of the Naval Academy, took a special interest in life-support systems and the

pressure suits. Alan B. Shepard, Jr., like Carpenter and Schirra, had the back-

ground training of the naval flier for specializing in tracking and recovery opera-

tions. L. Gordon Cooper, Jr., and Donald K. Slayton, both Air Force captains,

accepted the jobs of astronaut liaison with the developers of the Redstone and the
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Just as they did as military test

pilots be[ore they )oined the Mer-

cury program, each astronaut [elt

his first responsibility to be that o[

the engineer-test pilot responsible

[or knowing his spacecra[t and its
equipment so well that he could

quickly and with certainty evalu-

ate its per[ormance. In these

photos, Cooper (felt) performs an

engineering check on a spacecra[t

and Schirra (below) inspects a
hatch in white room at the Mc-

Donnell Aircra[t Corp. plant.
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Atlas boosters, respectively. Cooper, the youngest of the group, had been dedi-
cated to flying since childhood and had worked with performance engineering
similar to what he would encounter at Redstone Arsenal. And Slayton, with a
degree in aeronautical engineering from the University of Minnesota and having
worked for two years with the Boeing Company in Seattle, was best fitted to report
on the progress of the Atlas booster at Convair/Astronautics.

The astronauts' specialty assignments had some direct effect on the redesign of
the Mercury suit, cockpit layout, and capsule hatch and window systems. More
importantly, the assignments kept the crew informed in depth on the problems and
progress in major areas of concern to all members. Carpenter and Shepard kept
tabs on the progress of the Tracking Unit at Langley and of the Goddard Space

Flight Center in preparing to operate the network. While Carpenter monltored
the development of onboard navigation equipment, such as the Earth-path
indicator and starfinder charts, Shepard paid special attention to recover), at sea
and to problems of egress from the capsule and survival on Earth in inhospitable
environments. Grissom studied the electromechanicaI worries of Robert G. Chil-

ton, Thomas V. Chambers, and other controls engineers. Schirra worked closely
with Richard Johnston and John Barton on the environmental system, and with

Lee McMillion, Gilbert North, and the Goodrich people in preliminary fittings
of the pressure suit. Cooper and Slayton spent much of their time traveling to
Huntsville and southern California, respectively, attending meetings and offering
suggestions from the pilot's viewpoint on how best to mate a manned capsule with
the Redstone and Atlas missiles. Glenn, meanwhile, paid special attention to
optimizing the cockpit and improving simulation training? °

Within months after joining the Space Task Group, the more eager than
anxious astronauts found themselves barraged by questions regarding their

emotional feelings about being catapulted into orbit. In answer to one such set
of questions, posed in an author's questionnaire for a high-school textbook, Schirra
perfunctorily replied that it was only natural for a test pilot to want to participate
in the most advanced form of manned vehicular travel. Schirra's desire to "go
higher, farther, and faster" than previously had been possible was to him neither

mysterious nor worthy of introspection; it was simply the professional commitment
of them all and of STG to want to expand the test pilot's "envelope." 31

Partly because of this kind of natural public interest and partly because the
civilian space agency had a statutory mandate to conduct educational publicity,
NASA Headquarters, after investigation and decision, encouraged the astronauts
to stay together and to accept the fringe benefits of a single private-enterprise
publishing offer arranged in outline even before their selection. This precluded
eventual competitive bidding for individual story rights. On August 5, 1959,
the astronauts sold their "personal stories" to the highest bidder, Time-Life, Inc.,

for $500,000, an amount to be equally divided regardless of who might be chosen
first to fly in space. This money was to be paid in installments throughout the
program. The astronauts' wives also subscribed to the contract. Defense De-
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partment policy had been followed by the NASA decision because the astronauts

were active-duty military officers? 2 There were similar precedents for test pilots,

Presidents, and submarine captains. Many Congressmen approved this form of
extra life insurance ofofofofofofofofofo_rthe astronauts' wives.

A public furor, nevertheless% arose in the press over these exclusive rights to

publish the memoirs of the seven. Few other peripheral policy decisions regarding

Project Mercury were to become so controversial in the long run. As the waiting

period before an astronaut flew in space stretched on, public interest grew; the
competition among newsmen and media increased; the line between personal and

public domains blurred. NASA and STG were forced to contend with no small

amount of adverse and even spiteful publicity from indignant correspondents who

were not of the favored few. Warren North, two days after this contract was

signed, advised Silverstein about it and warned of other impending difficulties,

including a loss of privacy to a degree the astronauts might not have anticipated? _

The agreement, arranged without fee by C. Leo DeOrsey, a_prominent Wash-
ington lawyer and sportsman, assigned all magazine ,rod b_---_ rights to Time-
Life, Inc., for ..... _non-offici__a]2jeature storms on the astronauts and their families.

Since it was cleared by_'_S:Vs legal and public relations chiefs, John Johnson and

Walter T. Bonney, the astronauts and the Task Group had to adapt themselves

to this policy. John A. "Shorty" Powers, at least, was relieved of one headache and

was not displeased with the arrangements? 4

Although Robert Voas at first had designed an orderly curriculum for the

astronauts, their actMties soon became so diverse and the group separated on

sorties for their specialties so often that the academic approach became impossible.

The coordination of astronaut training became his chief duty. Voas gathered

and trained a team of training specialists. George C. Guthrie had respon-

sibility for improving training aids, procedures, and simulation devices; Raymond

G. Zedekar arranged the lecture series; Stanley Faber conducted the four-phase

centrifuge training program on the Johnsville "wheel." By the end of 1959,

each of the astronauts had trained for about 10 hours riding the gondola at

Johnsville. Voas, meanwhile, turned his attention to an extensive astronaut

task analysis, which paralleled the work of Edward Jones at McDonnell? '_ Just

before Christmas 1959, John Glenn privately described his training experiences

in a letter to a friend and fellow pilot :

This past 8 or 9 months has really been a hectic program, to say the least,
and by far the most interesting thing in which I have ever taken part, outside
of combat.

Following our selection in April, we were assigned to the Space Task Group
l)ortion of NASA at Langley Field, and that is where we are based when not
traveling. The way it has worked out, we have spent so much time on the
road that Langley has amounted to a spot to come back to get clean skivvies
and shirts and that's about all. We have had additional sessions at Wright
Field in which we did heat chamber, pressure chamber, and centrifuge work
and spent a couple of weeks this fall doing additional centrifuge work up at
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Johnsville. This was some program since we are running it in a laydown
position similar to that which we will use in the capsule later on and we got
up to as high as 16 g's. That's a batch in any attitude, laydown 02"not.

With the angles we were using, we found that even lying down at 16 g's it
took just about every bit of strength and technique you could muster to retain
consciousness. I found there was quite a bit more technique involved in tak-
ing this kind of g than we had thought. Our tolerances from beginning to end
of runs during the period we worked up there went up considerably as we each
developed our own technique for taking this high g. A few runs a day like that
can really get to you. Some other stuff we did up there involved what we call
tumble runs or going from a plus g in two seconds to a minus g and the most we
did on this was in going from a plus 9 g to a minus 9 g. Obviously a delta of
18 .... When we first talked about doing this, I didn't think it would be
possible but in doing a careful buildup we happily discovered that this was not
so horrible. At plus 9 g to minus 9 g we were bouncing around a bit but it was
quite tolerable.

ak ak -'k

We just finished an interesting activity out at Edwards AFB doing some
weightless flying in the F-100. This was in the two-place F-100 so that we
could ride in the rear seat and try various things such as eating and drinking
and mechanical procedures while going through the approximately 60 second
ballistic parabola that you make with a TF-100. That started at about 40,000
feet, 30 degrees dive to 25,000, picking up about 1.3 to 1.4 roach number, pull
out and get headed up hill again at 25,000 and about a 50 degree or 60 degree
climb angle, at which point they get a zero-g parabola over the top to about 60
degrees downhill.

You can accomplish quite a bit in the full minute in those conditions and
contrary to this being a problem, I think I have finally found the element in
which I belong. We have done a little previous work floating around in the
cabin of the C-131 they used at Wright Field. That is even more fun yet,
because you are not strapped down and can float around in the cabin doing
flips, walk on the ceiling or just come floating the full length of the cabin while
going through the approximately 15 seconds of weightlessness that they can
maintain on their shorter parabola. That was a real ball and we get some
more sessions with this machine sometime after the first of the year? *

Seasoned rocket experts, especially in Wernher von Braun's group, were worried

early in the program over the human tolerance to noise and vibration at the tip of

a missile leaving Earth's atmosphere. Biomedical experimentation during the

fifties had almost, but not quite, confirmed that a man literally can be shaken

to death by sympathetic vibrations induced through various harmonics upon

certain organs. No one was yet sure whether the 140-decibel noise limit would

be attenuated enough by the double-walled capsule and the astronaut's helmet

to keep him comfortable and able to communicateY In February 1960, a rep-

resentative from the Army Ballistic Missile Agency at Huntsville proposed a

training project in which astronauts would experience controlled noise and vibra-

tion inside a simulated Mercury capsule mounted above a Jupiter engine being

static-fired. The astronauts' personal physician, William Douglas, objected ve-

hemently and saved the astronauts from this ordeal. Internal acoustic measure-
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ments in the capsules riding Big Joe and Little Joe 2, however, gave concern that

aerodynamic noise at max q might blot out communications if it approached the
140-decibel limit. The astronauts decided to condition themselves to loud noises

in other ways by occasionally stationing themselves near the blow-down exhausts

of the wind tunnels around Langley. Carpenter, supported by the environmental

control system in capsule No. 3, sat through these static noise tests and proved
that communications remained satisfactory in spite of extremely loud outside

noises? 8

Other carefully controlled trials by ordeal were arranged to teach the astro-

nauts how best to survive for a time anywhere on Earth beneath their planned

orbital track. During the spring and summer of 1960, capsule egress training,
and water, desert, and jungle survival courses were instituted for their benefit.

So exotic and picturesque were these excursions that publicity photographs flooded
the news media. 39

Serious consideration was not given to the use of a personal parachute, with

which the astronaut might bail out from his explosive side hatch, until May 1960,

when Lee McMillion and Alan Shepard suggested the idea for the Mercury-

Redstone flights at least. The exploits of the Air Force balloonist, Captain Joseph

W. Kittinger, Jr., who had been making solo stratopheric ascents for the Air Force

since 1957, were a significant factor in this reevaluation of the personal parachute.

In Project Excelsior, Kittinger began a series of record-breaking sky dives. On

November 16, 1959, he jumped from an open gondola at an altitude of 76,400
feet. Three weeks later, from Excelsior II, he bailed out at an altitude of 74,700

feet to establish a free-fall record of 55,000 feet before pulling hh ripcord. STG

knew of Kittinger's plans for Excelsior III, which he fulfilled on August 16, 1960,

by diving from his balloon at 103,000 feet and falling i 7 miles before opening his

chute at 17,500 feet. If Kittinger could do it, so might the Mercury astronaut in

case the escape tower would not jettison or both main parachutes failed on a

Mercury-Redstone flight2 °

Although supposedly the first phase of astronaut training through 1959 was to
concentrate on academic studies in the eclectic new field of "space science," the

astronauts did not relish book-learning at the expense of field trips, specialty assign-

ments, and familiarization with the developing hardware. As soon as new train-

ing aids and partial simulators became available, they would make full use of them.
Late in 1959, however, the only operable flight simulator was a crude "lash-up" of

analog computers driving a cockpit panel display above a couch on an air-bearing

floating platform at Langley. Gradually STG engineers Harold I. Johnson,

Rodney F. Higgins, and George Guthrie built more sophistication into this special

kind of Link trainer. By January 1960 they were calling it the Air Bearing
Orbital Attitude Simulator. In use and development simultaneously through

1960, this machine slowly evolved into a major training aid called the ALFA (for
"air lubricated free attitude" [or axis]) trainer. McDonnell provided a capsule

shell as an egress trainer in mid-February 1960. But the most valuable and
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elaborate training aids were the two McDonnell-built simulators called "procedures

trainers." One for team training at the Cape and another at Langley were in-

stalled and in use by April 1960. Through long hours of practice in these proce-

dures trainers, the astronauts "overlearned" their tasks, as Jones had recommended,

so that they would act almost reflexively during their mission sequence.

During the first year of the astronaut training program, the seven pilots heard

approximately 50 hours of space science lectures given primarily by senior members

of the Langley Research Center. Elementary mechanics and aerodynamics made

up 10 hours of this time. Formal presentations in space physics took up 12 hours.

Other courses included principles of guidance and control (4 hours), navigation

in space (6 hours), eIements of communications (2 hours), and basic physiology

(8 hours). Each astronaut spent approximately 8 hours at Morehead Planetarium

at the University of North Carolina on star recognition and practicing celestial

navigation. 4x

"Phase Two" of the training program, based on simulation training and engi-

neering involvement, was to begin with the new year. But concurrent develop-

ments, individual study, and personal practice in various areas complicated the

astronauts' training calendar. At the end of one full year of assignment to STG,

each of the seven had spent approximately 10 days in St. Louis at the McDonnell

plant; five days in San Diego at the Convair/Astronautics factory; and two days

each at the Cape, at Huntsville, at Edwards Air Force Base, in E1 Segundo at Space

Technology Laboratories and the Air Force Ballistic Missile Division, and at the

Goodrich plant in Akron. Each also spent one day at the Rocketdyne factory of

North American Aviation to see the engines being produced for the Atlas, another

day at the AiResearch shops to meet the makers of their environmental control

systems, and yet another at the Los Angeles plant of a subcontractor, Protection,

Incorporated, where individual headgear was being molded. 42 These visits by the

astronauts to the various industrial production lines were found to be so valuable in

inspiring craftsmen and technicians at all levels to higher standards of workman-

ship that these personal contacts between producers and the astronaut-consumers

became a regular feature of quality control programs..Grissom's simple remark

on a visitation to Convair, "Do good work !" became a motto of incalculable value

to every worker who heard it or shook his hand.

The astronauts also made many field trips to Government installations for

familiarization with specific conditions of space flight. In addition to the training

for high accelerations on the centrifuges at Johnsville, Dayton, and Pensacola,

training for zero acceleration--weightlessness--was distilled from the short para-

bolic hops that were flown in C-131s at Wright-Patterson Air Force Base and in
F-100 aircraft at the School of Aviation Medicine in San Antonio. Closer to

their Langley home, the astronauts mastered scuba diving at the Naval Amphibious

Base near Norfolk; at their home base swimming pool they practiced floating fully

suited. Also immersions in a Langley test tank gave them the sensation of neutral

buoyancy. Both at Dayton and Philadelphia the astronauts borrowed military
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facilities to experience reduced ambient 'pressures in decompression chambers. For
conditioning to withstand high heating rates, the astronauts were toasted in the
Air Crew Equipment Laboratory ovens and in a "human calorimeter" at the
National Institute of Mental Health at Bethesda. Two facilities at Pensacola, the
"rotating room" and the "human disorientation device," provided some experience
with induced vertigo. But for complex tumbling experiences, each astronaut
spent some time at NASA's Lewis Center in Cleveland, in the curious test device

called the "MASTIF." Finally, each man learned to know his own idiosyncrasy
to high concentrations of carbon dioxide by experiments also done at Bethesda.

None of the mechanical aids for astronaut training could simulate more than a
few of the conditions of space flight at a time. Even the seven Redstone ballistic
flights, one planned for each astronaut, would be only partial simulations. Harold

Johnson commented in February 1960 that the Redstone flights "may or may not
be classified as training missions, depending on how sporting you may be." The
astronauts were not only sporting in this regard, they were also chafing at delays.
They suggested to Robert Gilruth that a rhesus monkey ride MR-1 so the schedule
might be compressed enough to put the first chimp in orbit by the end of
November. 43

Perhaps the most impressive simulator, the whirligig called MASTIF (for
Multiple Axis Space Test Inertia Facility), located at Lewis' cavernous altitude

wind tunnel, was publicized far beyond its value as a training aid. Conceived in
1959 by David S. Gabriel of Lewis as a rig to test space equipment in three degrees
of rotational and two degrees of linear freedom, the idea of concentric gimbaled
cages was translated into hardware in the altitude wind tunnel early in 1959, when
Lewis was assigned the job of testing Big Joe's attitude control system. Robert R.

Miller directed the MASTIF project; Louis L. Corpas did the detail design work;
and Frank Stenger developed the air-jet propulsion arrangement. Soon they had

erected a tinker-toy-like rig 21 feet in diameter at its supporting yoke, capable of

mounting a 3000-pound space capsule inside its three sets of gimbals, and able to
turn and tumble the whole combination in three axes simultaneously at 60 noisy

revolutions per minute. An early trial revved the outer cage from zero to 50

revolutions per minute in half a turn2 *

James W. Useller, another mechanical engineer at Lewis, was first to see the

potential in the MASTIF, if adapted, for astronaut training. Useller and a Lewis

test pilot, Joseph S. Algranti, began taking cautious tides inside the MASTIF as

soon as the controls engineers could spare it in mid-1959. They set up a formal

test program for about 10 pilots and physiologists who wanted to see what rolling,

pitching, and yawing at different speeds and for different lengths of time would do

to a man. A thorough literature search revealed some similar late-19th-century
German experiments, but Useller and Algranti proceeded to confirm a condition

known as ocular nystagmus, an automatic flutter of the eyeballs induced by

the acceleration of angular rotation. After extensive tests, they verified a rough
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limit of tolerance at about 30 revolutions per minute in three axes; beyond this
limit, even the most experienced pilots could expect to get sick. 4s

Thus, in February 1960, when the first pair of astronauts, Grissom and
Shepard, arrived in Cleveland for a week's stay to test the MASTIF and their
reactions to it, extensive experience had already been accumulated by other pilots.
After a hard night and a frustrating morning strapped in the seat while the

MASTIF was being adjusted, Shepard again stepped inside the three large gimbal
cages for his second sitting but first real ride in this machine. When MASTIF
finally started to spin, Shepard turned green and pressed the red "chicken switch,"
sounding a claxon horn as a signal to stop. To control the nausea and vertigo
induced by this maniacal carrousel required dogged determination. The next
day Shepard--and before the end of March all the astronauts--took examination

runs at 30 revolutions per minute in all three axes and quickly learned, by using
the hand controller, to activate nitrogen reaction motor brakes, to halt their
rotation and bring themselves to a stop while the cages continued to spin. The
confidence gained from this experience was inva/uable, but one series on the
MASTIF was enough. Reporters who watched a demonstration by Carpenter
were vivid in their descriptions of the piercing scream, multicoIored cages, and
extraordinary contortions of MASTIF, billing it the ultimate in wild carnival
rides. _6

Far more important and critical was the second phase of the Johnsville
centrifuge program, which began in mid-April to test much of the McDonnell
hardware, including the couch and hand controller, instrument panel and full

pressure suit, and the astronauts' responses to the dynamic simulation of the
g profiles. An STG status report for April listed eight multiplex objectives of the

ongoing centrifuge training program: (1) to test the retention by the astronaut

of the straining technique and other skills developed in the August program; (2) to
familiarize the astronauts with straining under reduced pressure; (3) to familiarize

the astronauts with performing at high g levels in an inflated pressure suit; (4) to

evaluate the couch manufactured by McDonnell Aircraft; (5) to evaluate the

handcontroller developed by McDonnell; (6) to test proposed voice procedures

under acceleration and reduced pressure; (7) to rehearse and evaluate the

feasibility of a two-hour countdown period following astronaut insertion; and
(8) to provide initial experience with Redstone acceleration patterns. 47

With over 120 controls at his glove tips, including about 55 electrical switches,

30 fuses, and 35 mechanical levers, the astronaut had to learn a great deal regard-

ing the monitoring and operation of these points of contact with his machine.

From the prime contractor came a series of operating and maintenance manuals

entitled "Service Engineering Department Reports," or "SEDRs" (pronounced

"cedars"). The indoctrination manual had been replaced by a familiarization
manual in the fall of 1959, and this in turn was replaced at the beginning of 1960

by.SEDR No. 109, called the "Astronauts' Handbook." Although the first capsule
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maintenance manual, SEDR No. 108, was not available until mid-year, it was not
badly needed until the mass move to the Cape at that time.

The "Astronauts' Handbook" set forth operating procedures in three sections:
normal, emergency, and trouble-shooting activities. The checklist for procedures
envisioned in a normal orbital mission at that time included 130 items expected
of the astronaut, 69 of which were part of an extensive preflight interior inspection.
Under emergency operations procedures, 156 items were listed as possible pilot
actions in case of equipment malfunctions. The five phases of the mission--

launch, orbit, reentry, descent, and landing--each required special responses to
emergencies arising during that portion of the mission. Finally, the mechanics
of five major subsystems of the capsule were outlined in the trouble-shooting section
and then condensed into checklists for the reaction and environmental control

systems and for the electrical and communication systems. The attitude stabili-
zation and control system checklist was promised'but was not yet available. 4s

As McDonnell technical writers prepared and revised the "Astronauts' Hand-
book," STG's operational plans were becoming systematized through concurrent
revisions of its "General Systems Information Document." Lewis R. Fisher,
Donald D. Arabian, William M. Bland, Jr., and Sigurd A. Sjoberg first published
this basic guide as "Project Mercury Working Paper No. 118" in March 1960

and revised it twice within the next year. They outlined the general plans for
the Mercury-Atlas and Mercury-Redstone missions, including overall test ob-
jectives, flight plans, capsule design criteria, description of the capsule and systems,

and the general operational plan from prelaunch phase through recovery. Specific
mission directives were based on this format, and the authors of most later working
papers presupposed a familiarity with "Working Paper No. 118." 49

While John Glenn and Walter Schirra studied the interrelations of the pressur-
ized suit and the cockpit layout, McDonnell design engineers rearranged the
Mercury control panel to place all controls in a U-shaped pattern around either
side and below the instruments. When an astronaut's suit was inflated, he could
reach the right side and bottom of the panel with his right hand, and his left hand

could reach the left side and bottom, but the center and top of the panel were
inaccessible. Since Mercury gloves were thicker and heavier than those on flying
suits, all controls had to be positive in operation, including guards for pushbuttons
and with key handles and pull rings designed for a good grip and the application
of considerable force, up to 50 pounds in some cases.

In their efforts to integrate man and machine, psychologists Jones and Voas,
among others, had shown by late spring 1960 how the reliability of Mercury could
be increased by the use of man's flexibility. Using the pilot as a trouble-shooter
engineer in many cases could make the difference between mission failure and

success. Conversely, as man's limitations became more precisely known in relation
to the equipment to be used, correspondingly higher standards for the automatic
systems, particularly the attitude stabilization controls, were introduced. Voas
later expressed a new consensus when he said :
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Contrast in Mercury panel

and console arrangement:

right, the instrument posi-

tions in early 1959; below,

the panels as used in Glenn's

orbital flight, Feb. 20, 1962.
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The astronaut's primary job is to control the vehicle. The astronaut is not
a mere passenger, but an active controller of the vehicle who performs an

important and complex task which is basic to the total reliability of the
mission.

System flexibility is increased by provision for the use of more than one of
these [attitude control mode] systems at a time. Since the automatic reaction
jets and the manual reaction jets are completely independent, it is possible for
the man to exercise control through the manual jets while the auto-pilot is

exercising control through the automatic jets. One occasion for use of both
control systems would be in maneuvering m orbit when the astronaut desires
to let the autopilot control two axes such as roll and pitch while he takes control
in yaw. _°

Meanwhile Jones and the human factors engineers at McDonnell were deter-

mining more ways in which man could back up other automatic malfunctions

through their "failure task analysis." Using the failure mode predictions from
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the design engineers' work on the reliability program, they elaborated "in detail

the probable sensory output characteristics of the failure, the corrective responses

required by the astronaut or ground monitor, and the failure effect." _i

Jones' human-factors team worked closely with McDonnell's Mercury re-

liability experts, Walter A. Harmon and Eugene A. Kunznick. They in turn

allied themselves with another McDonnell crew employed on a special check

of the Mercury reliability program instigated by NASA Headquarters. Pro-

grammers at McDonnell coded on punch cards all probable systemic failures; by

June 1960 they had assembled massive computer printouts that detailed corrective

actions an astronaut could take in case the robots should go wrong. They found

that over a third of such failures would not show up on instruments or through

warning lights, but could be detected through symptoms presenting unusual

sights, sounds, smells, or vibrations. As many as 18 different failures, however,

might show the same set of multiple cues, so the work of categorizing and

organizing these data required another full year. Preliminary results from these

cooperative studies helped early to isolate malfunctions that needed new indica-

tors, to rank the frequency of instrument use, and to shape the training program.

Efforts to predict the total system reliability by this evaluation intensified the

debate over the "numbers game." 5z

LOOKING OVER MERCURY AND BEYOND

In March and April 1960, NASA scored two spectaculartriumphs by using

the Air Force'sThor-Able boostercombination to launch Pioneer V and Tiros L

The former was a highly successfulinstrumented probc to explore the space

between the orbits of Earth and Venus. Launched on March 11, Pioneer V

established a new telecommunications record of 22.5 million miles by the end

of June and returned a bonanza of data on solar flares, particle energies and

distribution, and magnetic field phenomena in translunar space. The initial

Tiros weather satellite, sent up on April 1, transmitted the first global cloud-

coverage photographs from a circular orbit 450 miles high, thereby inaugurating

a new age for meteorology. The request for implementation of NASA's 10-year

plan presented to Congress on January 20 seemed off to a good start. An ex-

tensive congressional "Review of the Space Program" put Mercury, even in

the context of NASA's present programs, in perspective as a relatively minor

part of the civilian space agency's activities. In terms of NASA's plans for the

future or of the total military-civilian space program already in action, Project

Mercury was hardly more than "an important first step in our manned exploration

of space." 23

Through the winter and spring of 1960, the big event toward which Mercury

watchers looked with most anticipation was the launch of the first Atlas vehicle

topped by a McDonnell capsule. Immediately after Big Joe, Gilruth had re-
quested the Ballistic Missile Division to fly another Atlas along a Big Joe-type
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trajectory to qualify the McDonnell capsule for launch and reentry from a

circular orbit roughly 105 miles high. At the beginning of 1960, it still had

looked as though this could be accomplished by the end of May. A semifinal

Defense Department operations plan outlining the support tasks of a dozen

different military commands was under intensive study during this period.

Serious reappraisals of schedule requirements and alternatives were underway in

many areas, most of which threatened to delay the start of the qualification

flight. By the end of January it was obvious that the payload, McDonnell's

capsule No. 6, for the first Mercury-Atlas launch (MA-1) would not be ready

soon enough. 5_

The bottleneck was the production llne. Back in October 1959, when a

letter amendment to the prime contract for six additional Mercury capsules was

being processed, McDonnell had estimated it could deliver capsule No. 1 by the

end of November. To be sure, this would be a stripped model suitable only for

an off-the-pad or beach-abort mission, but at that time it looked as if the firing

date for this first qualification test could be set for the last day of 1959. It then

seemed that capsule No. 2, allocated to the first Mercury-Redstone flight, also

could be delivered before the end of the year and shot about March 20, 1960.

The sixth capsule, farther down McDonnelrs production line, originally was

allotted to the first Mercury-Atlas flight. It was barely framed, but McDonnell

had hoped to deliver it by the end of February for a tentative launch date in

mid-May. While STG was immersed in the Little Joe program, however, the

production managers at McDonnell became aware that actual final assembly of

the first capsules and equipment would take far more time than anticipated.
On November 3, 1959, Sherwood L. Butler, the procurement officer at Langley,

had notified NASA Headauarters that capsules Nos. 1 and 2 each would be

delayed a month; No. 6 might be expected by the end of February. 5_

What, precisely, was causing these delays? Logan T. MacMillan, Edward

M. Flesh, Yardley, and Dubusker of McDonnell felt constrained to answer as

the pressure for delivery increased--as did certain conditions that obviously

needed to be corrected. Incorporating the smallest changes during the final

assembly of the first six capsules required many hourr of disassembly, reassembly,

and rechecking. Only one or two men at most could work in the confined space

of the pressure vessel's interior, and rising standards of quality control imposed
by McDonnell, STG, and resident Navy inspectors required much reworking.

For example, on the first shift on January 6, 1960, J. E. Miller, the McDonnell

inspector on the floor at the time, logged in his record book a local cause of delay:

Insp. discontinued all work on Cap. # 1 this A.M. until the filthy condition of
the capsule was cleaned up. A meeting of Prod. Supervision was called by
Insp. & Engr., was asked to set [sic] in. Quality control was main subject &
all agreed to extend more effort toward better quality control although Prod.
did not think they could do much better than what was already being done. _c

The next week at a capsule coordination meeting in St. Louis, Purser and
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MacMillan, Yardley and Faget persuaded Robert Gilruth to save MA-1 by

swapping capsule No. 6 for capsule No. 4, which had been scheduled for a static

firing on the Redstone. Number 4 should be tidied up as quickly as possible

and shipped to Langley by the end of the month. Only a structural shell, this

first delivered piece of production hardware did include the exterior shingles,

heatshield, landing and recovery gear, missile adapter-ring, retropackage and

straps, with dummy retros and live posigrades. STG undertook to install Big

Joe-type instrumentation and sequencing for its rescheduled use on the first

Mercury-Atlas flight. The plan was to return the capsule to McDonnell by

April 1 for final shingle fittings and adapter matings, then ship the completed

capsule to the Cape by mid-April. At the same time it was decided to eliminate
the flotation bags, which had proved to be too delicate to last long in the open

ocean, from all capsules and to keep the configuration of capsules Nos. 5 and 7

unchanged in hope of making possible an earlier manned shot. Problems with

the afterbody shingles and with the erosion of the window by the blast of the

escape rocket were among a number left unsettled2 r
As costs of solutions to these kinds of technological and training problems

rose, NASA administrators appeared more frequently before Congressional com-

mittees and admitted their growing concern with manned space flight, as opposed

to other space activities. T. Keith Glennan requested $23 million supplemental

appropriation to the fiscal 1960 NASA budget of $500.6 million and justified
$19 million of that extra sum on the basis of the urgent technological demands

of Project Mercury. "It would be no exaggeration to say that the immediate

focus of the U.S. space program is upon this project," stated Glennan2 _

MANAGEMENT LEARNS ITS LIMITS

The astronauts were not alone in their need to become in some sense machine-

rated. The managers of Mercury, both the civil servants and the contractors,
had found truth in the maxim of industrial management that short-term esti-

mates of accomplishment are nearly always overestimated. Mercury, like virtually

all contractual development programs, entailed inherent technical and adminis-

trative difficulties impossible to foresee. A corollary to the rule of short-term

estimates, namely that long-term predictions of accomplishments are very often

underestimated, offered little solace at this stage of the development of Project

Mercury. In its fifth status report at the end of January 1960, the Space Task

Group related to Headquarters some of the lessons learned during its first year

of contractual operations:

A new capsule delivery schedule has recently been indicated by McDonnell
to reflect a delay in delivery of over 3 months in the early capsules. This revi-
sion was made necessary by a realistic appraisal of progress to date. Although
various proposals for improving the situation have been considered, thei'e does
not seem to be any practical avenue open at this time for effecting any worth-
while change.
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Because of these delays and the fact that it has not been possible to sub-
stantiate the shingle structure adequately on the ground, it has been decided
to cancel the vibration program on capsule No. 4 and instead to fit this capsule
with an absolute minimum of equipment and instrumentation and to fire it on
an Atlas as MA-1 . . . at the earliest practicable date. 59

Gilruth, Charles J. Donlan, and their younger associates in STG grew older

rapidly during their first 15 months as a contracting agency. Gradually attain-

ing more autonomy, the Space Task Group still expected eventually to move to

Beltsville, Maryland. But in February NASA Headquarters made clear its in-

tention not to move STG until Project Mercury was essentially completed. Re-

lations with the Langley Research Center, STG's parent organization, improved

markedly with better organizational arrangements, such as job order procedures,

and with the growth of STG's own administrative staff. Close working exchanges

still prevailed in many areas, especially with the Langley shopmen under Jack A.

Kinzler providing technical services. But on STG's first birthday, only two out

of Langley's 12 applied research divisions could still say with regard to Mercury
that "there is as much to be done as has been done." 60

The Pilotless Aircraft Research Division (PARD), renamed the Applied Mate-

rials and Physics Division at the end of 1959, and the Instrument Research Division

were still most actively supporting Mercury.

During STG's infant year, overall Langley support amounted to well over

100 separate preliminary data releases, contributed by more than 325 profes-

sional people, and costing approximately $1.9 million of Langley's own appropria-

tions. STG's personnel complement in January 1960 was climbing above 500;

the total cost of the prime contract with McDonnell, already modified in about

120 particulars, was approaching $70 million and rising. At the same time,

McDonnell estimated that more than half its total effort on Project Mercury was

still in engineering development; a third of its effort was on actual production;

and about 10 percent was on tooling. According to McDonnell's assistant con-

tract manager, the overall weighted percentage of contract completion was just
below 60 percent. 61

The magnitude of monitoring a contract of this size was reflected in another

reorganization of the Space Task Group in mid-January. Formalized in the new

block chart were the personnel office under Burney H. Goodwin, a budget and

finance office under J. P. Donovan, a procurement and supply office under GIenn

F. Bailey, and an administrative services office under Guy W. Boswick, Jr. STG

simplified its three line divisions by making James A. Chamberlin chief of its

"Engineering Division" instead of the "Engineering and Contract Administration

Division." Under Chamberlin, Andre J. Meyer, Jr., and Norman F. Smith served

as assistant chlef and executive engineer, respectively. In Faget's Flight Systems

Division, Robert O. Piland and J. T. Markley were confirmed in their posts as

assistant chief and executive engineer.

At this time Faget unofficially set Robert Piland to work considering advanced
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vehicles suitable for a circumlunar space flight. This soft-spoken Virginian had

turned from mathematics to aeronautical engineering in 1947 and had served

as technical assistant to James T. Killian and the President's Science Advisory

Committee during 1958. Technically able and politically experienced, Piland
directed the circumlunar pilot studies for four months before authorization for

an advanced vehicle team on May 25, 1960, formally added eight other senior
STG engineers to look to the future beyond Mercury. 62

Robert Piland also learned something from his older brother, Joseph V. Piland,

assistant head of the contracts and scheduling office, who had evolved from a

mechanical engineer into a contract administrator. Joseph Piland was instru-

mental in smoothing STG's formal relationships with its industrial contractors.

His counterpart in McDonnell's organization was C. F. Picard, and together
they had now to supervise over 50 subcontractors and over 5000 sub-subcon-
tractors.

Charles Mathews' Operations Division was in a state of flux as he and Walter

C. Williams shuffled men and positions in preparation for manned operations.

Christopher C. Kraft, Jr., and Chris C. Critzos stayed put, while G. Merritt Preston

went to the Cape and Scott H. Simpkinson was sent to St. Louis to help expedite

matters at McDonnell. Other names on the STG organization chart of January

11, 1960, filled staff positions alongside Purser, Kenneth S. Kleinknecht, and

Martin A. Byrnes. Another assistant to the director was Raymond L. Zavasky;

heading the technical services liaison with Langley was Kinzler. The military

officers originally assigned to STG as liaison remained aboard and active. They
were Colonel Keith G. Lindell of the Air Force, who doubled as head of the

astrofiaut and training section; Lieutenant Colonel Martin L. Raines of the Army;

and Commander Paul L. Havenstein of the Navy. Even Langley Research Cen-

ter, across the field, had its liaison man on STG's staff: W. Kemble Johnson. 63

Beginning in January 1960, plans were made to integrate the astronaut with

a flight-control team as well as with his machine. Team training of the remote-

site ground crews required an extensive familiarization and orientation program.

The initial proposal for training these teams began with an admonition:

It is essential that the training of the flight control personnel be closely inte-
grated with that of the astronaut's. As long as the astronaut is conscious all
ground commands must be executed through or with the concurrence of the
pilot. To be effective, the pilot and the ground crew must work as a closely
knit team. An efficient system is dependent upon adequate team training
and development of mutual confidencef '_

In preparing to train and integrate the flight-control team for final operations,
Waiter Williams first discussed the problem with Kurt H. Debus, the Director of

ABMA's Missile Firing Laboratory, and Major General Donald N. Yates, the
Defense Department's representative and Commander of the Air Force Missile

Test Center at Patrick Air Force Base, near Cape Canaveral. Manned missile
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operations were as new to them as to him, so on January 18, Williams wrote let-

ters to each of these gentlemen formally proposing the establishment of new coordi-

nation committees for the upcoming flight tests. NASA Headquarters mean-

while had appointed another Air Force missile expert, Major General Don R.

Ostrander, as Director of an Office of Launch Vehicles. His appointment, it was

felt, would help interservice cooperation and relieve Silverstein of management

responsibility for rocket development.65

In February Mathews and Williams organized a Launch Operations Branch

within STG's Operations Division under Preston at the Cape. Then they specified

the duties, organization, and responsibilities of the Mercury launch coordination

office. Approaching a phase of heavy operational activity, different in kind as

well as degree from Edwards and Wallops Island field operations, Williams and

Mathews" appointed Christopher Kraft as flight director, Stanley White as chief

flight surgeon, Merritt Preston as launch operations manager, and Scott Simpkin-

son as capsule operations manager. By early March, 32 other position titles for

ground operations--in the Mercury Control Center, in the blockhouse, at Atlantic

Missile Range Central Control, and in the launch pad area--were specified.

Capsule engineers at the Cape published quickly a thick "Manual for Launch
Operations," which indicated their readiness to assume responsibility for launch

operations. Williams also asked Destroyer Flotilla Four to plan for the recovery

of MA-1 toward the end of May. 66

If Debus and Yates were somewhat chagrined by the forceful speed and

decision exhibited by Williams and Mathews in setting NASA firmly in control of

launching operations, they were not alone in worrying about the future. Within

other divisions of the Space Task Group there was also some worry lest the opera-

tions division should monopolize participation in the payoff phase of Project
Mercury. William Bland, for instance, wrote a memo to Maxime Faget early

in March urging that "the specialists who have matured with Project Mercury"

not be diverted to advanced vehicular planning before getting a chance to prove

in flight the systems they had designed :

As Project Mercury matures, the total workload with the Space Task
Group will increase with the greatest portion of the load carried by the opera-
tions division. This change in relative work does not mean that personnel of
the flight systems division should decrease, their participation in the project.
ActuaIiy personnel of the flight systems division, at this particular time, have
a much wider and deeper range of experience in preparations for launchings,
in launchings of rocket vehicles, and in flight data analysis than the Mercury
launch personnel (NASA and MAC). This experience in detailed knowledge
which was collected during the Little Joe and Big Joe flight programs, the
beach abort tests, the different system development programs (such as those
conducted on escape motors, pyrotechnics, parachutes, drogue chutes, controls,
etc.), and in the development of individual components which make up the
capsule system, must be available to the Space Task Group organization con-
ducting launch operations in order to insure direct approach to success[ul
launchings57
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Bland expressed to Faget his concern about the possibility of being preempted from

participation in Mercury operations. Faget, restlessly, pursuing his first loves

of conceptual design and initial development, first for Mercury and now for some-

thing soon to be called "Apollo," was in danger of losing the support of some of

his lieutenants unless the Flight Systems Division got some role in the flying of their

systems.

Part of this disaffection had been precipitated by a major meeting regarding

the Mercury network, held on February 9 at Langley. Ostensibly this meeting

was to discuss the operational organization, maintenance and operations train-
ing, and communications for the network. About 30 men from the Air Force,

Navy, Western Electric, Bendix Radio, the oceanic missile ranges, and the Track-

ing Unit at Langley met with Williams, Mathews, Kraft, and John D. Hodge, but

no representative of the Flight Systems Division was present. A week later Gilruth

appointed the flight controllers and set C. Frederick Matthews, a Canadian whose

name was often confused with that of his chief, Charles W. Mathews, in charge

of coordinating the ground crew training programs. Walter Williams saw this

as a full time job in itself. By the first of March flight controller indoctrination

and training plans were underway, and Philco contractors and medical monitors

were being briefed for a larger role at various ground sites whenever their training
should warrant. 68

In mid-March Faget confronted another problem in machine-rating his tech-

nicians when he received another technical complaint, this one from William A.

Petynia, a conscientious engineer he had assigned to watch complete systems

tests of capsule No. 1. Petynia had been working with McDonnell project engineer

A. M. Paolini since June 1959, preparing capsule No. i for the beach-abort launch

from Wallops. But the complicated, specialized knowledge required to do a

faultless job seemed to Petynia to be overwhelming by the spring of 1960:

To determine the "overall picture" is not difficult, but I found additional
effort was required to be in a position to even partially understand capsule sys-
tems. I do not mean to become a specialist in each of the capsule systems, but
I wanted to be able to recognize and understand problems and their relation-
ship with the flight.

The flight systems capsule engineer is the one person in the test organization
who clearly understands the flight test objectives and the performance of the
hardware in order to fulfill them. This I think is important! tlowever, I
think that due to the complexity of the capsule, the engineer cannot hope to
become familiar with the hardware to any great degree in the short period
before CST [Capsule Systems Test]. I believe that training classes for the
engineers [should] be started immediately under MAC's supervisionY"

Petynia's awareness of the necessity to machine-rate himself so he could do

an adequate job of inspection was one individual manifestation within STG

of the problem of getting all the million or so people involved to do a perfect job

in order to man-rate all the machines. From the highest level to the lowest,

254

=

i

i



MACHINE-RATING THE MEN

supervisors sought better methods to inspire the men at work on Mercury to make

the quest for reliability a personal matter.
One of the methods used to good effect was identification, both of parts and of

workers in the project. The Redstone managers had adopted in 1959 a seal

showing the anthropomorphic god Mercury in winged cap and boots bearing

a missile and vaulting Earth. Atlas managers eventually selected the alchemical

and astrological symbol for Mercury, enclosing a blue "R" for reliability, as their

identifying label for Mercury-Atlas components and laborers. On personnel

badges, these marks of distinction meant a record of highest performance, but on

hardware these decals signified a test record that came closest to the nominal

design desiderata. Machines or components that performed too well in certain

respects were suspect as possible troublemakers in other respects for the future. TM

The astronauts were now making periodic appearances along the production

lines at McDonnell, Chrysler, Convair/Astronautics, and elsewhere to encourage

the highest standards of craftsmanship among even apprentices or semiskilled

workers handling or processing any components that bore the Mercury decal.

Having shaken the hand of one of the pilots whose life depended on their

work, the factory workers presumably would treat with the greatest care and

tenderness the parts then still in their hands.
Credit for having first worked out the guidelines for a coherent plan to

machine-rate everybody probably should go to Bernhard A. Hohmann and Ernst

R. Letsch of Space Technology Laboratories (STL) and later of Aerospace

Corporation. Together with Major General Osmond J. Ritland, former test

pilot in command of the Air Force Ballistic Missile Division, Hohmann assured
the astronauts that their interests would never be sacrificed. Hohmann's study

of the "General Aspects of the Pilot Safety Program for Project Mercury Atla*_

Boosters" analyzed the differences between the ideas of reliability, quality control,

and quality assurance before synthesizing them in a specific program adaptable to
other areas of Mercury development. Hohmann combined the approaches of the

mathematicians and systems engineers at STL with the viewpoints of production,

inspection, and test engineers at Convair/Astronautics, Rocketdyne, and else-
where. 71 But some of the compromises he recommended, such as choosing most

nominal instead of highest performance parts to assure a higher level of final

quality, were appropriated only gradually by NASA and STG.

Upgrading the intensity of quality control over raw materials, of inspections

and tests of systems integration in the plant, and of the requirements for a complete

vehicle at the time of the "factory rollout" were significant parts of the pilot safety

program. In the final analysis for flight readiness, a Flight Safety Review Board,

patterned on Air Force practice, should take the technical responsibility for

certifying the booster to be man-rated. TM Even after all these precautions there

was always going to be an element of doubt. Procedural principles on paper

would require two more years--and at least five flight experiments--to become

realized in practice and working habits.
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Is PERFECT RELIABILITY POSSIBLE?

At NASA Headquarters in Washington on February 29, 1960, the high-level

debate over the meticulous versus the statistical approach to reliability was

fervently renewed. NASA, STG, and McDonnell representatives that day met

in conference to decide what weight to give the "numbers game" in their own

confidential estimates of readiness. Gilruth, Donlan, and their chief of reliability,

John C. French, defended STG's practical procedures against the theoretical

approach of Nicholas E. Golovin, Landis S. Gephart, and Catherine D. Hock.

The third revision of McDonnell's reliability program was delivered by Eugene

Kunznick, who also outlined the particulars of the prime contractor's quality

control measures. Walter Williams presented STG's latest views on operational

flight safety, and STG generally endorsed McDonnell's reliability program review

as its own. But neither Richard E. Homer nor Golovin was satisfied that the pains

being taken by STG and McDonnell were sufficient or thorough enough. 73

A new Division of Life Sciences Programs was created in March at NASA

Headquarters, with Clark T. Randt, a neurosurgeon from Cleveland, as its

director. Part of this division's purpose was to ensure machine-rated men for

the future of manned space flights. Earlier in the year an Air Force aeromedical

leader, Brigadier General Don D. Flickinger, reported to NASA and STG on his

recent trip to Russia and on the opinions he had formed about Soviet progress

toward manned space flight. Flickinger estimated that the Soviets would attempt

without prior announcement to orbit a two-man laboratory about mid-year. The

American astronauts were "anxious to do anything possible to speed things up." 74

But the hardware was simply not yet hard enough or wearable enough for the

insiders to get deeply excited about beating the Russians into space, just after

capsule No. 4 arrived at Langley, Purser went to look at it and'reported to Gilruth :

Although there are evidences of careless workmanship, I don't think it is
too much worse than standard aircraft practice. Also, most of the bumps,
patches, etc., seem to be on the unpressurized part of the structure. It was
also mentioned by one of the boys that Capsule 4 was never intended as a flight
vehicle, but only as a vibration-and-static test article; this can account for a lot
of the errors. While many of the bad spots could be caught by inspection and
corrected, a lot are non-fixable except by junking a capsule. These can only
be avoided by inspiring in some way, better workmanship. I would suggest
documenting the bad spots on Capsule 4 and then having a good inspection by
STG people of the flight capsules now on the line. This could be repeated in
6 to 8 weeks to catch the next batch and probably would cure the troubles. 75

After the late February meeting on reliability in Washington, a great deal of

ferment was evident in systems testing, quality control, engineering inspection, and

a new order of reliability testing. At the McDonnell factory., Robert L. Seat,

who together with George Waldram had drawn up the first capsule systems test

plan, began to clarify the differences between acceptable aircraft qualification test

practices and spacecraft systems integration and reliability tests.
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In early March, STG sent a delegation to Huntsville and Detroit for the latest

word on reliability program upgrading at ABMA and at Chrysler. Joachim P.

Kuettner, Eugene J. Buhmann, and von Braun's deputy, Eberhard F. M. Rees,

conducted tours and arranged presentations for March 7 and 8. The next day

at Chrysler's missile plant in Michigan, C. A. Brady, Bernard J. Meldrum, and

L. L. Baker presented a similar review, which apparently satisfied their visitors

from STG that the Redstones for Mercury could be trusted. TM

Through March and April the pressure on McDonnell to deliver the goods

unfinished and yet with perfect reliability records became so acute that James S.

McDonnell and his board of directors in St. Louis appointed their factory manager,

Walter F. Burke, to meet and satisfy that pressure. Burke, already a company

vice-president, was named general manager for Project Mercury. Logan Mac-

Millan remained as "company-wide project manager" for McDonnell, but the

addition of Burke signified the scale of the growth in size and scope of the

Mercury contract, rr
McDonnell would have been remiss if it had not responded at the highest

level to NASA's pressure. All the aerospace companies knew that Faget and

Robert Piland were traveling around the country during April 1960 presenting

their preliminary ideas and plans for "advanced vehicular" space flight programs
to other members of the NASA family. Technical speculation was rife over how

best to accomplish manned circumlunar flight. Other corporate giants, including
Grumman and Convair/Astronautics, were competing for snippets of knowledge

about what was going on in these confidential deliberations within NASA. But

James Chamberlin, among others, was wondering, as he watched the difficulties

in manufacturing and ground testing McDonnell's first capsules, difficulties par-

ticularly acute with the sequence and wiring systems, whether speculation about

spacecraft ten years hence was legitimate, profitable, or even necessary. TM

While uneasiness over reliability was interminable, there were limits--practical,

political, and social--to the amount of time that could be sacrificed for quality

assurance. Decisions had to be made and, after close calculation, risks taken.

Abe Silverstein at NASA Headquarters intervened at this point, deciding to short-

circuit a duplicate set of prelaunch checkout operations. On March 29, two

weeks after President Eisenhower had ordered that the big new NASA facility at

Huntsville should be called the George C. Marshall Space Flight Center, Silverstein

wrote von Braun a lengthy letter of explanation:

I have just completed an extensive reexamination of all Mercury schedules,
from the point of view of expediting the entire Mercury program. As a result
of this reexamination, I have arrived at the conclusion that it is of utmost im-
portance to obtain f_ight performance data of certain critical components of
the Mercury systems at the earliest possible time. More specifically, it is im-
portant to initiate the Mercury-Redstone flights as soon as possible in order
to obtain ihflight evaluations of the Mercury capsules at an early date.

ak ak
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A detailed study of the checkout programs at McDonnell, Huntsville, and
Cape Canaveral has revealed that there exists a great deal of duplication; in
particular all the booster capsule compatibility checks are performed both at
Huntsville and at the Cape. The only unique tests scheduled to be made at
Huntsville (on MR-1 only) is a vibration and noise test to be performed during
the booster static firing.

_ ak

In view of these facts, it appears that the capsule prelaunch operations at
Huntsville are no longer required. I have therefore directed that the Mercury
capsules assigned to the Redstone program be shipped from St. Louis directly
to Cape Canaveral, thereby gaining approximately two months in the launch
schedule. I suggest that all parties concerned meet at NASA headquarters
in Washington in the near future to discuss detailed arrangements necessitated
by this new procedure. 7°

But a week later Kuettner persuaded Silverstein to relent on this decision and to

agree to a compromise: the capsule for MR-1 would be shipped to Huntsville for

a much shorter period to test the mating and to check on problems of radio fre-
quency and electrical compatibility. Silverstein now wrote yon Braun a letter of

appreciation for reducing the Huntsville checkout time "from 8 weeks to 16 days,

so that the Mercury-Redstone program can proceed as rapidly as possible."

Shortly thereafter, Silverstein also learned that the Air Force Chief of Staff, General

Thomas D. White, was reaffirming in strong language to his troops that the Air

Force should cooperate with NASA "to the vet 3" limit of our ability, and even

beyond it to the extent of some risk to our own programs" if that were necessary. 8°

Scheduling problems continued, becoming acute toward the end of June,

when the schedules for qualification flight tests were recognized to have slipped

by at least six months. Complete capsule system testing seemed to require new

organization, new procedures, and new ground test equipment. Purser filed a

note for himself on a major meeting on June 27-28, attended by Silverstein and

Director Harry J. Goett of Goddard, wherein the top technical managers of

Mercury and STG began to admit that perfect reliability is indeed impossible.

Quality control and reliability testing must be raised to a new level of effort, and not

only man and machine but man-rating and machine-rating processes must be
integrated, reflected Purser.

One of the major problems facing Mercury management is the conflict
between a real desire to meet schedules and the feeling of need for extensive
ground tests. The MAC capsule systems tests are not meeting this need since
they were not intended for this purpose and since the pressure of time sometimes
forces bypassing of some details (to be caught later at the Cape). Further,
there has not been time available (or taken) on the part of MAC to study and
update the CST procedures and SEDR's. It was concluded that a group
(mostly MAC effort) should be set up to review and update the CST and
SEDR procedures. It is also firm that no details will be bypassed in the Cape
checkout without the express approval of STG management.
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There was considerable discussion of a proposal to eliminate the unmanned
orbital shots on the basis that the systems could be qualified in unmanned and
manned ballistic shots and that the presence of the man would reduce the
possibility of failure in the first orbital shots and thus reduce chances for a con-
sequent delay in the program . . . it was decided to not change [sic] the pro-
gram now but to keep the door open and reconsider when MA-5 and MA-6
are closer. Since the astronauts have expressed considerable interest in this
proposal STG management is to discuss the above decision with them? _

Just before the reliability meeting in February, the Task Group had received

welcome news of improving Atlas reliability as a result of more series-D firings

since Big Joe. Already in mid-February STG had assigned a rough reliability

coefficient of 75 percent, based on virtually perfect ignition and running of the

engines and excellent performance from airborne and ground guidance systems

in recent tests. Studies of the Abort Sensing and Ifiaplementation System for

Mercury indicated that 13 of 43 series-D flights would have been aborted had the

ASI S been aboard; only one of those 13 would have been terminated unnecessarily

by the system's sensors. 82 Hopes were high, therefore, that whenever qualification

flight tests should begin with Mercur)--Atlas No. 1 (MA-1), they would follow

each other rapidly at monthly intervals.

While Edison M. Fields and Sigurd A. Sjoberg of STG began the arrange-

ments for adapting Atlas 50-D to capsule No. 4 for the MA-1 flight, Hohmann's

engineers at STL, including James W. McCurry and Ernst Letsch, together with

a reliability team supporting Philip E. Culbertson at Convair/Astronautics, were

all warning of the consequences from the predicted increase in capsule weight.

Guidance and trajectory equations, dependent upon moments of inertia, center of

gravity, and a gross capsule weight now over 3750 pounds at launch, had to be
recalculated .83

The first Mercury-Atlas test flight was to be Virtually a repeat of Big Joe, with

the significant difference that a McDonnell capsule was to be qualified rather than

a NASA model demonstrated. The primary objectives for MA-1 were also

similar to those for Big Joe: to determine the integrity and stability of the McDon-

nell-built structure and to measure heating rates on the afterbody shingles during

a critical abort and reentry.

MA-2, scheduled for September, should test the integrity and flight dynamics

of McDonnell capsule No. 6 during a simulated nominal reentry from orbit. Hav-

ing decided to change the materials and increase the thickness of the outer shingles

on both the conical and the cylindrical section of the capsule, STG had added 63

more pounds by specifying the use of Ren_ 41 nickel alloy .016-inch thick on the

conical section and 12 beryllium panels .22-inch thick on the cylindrical afterbody.

The reinstatement of the impact bag and the drogue chute, pIus the addition of

insulation, a super sarah beacon, and heavier batteries, raised the estimated weight

of the orbital configuration of the capsule to 3000 pounds. .4

Feverish, if not frantic, work and worry went into these decisions, beginning
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as soon as capsule No. 4 arrived at Langley. But Bond, Fields, and Meyer, taking

up where they had left off with Big Joe, ran a taut project through mid-April;

they "pessimistically and therefore," they believed, "realistically" estimated again

that they would see this rocket's red glare on July 4, 1960. CaIdwell C. Johnson

and Jack Kinzler supervised the polishing of capsule No. 4 as they had for the Big
Joe payload.

But summer arrived, and Chamberlin reported continual capsule delivery de-

lays at the weekly STG capsule review board meetings. The slowdown and

stretchout of the flight-test schedule became ever more vexing and costly. Mean-

while NASA Headquarters began to centralize and simplify its launch operations

under Ostrander, leaving to Silverstein preflight worries and responsibility for

Mercury boosters only. Warren North justified a $7 million overrun on the

prime contract for which STG was seeking approval:

This overrun was, of course, anticipated. A major factor involved in the
McDonnell overrun is the high level of engineering required in support of the
testing program. McDonnell previously planned to reduce their engineering
effort in early 1960. However, because of the increased scope of the testing
program and the capsule changes, these engineering reductions have not taken
place; in fact, in their last monthly report, McDonnell shows their engineering
head count at 913 and increasing. The procurement overrun is due primarily
to subcontract overruns at Bell, AiResearch, Collins, Radioplane, and Perkin-
Elmer. s_

To try to speed things up and to keep safety paramount, Silverstein instituted

biweekly meetings at NASA Headquarters with Walter Burke of McDonnell and

Gilruth of STG. Both quality control and urgency militated against keeping cost
ceilings permanent. They also militated against the schedule. Glennan had

directed that no flight schedule changes should be made without his personal

explicit approval. But the technological realities of ensuring highest technical

performance and STG's priority concern for the orbital objectives of Mercury,

rather than for suborbital man-in-space, allowed the first Mercury-Redstone flights

to slip past, or at least alongside, the Mercury-Atlas qualification flights.

H_AD AND HANDS OF NASA

During March and April, Administrator Glennan called on the Space Task

Group, as well as all of NASA, to conduct a self-appraisal of NASA's contracting

policy and industrial relations. A firm of management consultants, McKinscy

and Company, had entered into a contract with NASA on February 26, 1960,

for a comprehensive study of how NASA should utilize industry and private

institutions, how it could improve its utilization of its own research capability, and

what the extent and manner of sharing responsibility and authority between

Government and industry actually was. s6

The Space Task Group responded with a self-analysis which listed the major
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elements of Project Mercury, gave an explanation of the major tasks involved, and

discussed the reasons for performing each task within NASA or on contract. The

preliminary draft of this information divided the tasks of the Task Group into

three subsystems--the capsule, boosters, and tracking and communications--each

of which was further subdivided into elements and tasks. When the representative

of McKinsey and Company visited STG on April 19 to discuss the working

methods used in the conduct of Project Mercury, he was briefed by Purser,

Zavasky, Mathews, and Bond, and provided with documents tabulating the

distribution of STG personnel man-years, associated costs, and "R and D" fund-

ings. Although McKinsey's final report did not appear until October, the Task

Group finished its part of the self-examination in May. STG learned from this

exercise that it had shifted from research and development into almost exclusively

development activities, s7

At the highest level within NASA Glennan and associates recognized, as Robert

Rosholt has described it, that the "opportunity to make comprehensive changes in

NASA's organization and procedures would not exist too much longer, i.e.,

bureaucratic hardening of the arteries would make change more and more difficult

as the agency became oIder and larger." The final McKinsey report appeared

to endorse the "integrated project management team" approach used by STG.

The Space Task Group, however, was still only a semi-independent subdivision of

NASA's Goddard center and still closely related to the Langley center. The

General Accounting Office and NASA had clashed recently over executive privi-

lege in withholding certain documents relating to the selection of McDonnell as

the prime contractor for Mercury. This furnished ammunition for some critics

of NASA's industrial relations. But the decentralization policy of NASA was

approved by McKinsey, with certain reservations taken in part from STG's
experience. 88

Through the winter and spring of 1960 the managers of Mercury both in

Waskington and in Virginia were learning to adjust to the limits imposed by a

new technology and by the necessity to coordinate diverse, far-flung, and some-

times perverse human organizations of technicians and craftsmen. While they

chafed at the slipping schedules, worried over technical details, swatted at gadfly

reporters, and tried to anticipate every contingency in their planning for the

missions ahead, Gilruth and his associates in management and systems engineering

were just as surely learning to take their tumbles as were the astronauts in their

centrifuge rides and in other exotic simulators.

McDonnell's capsule No. 1 finally arrived at Wallops Island on April 1, 1960,

cleaned up but stripped of most of its subsystems, to be groomed for a test of its

escape rocket, parachute recovery, and landing system. Petynia and Dennis

F. Hasson had written a thick catalog of expectations, prescribed procedures,

schematics, and checkoff lists for this "off-the-pad abort" test. While Alan

Kehlet and Herbert G. Patterson worried over alignment and the abort sequence

system, Wallops personnel prepared the canted pad and supplied logistical support
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to the McDonnell and Task Group engineers for a month of preparation. Shake
tests and sled tests were run first to ensure readiness before firing? 9

Finally on May 9 the carefully weighed and balanced capsule pointed its pylon
toward the sea. The ignition switch was closed and the escape rocket jerked the
capsule away from the ground on its short flight, lasting one minute and 16 seconds

but covering half a mile in an arc 2465 feet high. Recovery by a Marine Corps
helicopter took only 17 minutes. The only significant defect noted from this test
was a relatively poor separation distance when the tower jettisoned. 9°

The "beach abort" was a successful flight and a sterling qualification test,
but it was hardly spectacular to the public. Certainly it was not all that STG

had hoped to accomplish this long after the last of the development flights late
in January. However, MA-1 was coming along nicely. It should be far more

impressive in proving the "booster-capsule combination for exit flight and capsule
for entry flight." 9, And spacecraft No. 2 was to be delivered to HuntsviIle at the

end of June for static tests and compatibility adjustments with the first Redstone
booster. Should it prove trouble-free, then presumably by the end of summer, if
everyone worked hard enough and there were no interfering defense launch
commitments, two more qualification flights on each of the big boosters should
bring the day of the first manned space flight much closer.

On May 15, 1960, however, an event occurred that rekindled premonitions

that the first manned space flight might be made by a Russian. In their only
announced space launching during the first half of 1960, the Soviets orbited the

first capsule large enough (10,01I pounds) to contain a human passenger.
Called merely Sputnik IV by the' Western press but more accurately named
Korabl Sputnik, or Cosmic Ship No. 1, this vehicle failed four days later when its

reaction control or attitude control system shot the ship containing its dummy
astronaut the wrong way for recovery22 Perhaps, just perhaps, the United States
might have better reaction and attitude controls than the Soviet Union.
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From Development into Qualification: Flight Tests

(JULY--DECEMBER 1960)

N mid-1960, NASA and its Space Task Group hoped soon to begin launchingmajor qualification flight test for Project Mercury every six weeks. If all
went well, these tests of the operational vehicles should permit a man to ride
into space before the end of the year. But if Mercury's developmental experience
to date was any guide, troubles could be expected to pyramid and might require
more than six months to correct. Since the ultimate goal of Project Mercury

was to achieve man-in-orbit rather than merely a sounding-rocket ride by a man
into space, the Task Group would be running concurrent flight tests with the Little
Joe, the Mercury-Redstone, and the Mercury-Atlas combinations. But atten-
tion and impetus were focused on the accomplishment of manned orbital
circumnavigation.

NASA Administrator T. Keith Glennan sent a memorandum to his Director

of Space Flight Programs, Abe Silverstein, on July 11, 1960, prompting him to
make every effort to put forward to November the launch of MR-3, long desig-
nated the first manned suborbital flight. If that was not possible, Glennan
urged Silverstein to hold fast the schedule for the first manned launching before

the end of the year. Silverstein replied that the manned event had just been
reset for the week of December 5. By mid-August 1960 the most realistic estimate
of the earliest possibIe man-launching changed the program management plans
once again and reset the MR-3 launching for mid-January 1961. As late as
October 1960, this optimism prevailed while work on capsule No. 7 for MR-3
proceeded "somewhat better than expected." 1

Having once called the Army's stillborn Project Adam a "circus stunt" because
it proposed little more than shooting a man into space, Hugh L. Dryden, Deputy
Administrator of NASA, had himself set a precedent for the criticisms of those
influential scientists who came to regard Project Mercury as more of an exhibition
than a demonstration. During 1959 few had raised their voices against NASA's
plans and STG's development program for a manned satellite. But during this
election year of 1960, many citizens scrutinized--and Eisenhower even established
a commission to study--all national policies, goals, and ideals. This White
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House-sanctioned introspection led to some criticism, not entirely constructive, of

the civilian space agency, which all too often was equated with Project Mercury. 2

Most Americans appeared to approve Mercury as a potentially stupendous

adventure, and many Congressmen anxiously hoped that NASA would mobilize

the Nation's vaunted technological know-how to put the first man above the

atmosphere. Although Dryden, George M. Low, and other NASA officials re-

cently had warned repeatedly that the Russians could and likely would achieve
manned space flight first, no one in NASA seemed to wonder whether the Soviets

would send men on ballistic suborbital missions before committing a man to

orbital flight. Most citizens seemed to confuse their feelings of hurt pride with

loss of prestige and were reluctant to accept Eisenhower's difficult rationalization

that America should abjure any "space race" with Soviet Russia. But NASA

followed Eisenhower's leadership in this matter and reinforced the official attitude

by insisting that Mercury was an "R and D" program whose pace could not be
forced?

Glennan in his public statements appeared torn between the pressures of public

sentiment expressed through Congress and the news media, on one hand, and the

demands of loyalty to the Chief Executive and to technological realism, on

the other. Aware of the Nation's late start in rocket propulsion development and
yet of its amazingly rapid achievement of a workable ICBM, Glennan. knew that

the United States still did not have the weight-lifting prowess to join an avowed

contest with the U.S.S.R. But Glennan also shared the aerospace community's

satisfaction on May 20, 1960, when the Atlas first flew higher than 1000 miles

and over 9014 miles downrange from Cape Canaveral into the Indian Ocean.

By this time the Thor and Jupiter intermediate-range missiles were operationMly

deployed abroad. The Titan ICBM, in spite of some developmental failures,
was emerging into a second-generation intercontinental missile. 4

Mercury still was only a fractional part of NASA's total space effort, but

publicity and public interest had reinforced each other until the manned program

clearly had become the most promising hope of "beating" the Russians into space.

When the Soviets orbited Korabl Sputnik II on August 19 and the next day

recovered two dogs, Strelka and Belka, from it, grounds for complacency among

Americans evaporated? National phobias, stimulated by partisan criticism of

the alleged "missile gap," were further distorted by technological chauvinism

with respect to Soviet accomplishments in space. Popular attitudes were exacer-

bated after the "spirit of Camp David" was destroyed by the U-2 incident and

after Khrushchev used the U-2 affair to destroy the summit conference in Paris.

Speculations on high policy and international relations were not the business

of the field workers on the Mercury program. But as citizens they could not

avoid being aware-of some wondrous possibilities for the historic significance of

their work. Both landlubbers and space lovers could find many excellent reasons

to think that the ICBM and nuclear warheads might possibly become plowshares

of peace rather than tools of terror if directed toward the exploration of space.
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Peaceful coexistence and even international cooperation might be force-fed by

the exorbitant economics of the competition to put men into orbit. Whatever

one's particular brand of concern, there were motives aplenty to work on Project

Mercury.

Toward the end of June 1960, the Space Task Group took another hard look

at the status of Project Mercury. Having formalized three separate series of

engineering inspections and tests--progressing from development through quali-
fication into reliability phases--STG faced with increased confidence some

criticism from technical associates. It felt it could gauge accurately the soft spots

in the major systems for Mercury. Of the 17 nominal systems for the capsule, all

but five or six by June were reported finished with qualification tests and almost

done with reliability testing. The major unfinished items were the reaction control

system, pyrotechnics, the retrograde and posigrade rockets, and the satellite clock.

Capsule system tests had revealed that certain pressure regulators, solenoid and

relief valves, and thrust chambers for the reaction controls using corrosive hydrogen

peroxide were going to be troublesome when operating in a high vacuum. On the

other hand, the environmental system was progressing better than expected, with

only five components still unqualified: the emergency oxygen bottle, a pressure

reducer assembly, the odor and carbon dioxide absorber, a high-pressure oxygen

transducer, and a sult-circult water separator. The abort sensing and implemen-

tation system (ASIS) for the Atlas was 95 percent qualified, but its counterpart
for the Redstone was not.t

The communications and tracking network faced four outstanding problems:

no one had much experience with Atlas guidance and tracking at long ranges

and low elevation angles; the reliability of the high-speed data links was unknown;

capsule antenna patterns were erratic enough to make radar acquisition

problematic; and control procedures and techniques as yet were untried.

Astronaut training, the Task Group believed, was virtually complete for dis-

orientation, tumbling, and familiarization with high levels of carbon dioxide

absorption. Adaptation to weightlessness and lectures on space sciences were

90 percent complete, but training in navigation and communications (at reduced

pressures and with high heating, noise, and vibration rates) was less than a third

finished. The training of ground crews in procedures for preparing, launching,

and monitoring an astronaut in flight had only just begun. And NASA's planning
for recovery operations in the summer of 1960 was grandiose, asking "virtually

for the deployment of the whole Atlantic fleet." This requirement came down

abruptly after NASA met with the Navy at the Pentagon and was shown that

fleet operations of this scope might cost more than the entire Mercury program. 7

The climax of the debate over reliability analyses came in early summer 1960,

when NASA Headquarters decided to issue an independent contract with

McDonnell for making assurance doubly sure. Associate Administrator Richard

E. Homer and his deputy, Nicholas E. Golovin, the mathematical systems analyst

who had come to NASA from the Advanced Research Projects Agency, achieved
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their first point on June 9, 1960, when a separate contract with McDonnell was

signed for a reliability study of all Mercury capsule systems. Estimated to cost

$52,892 with a fixed fee of $3,323 and planned to be administered by the Bureau

of Naval Weapons representatives in St. Louis, this small contract was designed to

provide Homer's office with the data it needed to analyze and evaluate the reliabil-

ity efforts and achievements of McDonnell, of all l0 capsule subcontractors, of

some 200 suppliers, and indirectly of STG's reliability monitoring and mission
planning2

Golovin's approach to a reliability prediction program was unusual to both

the Space Task Group and to many of his professional colleagues. It reversed the

common procedure of beginning with parts analysis and proceeding to the whole

system. Golovin had recently explained his theoretical point of view before the

American Society for Quality Control, citing other missile program precedents for

inverting the crucial problem: "start with a definition of failure for the system,

and then work back through subsystems and components to the data on parts

failures." GIennan and Horner had approved this approach as an aid to fulfilling

their desires for better "confidence coefficients" before accepting the readiness of

the capsule for unmanned and manned suborbital and three-orbit missions. This

kind of systems analysis used deduction and fully exploited "numbers game"

techniques and data processing machines to check on the inductive systems engi-

neering of STG and McDonnell. The experimentalists at the working levels,

and many of the engineering managers, including STG's Director, Robert R.

Gilruth, believed they saw a worthless expenditure of effort in this innovation2

NASA Headquarters saw STG dragging its feet on this issue by the end

of June. Glennan therefore tried another tack. He wrote directly to James S.

McDonnell, shortly after a personal visit and briefing at the factory:

As you know, during the last month there have been a number of discussions
between my Office of Reliability and Systems Analysis and various members of
your staff on the problem of Mercury capsule system reliability. These talks
were the result of my having directed the Office of Reliability and Systems
Analysis to prepare for me an objective quantitative evaluation of the antici-
pated mission and flight safety reliability of the Mercury capsule system. It
has now been brought to my attention that discussions have not yet resulted in
mutual agreement on getting this job seriously underway.

I would appreciate it if you would give the matter your personal attention
and have your staff responsively consider providing, as promptly as possible, the
information detailed in the enclosed "Proposed Work Statements for McDonnell
on Mercury Capsule System Reliability."

If you foresee any serious problems in this connection, I would appreciate
your bringing them directly to my attention, and I will be glad to set up a meet-
ing in Washington to reach a full meeting of minds. 1°

The work statements enclosed in this letter, prepared by Golovin's assistants Landis

S. Gephart, William Wolman, and Catherine D. Hock, called for precisely defined

reliability definitions, assumptions, diagrams, equations, and estimates of each
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subsystem design, together with all available test data from every source. The

basic reasons for requesting this information were to allow NASA "to review

and evaluate the techniques and the data employed by McDonnell" in its reliability

report (No. 7007) issued almost a year earlier, and "to update and upgrade the

reliability predictions and probability equations" for mission success in the light

of uneven changes of component parts supplied to McDonnell:

With all its s,:bcontractors, McDonnell has established a reliability require-
ment for each major equipment. This requirement has been expressed either
as a mean time between failures for a continuously operating device or as a prob-
ability of success for a single shot device, and has been incorporated as a firm
contractual requirement in the appropriate McDonnell Specification Control
Drawing. McDonnell also recognizes that "a requirement without a test to
demonstrate compliance with it is meaningless." Accordingly, McDonnell has
specified a variety of tests aimed at demonstration of the reliability requirements
imposed on its subcontractors.

Golovin and associates wanted to examine all test plans and test results on

every Mercury capsule component from pre-installation acceptance through sys-

tems, compatibility, qualification, and life tests. In short, they wanted virtually

a whole library of files at McDonnell opened for their inspection promptly, within

two weeks if possible. This was not quite possible, but the founder of McDonnell

Aircraft did reply personally to Administrator Glennan in mid-July:

I am happy to inform you that our company started work on 9 June I960,
the same day on which Dr. William Wolman made his first specific request,
even though this request was only verbal [sic]. Our company is now at work
on every one of the programs therein outllned even though we still have no
contractual authorization for any of it.

We are in full accord with providing as fast as humanly possible (without
diluting other Project Mercury effort) whatever work is desired by NASA to
assist in the rellabiIity evaluations of Project Mercury .... 11

A few days later Golovin's group, having requested Silverstein to show STG

how invidious was its prejudice agains.t the "numbers game," journeyed down to

Langley Field and briefed the Task Group on how Headquarters proposed to

raise quality by quantitative methods. Reliability goals for each major capsule
system, progressive analyses, and periodic reviews, plus a new order of simulated

mission-testing stringency, were proposed and accepted by STG. Since the last

major reliability meeting at Headquarters on February 29, 1960, had been so

acrimonious, STG was surprised to find how little difference there now appeared

to be between Golovin's approach to reliability and its own. On July 21, Paul E.
Purser logged this note for Gilruth: "Spent most of the day in the meeting with Dr.

Golovin, et al. They sounded fairly reasonable. If we had held such a meeting

several months ago, there would have been a lot less misunderstanding." is

Shortly after this rapprochement, Homer resigned from NASA to go to indus-
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try, Golovin resigned later to join the President's Science Advisory Committee staff,
and Gephart and Hock obtained an expansion of the McDonnell reliability con-
tract to cover the astronaut's task description and performance evaluation.
Glennan meanwhile pressured Silverstein, who pressured Gilruth, to do something
formal about taking into account contemporary mathematical techniques used
in missile programs to enhance managerial confidence in reliability, hence in
readiness before a launch. Gilruth in turn gave the job to John C. French, who
proceeded to organize a "reliability and quality assurance office" in the Space
Task Group. There was special significance in the word "assurance," because
STG had by no means capitulated to the statistical approach nor to the mathe-

maticians' belief in the efficacy of reliability prediction. 13
Had the qualification flight tests actually started earlier, perhaps much of the

debate over what to expect from Mercury launches would have been obviated.

But while still standing on the threshold of the major flight test program after
almost two years of virtually simultaneous work on detailed design, engineering,
and manufacturing, the Mercury spacecraft developers had to talk out some of
these difficulties before they could call for a vote. Far more significant than the
formal reliability program in the long run were the test philosophy, test programs,
and the test work in "space chambers" that could more realistically simulate the
hot/cold vacuum of the exospherie environment?' To move in that direction

required a move toward the "spaceport" at Cape Canaveral, Florida.

MOVING TO THE LAUNCH SITE

The imminent shift from development into the operational phase of Mercury
was reflected in several different ways. Military and industrial relations at Cape
Canaveral were undergoing rapid change as management and launch facilities
were partially modified to accommodate the influx of a new team for manned
space flight. Melvin N. Gough, the senior test pilot who had established NASA's
basis for operations at the Cape, departed for a job with the Civil Aeronautics
Board, and into his shoes stepped G. Merritt Preston for STG and Kurt H. Debus

for Marshall's launch operations, now also a part of NASA. The Air Force
also added more help for NASA support activities under Colonel Asa B. Gibbs
and J. W, Rosenberry. Overcrowded facilities and overlapping checkout and
launch schedules were causes for interminable official dickering but not for any
program delay. Project Mercury eventually acquired Hangar S and launch
complexes 56 fo,' Mercury-Redstone and 14 for Mercury-Atlas? 5

Although the rank and file of the Space Task Group were barely aware of the
new liaison between NASA Headquarters and McDonnell reliability experts, the
quest for quality control at the working level was entering a new phase. In the
early summer of 1960, about 50 men from STG established residence in Florida.
John F. Yardley, along with about 80 McDonnell technicians, set up shop in
mobile-home trailers around Hangar S, in the industrial area within the fences

268

m

m



FLIGHT TESTS

of Cape Canaveral. By the end of the year the number of technicians working

on the capsules for preflight checkout at the Cape had grown to more than 400,

most of the increase made up by contract personnelY'

At the McDonnell factory in St. Louis, peak employment on Mercury systems

had reached 880 in April 1960. After that, there was a gradual decline in Mer-

cury production workers as Yardley's field team increased to 120 by summer's end.

Because STG had called for the first four capsules from McDonnell's production
line before they were entirely finished, the maximum of 427 workers on the factory

floor in May 1960 declined with the buildup of preflight polishing activities at the
Cape. Yardley and his crews soon became the center of attention for unofficial

helpers and kibitzers from other organizations and contractors, many of whom

were glad to provide materials and tools that were urgently needed and in short

supply among McDonnell people at the CapeY

Yardley, his assistants at the Cape--E. F. Peters and Robert L. Foster--

and other working engineers knew little about the separate reliability contract

between NASA Headquarters and McDonnell. Walter F. Burke, Logan T. Mac-

Millan, and the quality manager, N. E. Covinsky, did know that this extra busi-

ness was coming to their company through separate channels, but they and their

production engineers were so busy trying to make each capsule work properly that

they too could see little sense in the "numbers game." Each system and subsystem

seemed to have its own personality. But to guard against overemphasizing these

individual idiosyncrasies, capsule No. 10 was set aside as the standard test article

at McDonnell. As preflight checkouts at the Cape uncovered more and more

unique difficulties, the need for still more stringent quality control was made plain.

No one recognized this more than Yardley, who in the summer of 1960 urged
his company to institute a new order of reliability tests. He did not insist on

statistical performance data, but he did enjoin improvement of environmental-
chamber reliability testing of components. Robert L. Seat, McDonnell's senior

test engineer, was pressed by Silverstein in Washington, by Lewis R. Fisher of

STG, and by Yardley from the Cape, as well as by the burgeoning number of test

requests between McDonnell departments, to prepare specifications for an ex-

haustive environmental reliability testing program. On September 26, 1960,

the project to flight-test a man in orbit was supplemented by an authorization to

ground-test the capsule in a simulated mission through physical environments in
a "space chamber." This simulated orbital test program gradually became

known as "Project Orbit." _s

The reaction control system on capsule No. 2 was giving Yardley headaches.

In general the power and sequential systems on all capsules were full of "glitches,"

or minute transient voltages from inexplicable origins. Surely more problems

could be expected from space operations. So the simulated mission test program,

designed specifically to detect unknown anomalies arising from four and a half

hours of continuous operation in a vacuum alternately hot and cold, like "day"

and "night" for the manned satellite, was welcomed by all hands. Unfortunately
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it would take six months to build, install, test, and modify the new space chamber

test faciIity at the McDonnell plant. Several smaller, less sophisticated "man-

rating" vacuum chambers had already been used but none was capable of simulat-

ing the extremes of orbital conditions.

Prelaunch preparations at the launch site began in June 1960 with an under-

standing between STG and McDonnell that some rework would be performed

there in addition to extravagant preflight checkout tests, but the extent of the

last-minute work to be performed and the number of discrepancies to be corrected

became so great that "preflight checkout" quickly came to be a misnomer. Under

Preston at the Cape, John J. Williams eventually came to head the "Preflight Op-

erations" division, instead of being simply "checkout" crew chief. Paul C. Don-

nelly, Archibald E. Morse, Jr., A. Martin Eiband, Walter J. Kapryan, and Jacob

C. Moser gradually became involved with wholesale systems engineering as the

thoroughgoing checkouts in Hangar S expanded.

Gilruth laid down the law "for what is perhaps the most important single re-

quirement in our programs: that designs, procedures, and schedules must have

the flexibility to absorb a steady stream of change generated by a continually in-

creasing understanding of space problems." This policy of correcting every

discovered deficiency and of modifying each spacecraft down to the finish line

at launch time was what Gilruth meant by an "R and D" program; it sacrificed

cost and schedules if necessary, in the interest of quality or reliability as the experi-
mentalists understood it. I°

Through August 1960 "space chamber" ground testing for Mercury had con-

sisted primarily of the capsule systems tests for integration and compatibility in a

relatively mild vacuum and of the manned environmentaI control system tests

simulating an altitude of 40,000 feet. McDonnell had detected many design

deficiencies in these test programs. Now early development failures, arising from

unanticipated interactions between parts and components and from errors in esti-

mating the effects of environmental extremes, became most troublesome.

At St. Louis in mid-August, the "Development Engineering Inspection," a

milestone meeting comparable to the Mockup Review, brought together for three

days all the chief actors and participants in the hardware work on the capsule.

Walter C. Williams and Kenneth S. Kleinknecht were eager to institute this

old Air Force custom--the "D.E.I.," as they called it--as a basic check on systems

integration and configuration control. When on August 18 the 30 members of

the NASA inspection team departed, they were well assured that the Mercur T

capsule on display (No. 7) was safe for manned flight, but only for a

suborbital mission. Orbital flight would require a higher order of precautions for

reliability. "Project Orbit," taking advantage of recent advances in vacuum tech-

nology, promised to pioneer this new dimension in development engineering by

bringing the space climate down to Earth. Capsule No. 10 was specifically

set aside in September for environmental chamber testing at McDonnell for orbital
conditions. -"°

270

L ]



FLIGHT TESTS

While the Tenney Engineering Company of Union, New Jersey, was building
the new vacuum chamber for man-rated environmental testing of the capsule

at the Cape, and while McDonnell engineers were moving in to augment STG's

preflight checkout group there, one NASA operations expert transferred back

to tidewater Virginia to help Gilruth and French formulate policy and establish

STG's competence to judge reliability and flight safety issues. F. John Bailey,

Jr., was Gilruth's choice for the man most likely to reconcile the differences be-

tween reliability based on experience and on expertise. Bailey believed an engi-

neer needed 15 or 20 years' experience in any specialty to be a proper judge of

the state of his art; he also appreciated the value of mathematical models in the

redesign stages of technological evolution. But he quickly became convinced,

particularly by studying the carefully balanced engineering compromises between

efforts to make the boosters perfect and to perfect the escape system, that Mercury

dependability could hardly be improved except by flight testing. 21

Everyone recognized dangers in the pragmatic experimental approach to

pilotless spacecraft research, but each calculated the risks differently. Silverstein
and the new Associate Administrator, Robert C. Seamans, Jr., who succeeded

Homer at this post on September 1, 1960, were among those at Headquarters

who justly feared that overemphasis on the uniqueness of each production capsule

and on STG's policy of continuous rework might lead to so many "quick fixes"

that a pyramid of unobtrusive changes could cover up the truth about whatever

might go wrong? 2

Perhaps the most pertinent of these difficulties with systems integration

derived from NASA bench tests of the reaction control system. The manufac-

turer of the RCS, Bell Aerosystems Company, ran its qualification test program

from August through October 1960 and reported all phases of the testing satis-

factorily completed. Subsequent tests by McDonnell, STG, other NASA engi-

neers, the preflight teams at the Cape, and eventually by the workers on Project
Orbit revealed innumerable electrochemical and electromechanical problems in

simulated environments that required small changes here and there and even-

tually everywhere. The thrust chambers, metering orifices, solenoid valves, ex-

pulsion bladder, and relief valves each presented developmental flaws that were

"solved" more often by improvisations than by scientific redesign. Karl F. Greil,

a thermodynamicist who was working for Grand Central Rocket Company in

1960 to perfect the escape pyrotechnology for Mercury, joined STG and its

reaction controls test team in 1961 and tried in vain to apply the same perfec-

tionistic standards to this vastly more complicated and inherently less reliable

system of moving parts:

This is the irony: the results that counted in Mercury's RCS were due to
changes of the screen, heat barrier, and orifices, all of which were made up.on
simple first thought. On the other hand, the large amount of experimentatxon
on the valve resulted merely in the assurance that nothing needed to be changed
so far as valve design was concerned. This irony, that the simple approach
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did the entire job while the sophisticated approach merely resulted in an
"Amen", is indeed worthy of reflection, because it has in store both a risk and a
lesson: a lesson because there is so much glamor cast on sophisticated pretense
and so much disregard for the profane causes of all kinds of trouble; a risk be-
cause the simple remedy which did the job once without ever having become
clear just how it really worked, such success without perspiration is likely to
remain confined to its own historical case. But having established a precedent,
it is bound to seduce us into relying on it, if it is not even bound to become a
myth and a dogma33

Fortunately neither the reaction system nor the environmental control system

for the Mercury suborbital flight had to be so nearly perfected as the escape,

structural, and landing systems. The development engineering inspection con-

firmed the faith of most project engineers, in spite of a spate of impatient
criticism from outsiders, that capsule sequencing, electrical, communications,

stabilization, environment, pyrotechnical, instrumentation, and landing and re-

covery systems were virtually ready to fly. McDonnell issued a revised set of

detail specifications for capsule No. 7 soon afterward. The Aerospace Corpora-

tion, spawned from and now replacing Space Technology Laboratories (STL)

for Air Force systems engineering activities, published in September its basic

planning document, the "General Flight Plan: Atlas Boosters for Project

Mercury." 24

If Project Mercury were on the verge of technological bankruptcy, as some

critics claimed, the problem was that man was still land-locked by inadequate

boosters. The Redstone for Mercury was still not man-rated. The first Mercury-

Atlas flight on July 29, 1960, not only did not qualify anything, it seemed

actually to have disqualified an indispensable part of Mercury. It cast everything
into doubt.

ATLAS-MERCURY ONE: A COMPLETE FAILURE

Late in February 1960 the Air Force Ballistic Missile Division (BMD) and

Space Technology Laboratories (STL) had been hosts for a meeting in Los Angeles

of people from Convair/Astronautics, McDonnell, and the Task Group who were
to determine the final details of the ultimate booster-capsule system for Project

Mercury. Already STG had decided unilaterally, as was its prerogative, to make

the next shot split the difference between the Big Joe development mission and a

full qualification flight test of the Mercury-Atlas configuration on a simulated

reentry from orbit. To the Task Group, this configuration and mission had long

since been known as "MA-I," but Air Force and Convair engineers usually trans-

posed the names and spoke of "Atlas-Mercury" No. 1. As in many other par-
ticulars, which things should be first still was debatable. Maxime A. Faget

recorded his impression of the central technical debate at the Mercury-Atlas meet-

ing on February 26 :

STL/CVA representatives made an impassioned plea to use the escape
tower on the MA-1 shot. Only with the escape tower on, can the Atlas people
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determine the structural bending modes on the Atlas and, consequently, the
adequacy of their control system to accommodate them. The writer explained
that the tower was deleted fl'om this flight only after a great deal of deliberation
at the Space Task Group, that much water has gone over the dam since then,
and to change now would be very difficult. Although I agreed to take back
to the Space Task Group management their desires for further consideration,
they were informed that there was virtually no chance that the change would
be made25

As the MA-1 launch date approached, the Langley outfitters of the Big Joe

capsule installed inside the shell of McDonnell's capsule No. 4 another instrumen-

tation package, built by Lewis Research Center and STG electronics technicians.

Shipped to the Cape in mid-May, loaded with 200 pounds of sensing instru-

ments-including two cameras, two tape recorders, and a 16-channel telemetry

system--the MA-1 payload was equipped to measure some 50 temperatures

(mostly on the afterbody); pitch, yaw, and roll rates; positive and negative

accelerations; cabin and external pressures; and noise and vibration extremes.

Besides the missing 1060-pound escape system, this payload also lacked the en-

vironmental control system, the astronaut couch and control panel, and the atti-

tude-control and stabilization-control jets. An inert paste replaced the solid fuel
in the retrorockets. For several months before the Atlas 50-D booster arrived

at the Cape, Joseph M. Bobik, of the STG Launch Operations Branch, had work

abundant as the inspector of the MA-1 capsule. Meanwhile Sigurd A. Sjoberg,
John D. Hodge, Richard G. Arbic, John P. Mayer, and Robert E. McKann were

hastily revising the mission directive, data acquisition plan, and general informa-

tion on recovery requirements, landing area predictions, and a summary of

calculated preflight trajectory data. 2° Robert F. Thompson, Christopher C.

Kraft, Jr., and Charles W. Mathews listed in order of importance the test objectives

of the MA 1 flight:

1. Recover the capsule.

2. Determine the structural integrity of the Mercury, capsule structure and

afterbody shingles under the maximum heating conditions which could

be encountered from an orbital launching,

3. Determine Mercury capsule afterbody heating rates during reentry (for

this purpose 51 thermocouples were installed).

4. Determine the flight dynamic characteristics of the Mercury capsule
during reentry.

5. Determine the adequacy of the Mercury capsule recovery systems.

6. Familiarize Project Mercury operating personnel with launch and

recovery, operationsY

When capsule No. 4 actually arrived at Cape Canaveral on May 23, it was as

complete as it was supposed to be except for flight instrumentation, parachutes,

and pyrotechnic devices. Following a satisfactory test of the leakage rate of its
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pressure shell, the capsule's miles of wiring were verified while the instrumentation

system was subjected to final bench tests. Minor difficulties with instruments and

in using a new weight-and-balance fixture added two weeks to the work period.

For integrated systems tests to verify the sequencing and monitoring during the

reentry, the capsule was moved into the newly constructed clean room in Hangar S.
When every minor discrepancy had been corrected and the calibration curves

for various units had been established, the spacecraft was moved out to launch

complex 14 for the first mechanical mating of a Mercury capsule with an Atlas

booster. The alignment was good; no rework was required for the umbilicals or

for the complex wiring in blockhouse consoles. But mechanical problems with
Freon lines and with some electrical contacts in the mating ring caused a delay.

Taken back to Hangar S for dismantling to rework certain instrumentation and

telemetry packages, the capsule again was transported to the pad and mated to

the launch vehicle in preparation for the flight acceptance composite test, known

by its acronym, FACT. From July 13 to 18 engineers stood on the bascule of the

gantry, working to conclude the FACT satisfactorily.
Meanwhile the Atlas crews were checking out their vehicle. Friendly rivalry

between the propulsion and payload people produced many wagers over which

system would cause the next postponement, and whether the capsule or the booster

would be first to report "all systems go." On July 21, the flight readiness firing,

which was a dress-rehearsal static-firing test, tested the three Atlas engines and

measured the vibrations and acceleration strains suffered by the capsule. Atlas

partisans won a bet at this point; atop this particular capsule the short metal legs

of the "stub tower" created some unique antenna and telemetry difficulties with

power amplifiers, commutators, and a high voltage standing wave ratio. The

purpose of the "stub tower" was to support a thermal fairing over the antenna and

parachute canister. Again the spacecraft was returned to the hangar. The tape
recorders and cameras were removed, reloaded, and reinstalled. The telemetry

was checked. The recovery section equipment was removed, then reassembled

with live pyrotechnics. The capsule again was balanced, weighed, and aligned

optically beforeits final union with the boosterY

McDonnell's virgin spacecraft No. 4 moved to the seaside launch pad dressed

in a polyethylene raincoat on July 24. This time it nestled nicely on top the Atlas,

and the umbilical insertion and pull tests shortly certified readiness to begin the

countdown. Wet weather made it difficult to keep the pyrotechnic connections

dry, but otherwise preflight checkouts were completed on July 26, 1960. For the
benefit of Administrator Glennan, George Low summarized the expectations for

Mercury-Atlas 1 : =9

The primary objective of this test is to determine the integrity of the Mer-
cury capsule structure and afterbody shingles when subjected to the maximum
heating conditions which could be encountered in any Mercury mission.

Maximum velocity: 19,000 feet per second
Maximum altitude: 98 nautical miles
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Range:1300nauticalmiles
Peakdeceleratlon:16.3g
Timeof flight:16minutes

HeavyrainpeltedtheCapeearlyonFridaymorning,July29, 1960,but the
cloudceilingrosehighenoughtobeconsideredacceptablefor a launching. Dur-
ingthefinaI35minutesof countdownbeforelaunchtime(T), 48minuteswere
accumulatedby delaysor "holds"becauseof badweather;liquid oxygentank-
topping delays; and telemetry receiver difficulties. In the blockhouse Gilruth and

Walter Burke watched Walter Williams direct operations and Aleck C. Bond, the

project engineer, sweat away the minutes, while across the Cape at Central Control,

other Air Force, Navy, and Convair officers and officials also watched and waited.

Before their consoles in the blockhouse sat the Convair test conductors Kurt John-

ston and William Williams; Scott H. Simpkinson, the.payload test conductor;

Harold G. Johnston, the ground instrumentation coordinator; Jacob Moser, the

instrumentation engineer; B. Porter Brown, the launch coordinator; Richard

Arbic, the range coordinator; and Donald C. Cheatham, the recovery coordinator.

At 7:25 the weather looked cooperative in the impact area, where recovery air-

craft and ships were reporting a visibility of five miles and a sea state of mild

swells. So the gantry was ordered to back away, leaving MA-I poised alone in

the rain, ready for the final count. Intermittent holds for minor status checks left

only 7 minutes of count at 9 o'clock.

Finally at 9:13 the man-made thunder clapped as the Rocketdyne engines

spewed forth their reaction energy. The noise grew louder for several seconds as

the Atlas pushed itself up on its fiery blast by inches, feet, and yards. Out of sight

in seconds as it pierced the cloud cover, Atlas 50-D could still be heard roaring off

in the distance. The initial phases of the launching appeared to be normal. Then

everything went wrong:

About one minute after liftoff all contact with the Atlas was lost. This

included telemetry and all beacons and transponders. About one second be-
fore telemetry was lost, the pressure difference between the fox and fuel tanks
suddenly went to zero. It is not known whether this caused the failure or was
an effect of the failure. There was no progression of unusual events leading up
to this pressure loss. During the remaining second of telemetry, the Atlas
flight path appeai_ed to be steady.

By telephone and teletype data links, Low in Washington pieced together the bad

news on MA-1 and continued to dictate an immediate preliminary report for the
administrator and his staff :

As you know, the abort sensing system was flown open loop in this test.
This system gave two signals to abort, apparently about the same time as the
tank pressure differential was lost. These signals were monitoring missile
electrical power and thrust; although the tank pressure differential was also
monitored, no abort signal was received from this source. In the MA-1 mis-
sion, all of these signals were merely monitored, and were not connected to
any of the capsule systems.
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The current speculation is that the Atlas either exploded, or suffered a
catastrophic structural failure. Some observers reported that they heard an
explosion, but this is not verified. The failure occurred at the time of max-
imum dynamic pressure, at an altitude of about 3%000 feet, and a velocity of
about 1400 feet per second.

The capsule separation systems were not to be armed until about three
minutes after launch, and therefore the capsule remained attached to the Atlas

or to pieces of the Atlas, until impact. Capsule telemetry continued to impact
and indicated violent motions after the Atlas telemetry ceased. Temperatures
and shingle vibrations flutter were recorded. Since all shingle thermocouples
gave readings to splash, it is inferred that none of the shingles tore off. Impact
occurred about seven miles off shore in an area where the water depth is roughly

40 feet. At the time of this writing, ships were still searching for debris? °

It was a sad day for Mercury. It was especially frustrating for those nearest to

the Atlas-Mercury phase, for they knew only that MA-1, either Atlas 50-D or

capsule No. 4, or both, exploded on its way through max q. They did not know

precisely what had happened because the weather had been so bad as to prevent

•¢isual and photographic coverage. In Washington, at Langley, at the Cape, and

in southern California, postmortems were held for two weeks, until a conference

on August 11 marshalled the parties most interested in the MA-1 malfunction,

alongwith all the flight records, telemetry, and tape recorder data. Salvage opera-

tions had been able to recover only small portions of the capsule, the adapter-ring,

and the booster. Presiding at this meeting was Major General Leighton I. Davis,

the new commander of the Air Force Missile Test Center, who had relieved Major

General Donald N. Yates in June as the Department of Defense single-point-of-

contact for support of Project Mercury. On August 22, Warren J. North sum-

marized the "quick-look" opinions of NASA and STL but not of Convair/
Astronautics:

Both the NASA and STG localized the difficulty within the interface area
between the capsule and the booster. A metallurgist from STL explained
that it appeared the plumbing to the Atlas lox boiloff valve had failed due to
fatigue. One would not ordinarily suspect a fatigale failure after such a short
period of time, however, the NASA analysis showed that the lox valve plumbing
could have failed if a 30 g oscillation existed at approximately 300 cycles per
second. Culbertson (Convair) admitted that the lox valve was poorly sup-
ported and that 30 g was a feasible magnitude of acceleration. Vibration
measurements show a two and one-half g vibration of the booster airframe,
consequently a 12 g amplification factor would have been required at the lox
valve.

Jim Chamberlin, STG, has been appointed chairman of a joint committee
to resolve the MA-1 incident and provide a fix prior to MA-2. Initial reac-
tion of this committee would cause the establishment of a hardware mockup
at McDonnell which would include the pressurized lox tank dome, lox valve,
adapter, and capsule. This mockup will be vibrated in order to isolate reso-
nance or amplification factors? _
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July 29, 1960

MA-1, a suborbital flight designed to check capsule

structural integrity under maximum heating conditions,

rose into the low rain clouds above Cape Canaveral

(right) and mysteriously exploded one minute a/ter li[t-

off. Pieces were meticulously collected (below) and

painstakingly reassembled (below right). The engineer-

ing study delayed Mercury about 6 months but led to

vastly improved interlace between spacecra/t and booster.
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Two weeks later in San Diego, another committee of nine metallurgical engi-

neers, a majority of whom were not from Convair, examined microscopically the

hypothesis that MA-1 was destroyed by metal fatigue of the lox-vent valve elbow.

"All conferees agreed finally that the factor at hand was not the primary one." 32

The official flight test report issued two months later concluded with these
remarks:

The Mercury Atlas No. 1 flight test was abruptly terminated approximately
58.5 seconds after launch by an in-fllght failure of an undetermined nature.
Solid cloud cover at the time of launch precluded the use of optical records
in the investigation of this failure. The following conclusions are drawn
regarding this flight test:

a. None of the primary capsule test objectives were met.
b. The structural integrity of the capsule was maintained throughout the

flight until impact with the water. A substantial part of the adapter
remained attached to the capsule to impact.

c. The capsule onboard instrumentation performed in a highly satisfactory
manner throughout the flight.

d. The onboard instrumentation showed the presence of shingle vibration
of a non-destructive nature.

e. All Department of Defense support for the operation was very good. '_'_

In mid-September one of the most important of the regular monthly meetings

of the Mercury-Arias coordination panel took place in the administration building

at Patrick Air Force Base, Florida. Lieutenant Colonel Robert H. Brundin,

Major Charles L. Gandy, and Captain I. B. Hanson were the BMD representa-

tives, while Philip E. Culbertson and C. J. Holden represented Convair. Bernard

A. Hohmann and Ernst R. Letsch were representing Aerospace Corporation, since

STL was phasing out of Mercury. John Yardley, R. L. Foster, and J. T. Heard

were present for McDonnell.

First and last on the agenda of this meeting were questions concerning better

ways of inspecting and solving problems at the interface between the capsule and

the booster. Charles Mathews, the chairman, began the meeting by insisting that

in spite of the MA-1 failure, the overall Mercury-Atlas schedule could still be

maintained. Hohmann suggested that a new seven-man joint capsule-booster

interface inspection committee be established. This was done, and members

representing all contributing organizations were named. Regarding the unsettled

question of MA-1, Mathews briefly described several fruitless fact-findlng activities
and the need for additional instrumentation to determine the cause of failures like

MA-I. No new hypothesis had yet emerged from the several test programs,

so the 23 members of this coordination panel reexamined each other's previous

answers to the enigma of MA-1. The 11 members from STG vetoed a proposal

by the Air Force Ballistic Missile Division to establish still another "Mercury-Atlas

interface panel." _'

Although the MA-1 investigation was unsatisfying, the launch operations

committee reported that MA-2 was so nearly ready for a November launching that
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there was little time for looking backward and no time for regret. Then on

September 26, 1960, a lunar probe attempt by NASA, using Atlas-Able 5-A, also

failed severely. This forced a wholesale review of the Atlas as a launch vehicle.

Everybody responsibIe for MA-1 was trying to determine the cause of that failure,

but each only discovered that there were too many other bodies, both organic

and organizational, partly responsible.

Late in October, before the national elections and before another Mercury

flight test had come to pass, Gilruth and Williams held another periodic press
conference for the benefit of curious reporters. Inevitably the question was

asked, "Are you satisfied that you have pinpointed the reason for the MA-1

failure? .... No," Gilruth answered. "We successfully salvaged the capsule and

can account for all parts." His interrogator continued, "Do you believe that

parts in the Atlas' upper stage caused the failure?" Gilruth replied, "We have

explored this. We have answered all of the questions we have asked ourselves--

but have we asked the right questions? We can't be sure. That is one of the

reasons we are repeating the test. And on MA-2 the interface area will be

heavily instrumented." _5

When MA-2 finally became ready for launch, toward the end of February

1961, the managers of Mercury knew that a repetition of a total failure like MA-1

could easily cause abandonment of the project. The entire promise of the

American manned space flight program seemed to hang in the balance. The
technical aftermath of MA-1, during the politically sensitive period of the

Presidential election and the lame-duck session of Congress, made interrelated

technical and political considerations more acute than ever. To distinguish

between the two soon became virtually impossible.

ELECTION YEAR APPRAISALS

The day that Mercury-Atlas 1 failed so badly, NASA Headquarters announced

plans to follow Project Mercury with a manned space flight program called

"Apollo"--a project conceived to carry three men either in sustained orbital flight

or on circumlunar flight. Several days later, the X-15 set two new world records

when NASA pilot Joseph A. Walker flew the manned rocket on partial power to

a speed of 2196 miles per hour and when Major Robert M. White shot it up to a

height of 136,000 feet over Nevada and California. 36

In mid-August 1960, the Air Force accomplished two significant "firsts" within

eight days when it managed to recover instrumented packages from the thirteenth

and fourteenth attempts in its Thor-Agena-launched Discoverer series of satellites.

Discoverer. XIH dropped its 85-pound capsule into the Pacific off Hawaii on

August 1 l'after 16 orbits; although a mid-air retrieval had failed, frogmen and

helicopters from a naval vessel found and returned this, the first man-made object

recovered intact from an orbital journey. On August 19, 1960, an Air Force

C-119 cargo plane trailing a huge trapeze-like trawl succeeded in being at exactly
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the right place at the right time to snare in mid-air the descending instruments

from Discoverer XIV. That same day, however, the Soviets launched an ark,

including the "muttniks" Strelka and Belka, and the next day they recovered the

dogs and their live companions (rats, mice, flies, plants, fungi, and seeds) after

18 orbits above Earth's atmosphere. This marked the first successful recovery

of lMng biological specimens from an orbital voyage. Three months later, on

November 14, 1960, another C-119 aircraft succeeded in snatching the reentry

capsule from Discoverer XVII, which carried human tissue, bacteria, spores, and
film emulsions to an orbital apogee of 616 miles. For the moment, though, the

Soviet achievement was overwhelming in its portents for manned space flightY

On August 12, 1960, after an attempt that had failed in May, NASA's Project

Echo succeeded in placing into orbit the first passive communications satellite, a

100-foot-diameter aluminized Mylar plastic balloon, which reflected radio signals

beyond Earth's curvature. Launched by a Thor-Delta vehicle into an orbit

roughly 1000 miles from Earth and inclined 47 degrees to the equator, Echo i was

the first artificial moon that could be seen easily with the naked eye by all

mankind. Although stargazing aborigines in neolithic cultures of New Guinea

and Mozambique probably could see the Echo balloon with the unaided eye better

than sophisticates in the smog and haze of urban-industrial centers from California

to Kazakhstan, the new pinpoint of light in the heavens was a visible manifestation

of the "space age." President Eisenhower's broadcast message reflected from this

sphere circling Earth at 15,000 miles per hour proclaimed:

It is a great personal satisfaction to participate in this first experi-
ment in communications involving the use of a satellite balloon known as Echo.
This is one more significant step in the United States program of space research
and exploration. The program is being carried forward vigorously by the
United States for peaceful purposes for the benefit of all mankind.

The satellite balloon which has reflected these words may be used freely
by any nation for similar experiments in its own interests. Information neces-
sary to prepare for such participation was widely distributed some weeks ago.

The United States will continue to make freely available to the world the
scientific information acquired from this and other experiments in its program
of space exploration? 8

While the President was pointing to these and other achievements of the

United States in the exploration and use of outer space, the Nation was in the

midst of a highly contested presidential campaign and congressional elections.

Four years earlier it had seemed sheer whimsy, but now the practical values of

space exploration and policy decisions on space, missiles, and the Nation were

being not only examined but reexamined. In September, a month after Strelka

and Belka were orbited and recovered by the Soviet Union, Premier Khrushchev

again came to the United States for some personal diplomacy and figurative

sabotage in the United Nations General Assembly. Afterward he told reporters

that his people were ready to launch a man into space but had not yet made any
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such attempt? 9 No longer could Khrushchev's brogan braggadocio be ignored.

Meeting at Barcelona, on October 7, 1960, the F_d6ration A_ronautique

Internationale adopted the first set of rules to govern the award of official records

for manned space flight. To be recognized under the "Code Sportif" that had

been setting the rules for aeronautical records since 1905, the first flight into space

must top at least 100 kilometers; later attempts to set records must exceed the

existing record by at least 10 percent. Four categories of performance were set

forth: duration of flight, altitude without orbiting Earth, altitude in orbit, and

mass lifted above 100 kilometers. To be valid, oil cIaims for records "must be

supported by information on the date, time, place of takeoff and landing, identity

of the vehicle commander, and any special apparatus used to assist liftoff, landing,
or control." _°

When in mid-October Soviet tracking ships deployed to stations in the Pacific,

an alert went out to American forces to expect imminent Soviet attempts to

fulfiII Khrushchev's boast. In mid-August there had been much talk in the Ameri-

can press that the United States had "rejoined" the space race as a result of

recent accomplishments. An Associated Press dispatch on August 8 reported that

Abe Silverstein was not particularly dismayed by the MA-1 fiasco and believed

that Project Mercury was "essentially along the same time schedule as was

initially planned." Congressman Overton Brooks, Democrat from Louisiana and

chairman of the House Committee on Science and Astronautics, waxed much

more critical of the speed with which Project Mercury was moving. In September

Glennan warned Americans to be prepared for new Soviet announcements of

space spectaculars. The Mercury astronauts repeatedly were reported confident

that one of them could ride a ballistic trajectory either in December or January. '1

In short, the dramatic race to be first to put a man in space made such colorful

copy that news editors generally ran stories on the space contest second only to

news about the political contest.

The news media both reflected and fostered a widespread restlessness over

the apparent failure of American know-how to equal and surpass Soviet rocket

technology. Back in October 1959, two years after Sputnik I, Newsweek had fea-

tured an article, "How to Lose the Space Race," itemizing blanket criticisms of

all American space programs. To ensure that you have the losing ticket, advised

Newsweek, simply "start late, downgrade Russian feats, fragment authority, pinch

pennies, think small, shirk decisions." 4_ At the beginning of 1960, Hanson W.

Baldwin, the influential military affairs correspondent for the New York Times,

had chided the Eisenhower administration for neglecting the power of intangible

ideas and had advised the government to seek more advice from political rather

than physical scientists: "It is not good enough to say that we have counted more

free electrons in the ionosphere than the Russians have . . . we must achieve the

obvious and the spectacular, as welt as the erudite and the obscure." And in July

1960 one of the deans of space fiction and fact, Arthur C. Clarke, published a
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playful, widely viewed article that suggested that the United States had "already
suffered a failure of nerve" and forfeited its future by failing to "rocket to the
renaissance." 43

Project Mercury specifically, as 1960 wore on without much to show for the

taxpayers' millions, began to be criticized more minutely. Perhaps the most

painful sting felt by the Mercury team came from adverse publicity in Missiles and

Rockets, a weekly defense industry trade journal, on August 15, 1960. There,

under the heading "Is Mercury Program Headed for Disaster?" writer James

Barr excoriated Project Mercury :

NASA's Mercury manned-satellite program appears to be plummeting the
United States toward a new humiliating disaster in the East-West space race.

This is the stark conclusion that looms in the minds of a growing number
of eminent rocket scientists and engineers as the Mercury" program continues to
slip backward.

These experts, many of whom are already calling Mercury a latter day
Vanguard, contend :

The program today is more than one year behind its original schedule and
is expected to sllp to two. Therefore, it no longer offers any realistic hope of
beating Russia in launching the first man into orbit around the earth--much
less serve as an early stepping stone for reaching the moon.

Despite precautions and improvements, Mercury continues to be a tech-
nically marginal program that could easily end in flaming tragedy. Mercury,
at best, is a technical stop-gap justifiable only as an expedient. It is no
substitute for what is needed sooner or later, a maneuverable spacecraft similar
to the Air Force's much hampered Dyna-Soar.

Mercury originally had the supposed advantage of being cheap, an attribute
that made it particularly attractive to the Administration. However, Mercury
has proven to be a trip down a dead-end road that U.S. taxpayers are finding
themselves paving in gold. Appropriations have reached a quarter-billion to
date. They may double? _

Although Barr's animadversion could have been discounted in an election

year as a plug for more encouragement and funding to thi: Air Force's Dyna-Soar

program, the occasions for self-doubt inside Project Mercury indisputably were

becoming more numerous. On September 16, 1960, Gilruth issued a memo-
randum for his staff that showed the effects of barbs like those from Barr on the

morale of the Task Group. The subject of the memo was "Favorable Press Com-

ments (for a change)":

As most of you know, there have been some adverse comments in the press
and trade publications about the progress, or lack of progress, being made in
Project Mercury during recent weeks. A number of members of the Space
Task Group have expressed concern about these articles.

In any program as broad and complex and as important to our national
stature as Project Mercury, it is inevitable that there will be people around
us who either will not agree with us, period, or who tend to disagree in one
element or another just to be disagreeable. At the same time, there are a
number of people around our country who do understand how much work
and how much blood and sweat go into an undertaking of this kind.
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I am personally confident that the work that all of you are doing will bear
fruit in the near future. In the interim, I urge all of you to put on your
thickest hide, to continue your concerted efforts to make Project Mercury the
kind of program it was designed to be, and to reflect with me upon our past
accomplishments.4"_

At NASA Headquarters there was serious concern over how to answer pub-

lic criticisms. On August 14 Warren North sent the Administrator some arguments

filling in the contextual background of Mercury schedules:

Since the negotiation of the capsule contract, McDonnell personnel have
averaged 14% overtime for an equivalent 56 hour week. McDonnell has
assigned approximately 13,000 people in direct support of Project Mercury.
In October 1959, production went on a 7-day week, three shifts per day. Since
January 1960 capsule checkout personnel have worked three shifts per day
seven days per week. McDonnell is also working three shifts at Cape Canav-
eral. During the past eighteen months, Space Task Group personnel have
been using less than half their annual leave. Many have used essentially no
annual leave since February 1959. Space Task Group personnel at Cape
Canaveral worked approximately 50 hours a week preparing for flight opera-
tions. When the MA-I capsule was delivered to the Cape on May 23, 1960,
this group went on a 60-hour week. During the final month of MA-1 prepara-
tions, the launch operations crew was working a seventy-hour week. The
forthcoming simultaneous operations with Atlas and Redstone will require a
continuation of this type of effortfi

On September 9, 1960, George Low addressed a United Press International

editors conference at a hotel in Washington on the subject of the progress made

in Project Mercury to date. Low began by arguing against three common mis-

conceptions about the project in the public press: Mercury was not, he said,

"merely a stunt," not "designed only to win an important first in the space
program," and should not "be terminated if the Soviets achieve manned orbital

flight before we do." Firmly convinced that the Soviets now had the capability

of achieving manned orbital flight, Low tried to persuade the opinion molders

of the "fourth estate" to accept Mercury as an indispensable step toward Project

Apollo, one which "must be carried out regardless of Russian achievement."

This theme subsequently became official NASA policy. The urgency of Project

Mercury was transferred onto the higher level of the urgency of manned space

flight in general and for the future. "It has been a major engineering task," said

Low, "to design a capsule that is small enough to do the mission, light enough to

do the mission, and yet has reliable subsystems to accomplish the mission safely." 47

Within the aerospace community of industrialists, technicians, and Government

scientists and engineers, the context described by North and Low needed little

explication. Experience with federally sponsored "R and D" programs since

1940 helped them understand the difference between a project rating the "DX,"

or highest industrial procurement priority, and one designated an all-out "crash"

program. Mercury was never a "crash" project in the sense that the Atlas ICBM
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or the Manhattan Project had been, in which duplicative and parallel solutions

were developed for its most difficult systems. The DX priority for materials,

NASA's own first rating, and STG's high "sense of urgency" were tempered always

by the rule of noninterference with priority defense programs. In mid-September

NASA and the Defense Department agreed to aid each other to avoid duplication
and waste by means of a new Aeronautics and Astronautics Coordinating Board,

with Dryden and Herbert F. York as co-chairmen. 48

But the citizenry, through the press, saw these problems in simpler terms.
"Project Mercury: Race or Pure Science?" was a banner headline in a Norfolk

newspaper of September 11. Richard M. Mansfield related therein how the

United States "space fever" had fluctuated over the previous three years:

Gilruth gets a little angry when people talk about Mercury lagging behind
schedule. Some say it is behind as much as a year. Gilruth says this is pure
nonsense, that no one can properly put a specific target date on a research pro-
gram that explores "new frontiers," and is beset by such "detailed problems."

Gilruth gave assurance that extra money would not have cut time appre-
ciably. He does not believe that a blank-check crash program would save
much time even now.

"I think we've done our optimum," he said. "It's just like having a baby.
Maybe (with more money) we could have had a lot more of them, but you
wouldn't have cut the time on any one of them." 49

Reporter Mansfield went on to summarize the conflicting attitudes of scientists

who "are never in a hurry," with Government employees, including scientists, who
must respond to the demand of the electorate to "overtake the Soviets." The

eagerness of the seven American astronauts to make their suborbital flights was

tempered, he reported, by their recognition that the orbital venture into space
had already slipped too far. "There is little doubt among them that the Russians

will have been there first," said Mansfield.

Late in September members of the military and industrial community engaged

in aerospace and defense business watched with interest for indications where

best to invest their votes. The editors of Missiles and Rockets addressed an open

letter to both the Republican and the Democratic candidates for the Presidency,

inviting comments on a "modest proposal for survival." The journal sought spe-

cific commitments on the recognition as national policy of the strategic space race

with Russia and on the endorsement of a bold long-range program for space proj-

ects during the next decade. Candidate John F. Kennedy responded immediately

with his concurrence that "we are in a strategic space race with the Russians, and

we have been losing .... if a man orbits earth this year his name will be Ivan."

To this audience Kennedy also explained one meaning of his campaign slogans

on "moving ahead" into the "new frontier": "This is the new age of exploration;

space is our great new frontier." Vice-President Richard M. Nixon, seeing the

issues of an alleged "missile gap" and of national prestige loom ever larger in the
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later stages of the campaign, at last replied by vigorously defending the record of

the Eisenhower administration, t° The issue of manned space flight was never

clearly joined, here or in the television debates preceding the election. But after

the first Tuesday in November, even though the popular vote barely showed a

preference, it was clear that the next Chief Executive as well as the Congress

would be Democratic and that this meant change.

Project Mercury, as one large and unproven part of NASA, could expect to

be influenced by "the gathering storm over space" and some sharp changes in

the Nation's defense and space programs? 1 The most forthright change to be

expected with the new administration likely would be an honest and open admis-

sion of the competitive aspects of space technology. International negotiations

on disarmament had failed to produce any further arms control measures since

the 1958 Russian-American agreement to suspend atmospheric nuclear testing.

Efforts in the United Nations to exempt space as an arena for international

rivalries, following the example of the 1959 Antarctica treaty, had so far failed.

It seemed purely sentimental to act as if coexistence would become any less

competitive. Besides, recent successes of American missiles reinforced the United

States' foreign policy of steadfast resistance to Communist encroachments. An

Atlas ICBM had again flown 9000 miles for a bullseye in the Indian Ocean on

September 19, 1960; the Thor was operational, and the Polaris and Titan weapon

systems were in active test phases. A "booster gap" there admittedly was, but the

"missile gap" appeared closed, at least to discussion, after the election. The new

President would probably find it politic to move speedily but cautiously toward a

more intensive national (in contrast to a scientific-international) space program.

Kennedy was historically minded and could be trusted to see "the present in per-

spective," but whether he would consider, as one professional historian did,

"manned space flight as the main object of Russo-American rivalry" was entirely
moot. 52

Congressional attitudes before and after the election of 1960 seemed to change

less drastically because Congress was already Democratic and had been critical

of the Republican "no-race" thesis for three years now. Some of those legis-

lative representatives who felt a need to justify their loyal opposition to Eisen-

hower and their support for manned space exploration could do so by mailing

their constituents a congressional staff report entitled "The Practical Values of

Space Exploration." Philip B. Yeager, a staff member of the House Committee

on Science and Astronautics, wrote this pamphlet "to explain to the taxpayer

just why so many of his dollars are going into the American effort to explore

space, and to indicate what he can expect in return which is of value to him."

Two editions of this report, before and after the election, began with a quotation

from a Russian workman who reportedly complained in a letter published on

the front page of Praoda for June 12, 1960:

What do Sputniks give to a person like me? . . . So much money is spent
on Sputniks it makes people gasp. If there were no Sputniks the Government
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could cut the cost of cloth for an overcoat in half and put a few electric flat-
irons in the stores. Rockets, rockets, rockets. Who needs them now? 5_

Neither edition of Yeager's staff report spoke explicitly about Project Mercury,

but both implicitly illustrated Mercury's motivation. The author delineated in

lay language five categories of values served by national space programs. In-

tangible values came first and included scientific curiosity and the human urge

to do as well as to know. National security was second, and included the argu-
ment for space rivalry as a substitute for war. Economic benefits, immediate

and remote, were described in social terms for the third category. "Values for

everyday living" described some of the technological and medical "fallout" or

"spin-off" from space-related research. And finally this pamphlet pointed to

long-range values and to possible interrelationships with the population explosion,

water shortages, soil erosion, new leisure time, and the scientific and spiritual

aspirations of humanity. In conclusion Yeager chose to quote a paragraph, from

an editorial in the magazine Industrial Research, which "sober study indicates...
may not be too 'far out' after all" :

Space technology is probably the fastest moving, typically free enterprise
and democratic industry yet created. It puts a premium not on salesmanship,
but on what it needs most--intellectual production, the research payoff.
Unlike any other existing industry, space functions on hope and future pos-
sibilities, conquest of real estate unseen, of near vacuum unexplored. At once
it obliterates the economic reason for war, the threat of overpopulation, or cul-
tural stagnation; it offers to replace guesswork with the scientific method for
archeological, philosophical, and religious themes. 54

TECHNICAL SPRINT FOR MAN IN SPACE

Although election year reexaminations and premonitions of the Soviet Vostoks

were disconcerting, these were the least of the conscious worries of the men

teamed in the technological harness to get a Mercury astronaut off the ground.

They still had a plenitude of more prosaic problems of their own. The in-

exorable growth of the capsule weight, the marginal performance of the Atlas

as a launch vehicle, interface wiring and structural problems, and the worrisome

reaction and environmental controls for the capsule were outstanding. On the

other hand, some problems, like thermal protection during atmospheric entry

and the physiological effects of weightlessness for a short period, were assumed
solved for the moment.

Benjamine J. Garland, one of Faget's fellow authors of the seminal 1958

NACA paper for Mercury, prepared a special report for Gilruth on the proba-

bility of damage to the capsule by micrometeoroids during an orbital flight.

Garland advised that the danger to the capsule during an orbital flight from

sporadic meteoroid activity was very small. He calculated probabilities of hits

during a major meteoroid shower and found the danger was "still small but . . .
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an order of magnitude greater than the danger due to the sporadic background.

Since the periods of activity of the major showers are known, it is possible to
avoid operations during these periods and would be advisable to do so." _5

Because qualification and reliability tests on the retrograde and posigrade

rocket systems proved disappointing in their later results, GiIruth's team called
for help from the Ames and Lewis Research Centers. Robert R. Nunemaker

led a group at Lewis, monitored by John B. Lee of STG, who found some serious
difficulties with retrorocket alignment and escape tower separation. Among other
things, they found that some igniters were faulty and that the jettisoning of the
escape tower under certain conditions might permit a smashing recontact.

But the most serious problem with capsule systems at this time was the outside
chance that one or more of the three retrograde braking rockets might fail.
There was considerable margin for error in the design of the retropackage, but
there was no emergency braking system. STG's mission analysis group under

John P. Mayer had thoroughly investigated an inflatable balloon for this pur-
pose, and Gilruth himself proposed an emergency brake'that would have looked
like a Chinese dragon kite trailing in the wake of the orbiting capsule. This
auxiliary drag device to back up the retrosystem and to bring the capsuIe down

sooner than in the 24 hours theoretically required for a normal decay of Mercury's
orbit was independently appraised by Howard K. Larson and others at Ames.
Meanwhile John Glenn and the other astronauts asked STG's mission analysts

to study the effectiveness of a "fish-tailing" maneuver as a backup reentry mode
of last resort. Both ideas were reported feasible, but the former was not pursued
past the end of the year, when the reliability of the retrorockets and pyrotechnics
began to rise appreciably? _

Among the number of unsolved problems regarding man-machine integration
in late 1960, the complex final phase of the mission profile aroused much concern.
If an astronaut could survive launch, insertion, orbiting, reentry, and the free-fall,
nothing must jeopardize his chances to survive impact, exit from :he capsule, and
recovery. But as the capsule developed into flight hardware, the differences
between its theoretical design and its measurable performance required constant

restudy, redesign, and in some cases redevelopment? r While studying the Mer-
cury capsule's stability in water, for example, Peter J. Armitage and E. N. Harrin
of STG found that the deletion of the flotation bags and the addition of the
impact skirts had seriously compromised the floating trim if not the seaworthiness
of the capsule? 8

After summarizing recent investigations by both McDonnell and STG engi-

neers, Armitage and Harrin pointed out a number of unknowns and recommended
close scrutiny of any changes to capsule center-of-gravity positions to keep the
capsule within acceptable stability limits. While the model-makers at Langley
were fabricating and testing 24 new impact skirts, Astronauts Shepard, Grissom,
and Schirra practiced getting out of the capsule; it now listed at severe angles

and sometimes even capsized2 °
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During September 1960 all the Mercury astronauts began to train more
pointedly for the Mercury-Redstone mission. Early in October they gathered
their personalized couches, pressure suits, and accessories for centrifuge runs at
the Navy's Aviation Medical Acceleration Laboratory at Johnsville, Pennsyl-
vania. Fitted with a production handcontroller assembly and environmental
control system, the gondola of the centrifuge whirled each man as if he were

experiencing the calculated acceleration profile of the MR-3 flight. At Johns-
ville the astronauts gained experience in attitude and rate control, monitored the

normal sequencing functions, and learned to cope with emergency conditions
like overacceleration and decompression. Alan Shepard, for instance, took 10
training "flights" during the October session. _°

On September 8, 1960, SiIverstein called to Washington NASA's and Mc-
Donnell's chief engineers at work on Mercury to discuss plans for compressing
the Mercury-Redstone schedule by expediting the capsule systems tests and check-
out procedures for capsules Nos. 5 and 7, to be flown on MR-2 and MR-3,

respectively. Once again Silverstein asked that McDonnell assign independent
systems engineers to verify all hardware installations. Especially they were to
improve the quality of capsule No. 7 before the formal systems testing period.
This was done during October and November; for 43 days No. 7 underwent
performance trials of all its systems except its reaction controls, automatic stabiliza-
tion controls, and instrumentation and communications gear. McDonnell, Navy,

and STG liaison inspectors tried hard to meet Silverstein's Cape delivery deadline
of November 15, but two major discrepancies couId not be allowed to pass. One
problem had been perennial: overheating DC/AC inverters. Investigations dis-
closed that as long as the ambient temperature was kept below 165 degrees F
they functioned properly. McDonnell attempted to cure this overheating probIem
by replacing the honeycombed inverter sockets with aluminum shelves that doubled
as heat sinks. 61

The second problem was new: tiny cracks were noticed in the outer titanium
skin of the capsule pressure vessels. Samples of fractured material were sent to

the Battelle Memorial Institute, an endowed foundation for applied scientific
research, at Columbus, Ohio. Battelle found that the heated zones adjacent to
the seam welds contained an excessive amount of precipitated hydrides, com-
pounds of hydrogen and other elements. These impurities lowered the ductility
of the skin of the pressure vessel, increased leakage rates, and increised the danger
of structural collapse upon impact. But since capsule No. 7 had the best record
of all in the capsule systems tests, it passed muster to begin its final factory shake-

down tests on November 21, 1960. For later capsules, welding methods, vibra-
tion testing, and microscopic inspections were improved, but the long-standing
"skin-cracking" problem required that the search be renewed for ways to eliminate
hydride formations near the beads of fusion weldsY _

On December l, 1960, Jerome B. Hammack, the MR-3 project engineer for
STG, and his assistant, James T. Rose, certified that capsule No. 7 was ready for
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Normal sequence o[ ei)ents ]or Mercury-Redstone flight.

its manned mission, though some 20 days behind schedule. "The writers would

like to stress that the majority of time spent during this period was spent on
correction and rework rather than the actual CST and that every effort should

be made in the future to achieve manufacturing perfection prior to the capsule

entering CST." 63

Meanwhile capsule No. 2, being readied for the first Mercury-Redstone flight,

was delivered to the Cape at the beginning of August. This flight, MR-I, was

then scheduled for launching early in October. Both McDonnell and STG pre-

flight checkout crews in Hangar S worked around the clock to make ready the
maze of systems in their capsule. Christopher Kraft talked over Mercury com-
mand functions with the Redstone launch team under Debus and with Air Force

range safety officer Lieutenant Colonel R. D. Stephens early in September. They
then decided to fly the MR-1 mission with the automatic abort system in the

open-loop mode to lessen any possibility of a nuisance abort on this qualification

flight.

On a trial basis, a smaller Flight Safety Review Board for the spacecraft

(tailored after the Atlas boards by the same name), chaired by Waiter Williams

and consisting of Astronaut Cooper, F. J. Bailey, Jr., Kenneth S. Kleinknecht,

and William M. Bland, Jr., was established at the Cape to pass final judgment

during the week before the countdown on the readiness of the mission. During

the first week in October, final preparations were made to Iaunch MR-l, and

on the morning of October 9, 1960, an unbroken countdown proceeded to within
22 minutes of launchtime before the shot was scrubbed because of a malfunction

in the capsule reaction control system.C'
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By the first of November both LJ-5 and MR-1 appeared ready for launching

on November 7, 1960. But both launches had to be postponed again (the day

before the election) because of inclement weather at Wallops Island and because

at the Cape a serious leak developed in the helium tank of capsale No. 2. With-

out helium to pressurize the hydrogen peroxide thrusters, the payload after posi-

grade release might not reorient itself properly for reentry. So heavy had the work-

load at the Cape become that Williams decreed a maximum of 12 hours' work

for any one person in any one dayY _

The possible political significance of these launches now was seen by the press

and by the legislative staffs on Capitol Hill and at NASA Headquarters. George

Low's routine report for James P. Gleason, Assistant Administrator for Congres-

sional Relations, carefully explained the technical reasons first for delay and then

for speedup on the launch schedules. Regarding Little Joe 5, Gleason informed

the staff director of the Senate space committee that NASA Headquarters was

keeping close tabs on MR-I scheduling information because of the need to

coordinate interagency activity, but that Little Joe missions "requiring no major

coordination with non-NASA organizations" had always been handled on a less
formal basis:

You will notice that the launch target date was delayed from October 8,
1960, to November 11, 1960, at the time when it became apparent that the
capsule delivery would be delayed until about August 1, 1960. Between
August 17 and August 31, a large number of checkout difficulties was en-
countered in the noise and vibration test program. It was then expected that
the capsule would not arrive at Wallops until October 5, and hence the launch
date was moved to November 16.

In the early part of September, the rate of progress at Langley picked up,
and the capsule was actually shipped to Wallops on September 27th. Never-
theless, the projected launch date was not moved to an earlier date, since
simultaneous experience with MR-1 at Cape Canaveral gave every indication
that the prelaunch checkout would take longer than planned.

In actual practice, the Wallops Island checkout ran very smoothly• Ac-
cordingly, a new target date of November 7 was established late in October.
Barring difficulties during the final checkout period, and assuming that the
weather will be clear and calm, the launching will take place on that date.

• . . I feel that our project engineers have done an excellent job at pre-
dicting these dates; it is very seldom that actual dates on as complex a research
and development program as this one have come out so close to the predicted
dates as these have56

Less out of sensitivity to the political winds than because the facts seemed to

warrant it, the apolitical civil servants in the Task Group sent an encouraging

status report on Project Mercury to their administrative superiors in Washington

at the end of October 1960. There were a couple of negative items: the cause

of the MA-1 failure was still unknown, and the checkout time at the Cape for

capsule No. 2 for MR-1 was stretching interminably, it seemed. On the plus

side, three capsules (Nos. 2, 5, and 6 for MR-l, MR-2, and MA-2, respectively)

were on hand, and two more (Nos. 7 and 8 for MR-3 and MA-3) were expected
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at the Cape momentarily. The Mercury Control Center, a command-post build-

ing trisecting the area between the two blockhouses beside the launching pads and

the industrial hangars, was open and almost ready for operations. Four pre-

flight checkout trailers supplied by McDonnell were already in full use. Pro-

cedures Trainer No. 2 was being wired to its computer banks, and the ground-

test qualification program seemed almost complete.

The tracking and communications network was essentially finished, except

for the stations at Kano, Nigeria, and on Zanzibar. The Atlas ASIS was looking

good, and with luck the first truly complete Mercury-Atlas configuration, MA-2,

still might possibly be flown during the quarter. Cost accounting for the pro-

gram was still a black art, but according to STG's own estimates the summary of

funds required to accomplish the Mercury mission as defined in October 1960

approached $110 million: _;

Mercury capsules (20) ...................................... $48,720,000

Mercury boosters .......................................... 25,429,000
Mercury network (incl. operations) ........................... 18,953,000
Mercury recovery (incl. operations) ........................... 10,573,000
Biological and human engineering ........................... i,922,000
Development program ...................................... 3,928,000

Total ............................................... $109,525,000

LITTLE JOE 5 VOTES NO

On Election Day, November 8, 1960, Space Task Group and McDonnell

engineers at Wallops Island finally pulled the trigger on capsule No. 3, attached to

Little Joe 5. Having planned L J-5 for over a year as the first qualification flight

of a production capsule to sustain abort conditions at maximum dynamic pressure,

the hard-working crews were especially chagrined to see the disintegration of all

their plans only 16 seconds after liftoff. At that time the escape rocket and the

tower jettison rocket both prematurely ignited while the booster was still thrusting.

Therefore booster, capsule, and tower stayed mated together throughout their

ballistic trajectory until impact shattered them to fragments.

Whether the limit switches at the clamp rings below or above the spacecraft

were at fault, or whatever improper rigging, wiring, or voltage reguIation was the

cause, it was exceedingly hard to rationalize that something was learned from this

flight failure. Spacecraft and booster continued on their arc 10 miles high and

13 miles out to sea before being mangled on impact 2 minutes later. Salvage

operations in water 72 feet deep recovered 60 percent of the booster but only

40 percent of the capsuleY Extensive tests on the clamp-ring problem were

conducted on rocket sleds at the Naval Ordnance Test Station at Inyokern,
California.

For welI over a year Holloman Air Force Base personnel, led by Major John D.
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Mosely, of the Aeromedical Field Laboratory, had prepared a packaged payload
with a medium-sized chimpanzee to ride the LJ-5 qualification flight. As late
as mid-July 1960, operational planning still included a first-order test objective

to determine the effects of a simulated Atlas abort acceleration on a chimp. The
delay in capsule delivery and a large number of checkout difficulties encountered

in late August, especially with the booster-capsule clamp rings and pyrotechnics,
led William Bland and Rodney G. Rose to persuade Gilruth to rule out the primate
on Little Joe 5. Besides that, the second Mercury-Redstone now being groomed
for a chimp flight represented a direct conflict in scheduling.

As disappointing as this decision was to aeromedical personnel, including
James P. Henry, the physician who supervised the animal program for STG, the
managers of the Task Group felt they could not afford to risk further delays.
The structural integrity of McDonnell's Mercury capsule and the escape system
during that most critical time in the region of highest dynamic pressure had to
be demonstrated as soon as possible. By deliberately omitting the environmental
control system and its problems, the Task Group had hoped to concentrate on
hardware dynamics, taking extraordinary precautions "to minimize premature
firing of any of the capsule pyrotechnics on the launching pad." 69 Obviously
something--no one knew what--had been overlooked.

After the dismal failure of Little Joe 5, these bleak days for Project Mercury
became even bleaker with the discovery that the helium leak in the capsule for
MR-1 could not be fixed quickly; it would require the replacement of certain
valves and the whole hydrogen peroxide tank. Furthermore a change in the
MR-1 wiring was dictated by the poor sequence and circuitry design on Little
Joe 5. NASA had one more Little Joe test booster on hand. One more air-

frame, the last one in existence, had recently been ordered as a backup to the
next shot. On November 10, NASA Headquarters was reassured that a stripped
capsule on the backup booster could fulfill the Little Joe 5 mission, "an essential
one before manned flight," probably before the end of January. And both

Mercury-Redstone 2 and Mercury-Atlas 2 still were considered "not beyond the
realm of po_ibility" for launchings in December._°

There was precious little in Mercury to be thankful for during the Thanks-
giving season of 1960, but there was more than enough work to keep everyone in

STG preoccupied. Caldwell C. Johnson wrote Faget a summary memo concern-

ing the capsule's weight growth and its effect upon Arias performance and mission

profiles. While McDonnell was conducting extensive tests of the impact skirt
situation, Johnson and others were worried about whether it would ever work.

In the light of later developments, the fern_,ent over redesign at this time became

significant, and Johnson's words grew in significance:

We have been monitoring Mercury weight growth, McDonnell's airplane-
weight history and the X-15 weight versus development phase and conclude
that Mercury orbit weight by the time of manned flight will exceed 3000
pounds! Capsule weight during parachute opening mode will be 2600 pounds;
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flotation weight is practically as great. These increases have a detrimental
effect upon orbital insertion probability, retrograde action, parachute opening
loads, and water stability. The only single action that will cure the problem
is weight reduction in the capsule but its weight growth is inexorable. It
appears that several separate actions are necessary.

J'. Mayer calculates that at 3000 pounds the probability of orbit insertion
is less than 96 percent even when based upon certain Atlas performance in-
creases. Furthermore, the possibility of an African landing from an early abort
is very real. He says there are some reasons to believe that Atlas weight can
be further reduced and greater payload capacity realized but so far this is but
speculation, and, in any case, doesn't do much for the African landing situation.

Some time ago increased retrograde capability was proposed but could not
be justified at that time. There is little doubt that such a change is justified
now--the question is whether posigrade impulse should likewise be increased
to aid orbit insertion. It is tempting to combine posigrade and retrograde
systems and to utilize the propellant as required by the particular flight situa-
tion. But, this is a rather drastic change, rl

MR-l: THE FOUR-INCH FLIGHT

November 21, 1960, marked the absolute nadir of morale among all the men

at work on Project Mercury. That was the day the MR-1 countdown reached

zero, and when "all we did was to launch the escape tower."

Capsule No. 2 had been checked out at Huntsville on July 21 and shipped

to the Cape the next day. The final standard trajectory was published on

August 1, and the Redstone booster was delivered two days later. From July 23,

when the capsule was airlifted to the Cape, until October 7, extensive internal

reworking was required. Since this was the first complete capsule to be sub-

jected to preflight checks, it was impossible to know precisely how long the

checkout would take. Gleason of NASA Headquarters had explained these

scheduling gymnastics to the Senate committee staff on November 3 :

Between October 6 and October 31, 1960, the work proceeded exceedingly
well. By October 24, for example, first mate had been completed. The rework
had been accomplished and the simulated mission and servicing had been
carried out. Not only had none of the contingency period been used up, but
preparations were actually two days ahead of schedule! It was, therefore,
hoped for the first time, that the working level target date might actually be
met, assuming that some as yet unresolved electrical troubles would not cause
any real delays.

On October 31, the final mating of the capsule and booster was accom-
plished. Still two days ahead of the target date established on October 7.
Therefore, it became clear, upon examination of the remaining work, that the
launching might take place on November 7, Accordingly, the Project Mercury
operations director requested range clearance for November 7 and also re-
quested support by Naval recovery forces for this date.

Because of the continuing great urgency of Project Mercury, and because
each succeeding launching hinges critically on the dates of previous launchings,
the selection of November 7 as a launch date for MR-1 was the only possible
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course of action to take for the operations director. In making this decision,
he recognized that he was merely identifying the earliest possible launch date,
and that this date might well be delayed if difficulties were to be encountered
during the final checkout, or if bad weather was encountered. A later decision,
on the other hand, would have been inexcusable for this might have caused
unnecessary delays if all went well during the final checkout periodY 2

MR-1 was on the launch table on November 7, 1960, when the helium pres-

sure dropped from 2250 pounds per square inch to 500 pounds in the capsule

control system, and the mission was scrubbed again. The capsule was removed

from its booster and the heat shield was removed from the capsule so that a helium

relief valve and the toroidal hydrogen peroxide tank could be replaced. A wiring

change was made to avoid a failure of the Little Joe variety, and electrical sequence
checks were redone as reassembly proceeded. Then, on November 21, MR-1 was

reassembled and the final countdown proceeded normally, with the exception of a

one-hour hold to fix another leak in the capsule's hydrogen peroxide system. The
Mercury Control Center was manned for the first time. At 9 a.m. Redstone

ignition occurred precisely as scheduled.

The expected blast momentarily churned the air around launch complex No.

56. But then the roar stopped as suddenly as it had started. Watching by peri-

scope from the blockhouse, the startled engineers saw the booster wobble slightly on

its pedestal and settle back on its fins after, at the very most, a four-or-five-inch

liftoff. The Rocketdyne A-7 engine shut down, and the escape pylon zipped up
4000 feet and landed about 400 yards away from the launch site. Three seconds

after the escape rocket blew, the drogue package shot upward, and then the main

chute spurted out of the top of the capsule followed by the reserve parachute, and

both fluttered down alongside the Redstone.

Mercury-Redstone 1 was the most distressing, not to say embarrassing, failure

so far in Project Mercury'. Critics waxed unrestrained. Even the Redstone experts

seemed disconcerted. 73 Technically it seemed inexplicable that the normal, instead

of the abort ejection, sequence had followed engine shutdown. George Low later

that day carried STG's report to the NASA Headquarters staff on what they
thought had happened :

Apparently, sufficient thrust had developed to lift the booster at least %2
inch, thereby activating all the systems. (This would require more than 85%
of nominal thrust.) The booster settled back down on the pad, damaging the
tail fins, and perhaps the structure as well (some wrinkles are visible in the
shell). The reason for this shutdown is unknown--the only shutdown to the
booster could have come from the booster programmer, at the end of the
normal flight sequence. Just how this programmer malfunctioned cannot be
determined without a detailed inspection.

The capsule sequence . . . was a normal one for the type of signal it
received. A closed-loop abort sensing system would have given an abort signal
under the conditions of this launching, carrying the capsule away in a regular
off-the-pad abort sequence.

At the time of this writing, the booster destruct system is still armed, and
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cannot be disarmed until the battery depletion during the morning of Novem-
ber 22. Capsule pyrotechnics (including posigrade and retrograde rocket) are
also armed. The problem is further complicated by the fact that the main
parachute is still hanging from the capsule; thus the booster could be blown
over in a high-wind condition. Weather predictions, however, are good. It is
planned to put the gantry around the booster in the morning, under the
assumption that the Redstone has not shifted sufficiently to make this impos-
sible. This will be followed by booster and capsule disarming and sequence
checks to determine the cause of the failure.

The extent of damage to the capsule has not yet been assessed. Assuming
a minimum of damage, it is planned to use the same capsule, together with the
MR-3 booster, for the MR-1 firing. It will probably take a month before
this launching can take place. TM

MR-1

Nov. 21, 1960

Mercury-Redstone 1 has just "blown its

stack" on the launch pad, seconds after

ignition. After, at most, a four-or-five-

inch li[toff, MR-1 launched its escape

tower but not the capsule. Then fol-

lowed the normal flight sequence of

parachute deployment. The drogue

chute is shown here deploying just after
ejection of the antenna canister. A few
seconds later would come the main and

reserve main parachutes.
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The day after the MR-1 attempt, Walter Burke of McDonnell volunteered to

lead a squad of men to disarm the pyrotechnics and umbilical cable still hanging

fire. Two days later, after intensive on-the-scene investigations of the puzzle

presented by MR-l, Low reported a better consensus of expert opinion:

The MR-1 failure is now believed to have been caused by a booster tail
plug which is pulled out about one inch after liftoff.

It has been determined that this two-prong plug is designed so that one
prong disconnects about one-half inch before the second one does. This time
interval b,"tween disconnect of the first and second prongs for MR-1 was 21
milliseconds.

The booster circuitry is such that if one of these prongs is disconnected
prior to the other and while the booster is not grounded, a relay will close
giving a normal engine cutoff signal. The time interval between successive
disconnects was apparently just sufficient to allow the relay to close.

It is reasoned that Redstone missiles are somewhat lighter than the Mer-
cury Redstone (with its extended tank), thereby giving higher initial accelera-
tion and shorter time intervals between disconnects between the two prongs.
This shorter time interval would be sufficient to allow the relay to close, thus
having avoided this type of failure in the past.

This relay behavior could not be detected during checkout procedures since
it will only occur when the booster is not grounded.

The above theory of failure was advanced by Marshall personnel at Cape
Canaveral and has not been confirmed by Marshall-Huntsville. It is planned
to continue tests at Huntsville using the Mercury-Redstone No. 2 booster to
verify this hypothesis5 _

Within a week, MR-1 was rescheduled for December 19, and MR-2 and

MR-3 had been postponed until I961. Low informed Silverstein that "The

MR-1 capsule will be used as is, together with the escape tower from Capsule 8,

and the antenna fairing from Capsule 10. The MR-3 booster will be used

for this shot." rc There was no longer any question that the mating of booster and

spacecraft should be done at the Cape.

Physicists observing MR-1 might have expected someone among the 5000

members of the Marshall Center to have guarded against the relativity of simul-

taneity where electrical signals were concerned, but McDonnell and Task Group

engineers dared not taunt their fellow workers on the Redstone about the cause

of the "four-inch flight" of MR-1. They were happy that the sequence system

on the capsule performed perfectly, but they too felt responsible for the failure

of the MR-1 capsule to abort. Meanwhile Joachim P. Kuettner and Earl Butler

at Huntsville, and Kurt Debus and Emil P. Bertram at the Cape, frantically

drove the men of their respective Redstone-Mercury Office and Launch Operations

Directorate to hasten preparations for MR-1A. By mid-December 1960, the

Redstone team assured Washington that the repeat flight was almost ready:

The November 21 type event will be avoided, in the future, by the addition
of a ground cable sufficiently long to maintain a good ground connection until
all umbilical plugs are pulled. In addition, the booster circuitry has been
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modified so that a cutoff signal can only get to the capsule after 130 seconds
of booster thrust (normal cutoff occurs at 140 seconds). Before that time, the
capsule can only be released from the booster through an abort signal, manu-
ally given from the groundY

Minor additional improvements were made to the capsule systems, a revised

master operational schedule was issued, the Mercury ground control operations

team was brought up to full strength, and Jerome Hammack, STG's Redstone

project engineer, along with Paul C. Donnelly, the Mercury-Redstone test con-

ductor in the blockhouse, worried through each day, hour, and minute before
December 19.

MR-1A: SUBORBITAL QUALITY PROVEN

Early in the morning of December 19, winds of 150 knots aloft in the jet

stream required a 40-minute hold. During the countdown another solenoid valve

in the capsule's hydrogen peroxide system had to be replaced, necessitating a re-

cycle of the count by one hour. So it was 45 minutes before noon when the
dramatic final l0 seconds of countdown for MR-IA occurred. This time there

were no fouls. The 83-foot Mercury-Redstone assembly was cheered on--"Go!

Fly, bird! Go!"--a.s it lifted off, burning brightly for 143 seconds to a velocity

(slightly high) of 7120 feet per second at cutoff. With this impetus, MR-1A

coasted on up to 131 miles, its maximum altitude, then nosed over while the bolts

in the mating-ring exploded as planned and the booster and its payload parted

company. The capsule behaved perfectly in its attitude control and came down

along its predestined trajectory to impact 235 miles from Cape Canaveral, 18 miles

beyond the desired target impact point.

A P2V aircraft pilot saw the capsule descending on its parachute at 4000 feet,

and about 35 minutes after launch a Marine helicopter from the aircraft carrier

Valley Forge retrieved the capsule, and returned it secure to the flight deck of the

carrier within 48 minutes from launch. This time Low elatedly reported to

Glennan that "the launching was an unqualified success." r_

The Goddard Space Flight Center computers, both men and machines, per-

formed admirably in making their first "real-time" impact prediction. On the

Valley Forge sailors crowded everywhere topside. Visual inspections of the

capsule by a NASA recovery inspection team revealed no damage except a crack

in one outer layer of glass in one capsule porthole.

Exuberance was obvious in the postlaunch reports of the various participants.

Howard C. Kyle, the capsule communicator, said, "Except for a few minor dis-

crepancies during the countdown, all equipment appeared to operate normally.

Technical support was universally superb." Tecwyn Roberts, the flight dynamics

officer, wrote, "All communications checked A. OK. Data selection loop had

some noise, but intelligible communication was possible at all times." Henry E.

Clements, a captain in the Air Force and network status monitor, reported all
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MR-1A

Dec. 19, 1960
Mercury-Redstone 1A, the repeat [light to Mer-

cury-Redstone 1, was success[uIly undertaken 28

days later, on December 19, I960. The electrical

ground cable that had caused the [ailure o[
MR-I had been lengthened. Here, during lox-

ing [or a [light readiness test, [rost shows on the

rocket and steam on the ground. Slight over-

acceleration o[ both this and the MR-2 booster

caused an extra Redstone flight to be inserted in

the Mercury schedule. The recovered space-

cra/t is shown below the day a/ter the [light at the

Cape being inspected by Charles ]. Donlan ( le[t ) ,

Robert Gilruth, and Maxime Faget; it came

through the brie] [light in excellent condition.
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instrumentation "A. OK," with few discrepancies. One note of caution was

entered by Stanley C. White, the Mercury Control Center flight surgeon:

The acceleration associated with the reentry exceeded by at least 1 g the
calculated value. If a similar overshoot occurs with the new profile being

proposed on future MR flights, we are reaching the point where the astronaut
has demonstrated inability to stay alert and to keep up with the events. The
consequence of this aberration from predicted should be discussed before the
new profile is accepted. 7_

Later, when the movies from the onboard camera were developed and shown,

clean-room engineers and workers saw the necessity for still higher standards of
cleanliness. Washers, nuts, and wire clippings came out from hidden niches and

floated freely around the cabin during the weightless period. But otherwise,

the Mercury team felt the pendulum of luck beginning to swing back in their favor

at the end of 1960. They were proud of the Christmas gift represented by the

demonstration of suborbital capability of the hardware in MR-1A.

Perhaps the most significant result of the Little Joe 5 and MR-1 failures was

a profound reexamination among the managers of Project Mercury of their original

design philosophy. Warren North reported to Silverstein at Headquarters on
December 6 the results of a series of discussions among field hands on the subject

of man-machine integration:

During the week of November 27, Messrs. Gilruth, Williams, Mathews,
Preston, Bland, Ricker, Fields, Roberts and others conducted a major review
of the capsule and booster sequence logic in an effort to determine what im-
provements could be made to prevent incidents such as occurred during Little
Joe 5 and MR-I. Also involved in the week long series of discussions at Cape
Canaveral were key personnel from McDonnell (including Burke), Convair,
Marshall, and Aerospace.

As a result of operational experience, it was apparent that some of the
original design philosophy should be changed, especially insofar as the role of
the pilot is concerned. It has become obvious that the complexity of the
capsule and booster automatic system is compounded during the integration
of the systems. The desirability of avoiding, for manned missions, a direct
link between capsule and booster systems, is therefore being studied. For
example, the Little Joe-type failure would be averted by the use of an open
loop manually controlled abort system. Similarly, the escape tower would
not have jettisoned during the MR-I launch attempt if this had been a manned
flight with manual control over the escape rocket and capsule sequence
system, s_

Meanwhile the Atlas, the basic vehicle to propel Mercury into orbit, also was

undergoing its most critical examination. A special ad hoc technical investigating
committee, established on December 19, 1960, composed of both NASA and

Air Force personnel, and headed by Richard V. Rhode of NASA Headquarters
and Colonel Paul E. Worthman of the Ballistic Missile Division, was ordered

to investigate the reasons why the Atlas had failed so often on NASA launches.

Called the Rhode-Worthman Committee informally, the dozen members, rep-
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resenting all concerned organizations, looked carefully at three recent failures in
the Atlas-Able series of lunar probes, at MA-1, and even at Big Joe, hoping

to prevent another fiasco. Since the conferees at the last major coordination
meeting, on November 16, had issued a test program summary reviewing MA-1
and subsequent action, the Rhode-Worthman group began with those inconclusive
records and a set of 12 agreements on launch conditions for MA-2. Paul Purser

and Robert E. Vale flew to Los Angeles the day after Christmas to defend STG's
position on MA-1 and to expedite Convair's construction of a "quick-fix" solu-
tion for MA-2 and its fabrication of "thick-skln" Atlases for subsequent Mercury
flights. Other members of the committee distrusted the original design for the
"quick fix," which was in the form of a "belly band," or girdle, to strengthen the
interface area around "station 502" on the Atlas booster, where the adapter ring
for the capsule nested against the lox dome. Later the dissenting committee
members supported a revised version of the fix after a number of their suggestions

had been integrated. Both Chamberlin and Yardley had suggested the "belly
band," but Hohmann disagreed. On December 31, 1960, Purser warned
Charles Donlan, back at Langley Field, that STG and Convair might be overruled
by Aerospace, STL, BMD, and NASA Headquarters representatives. As it turned
out, on the second day of the new year Rhode sent a message to Seamans at NASA
Headquarters that recommended great caution regarding the decision to incor-
porate the "quick fix," as many of the committee felt that it added uncertainty and
possibly a new set of hazards. If so, MA-2 might have to wait three to six months
more for a "thick-skin" Atlas from the factory. 81

The year 1960 ended in suspense for the Mercury team. The Soviet attempt
on December 1-2, 1960, to orbit and retrieve two more dogs from space had, as
the Soviets admitted, ended in cremation for "Pchelka" and "Mushka" when their

attitude control system failed at retrofire and their vehicle, Korabl Sputnik HI,
burned up on reentry from its rather too shallow orbit. To appraise the meaning
of the flight of the Soviets' third man-sized spaceship from available information
was exceedingly difficult. Obviously the Soviets were close to the day when
they could put a man into orbit, but the similar failures of their first and third

"cosmic ships," on May 19 and December 2, respectively, had made the question
"How close?" highly debatable, t-"

On December 5, a member of the Soviet Academy of Science, G. Pokrovsky,
had extolled the "socialist system," in spite of its failure to recover Pchelka and
Mushka, and boasted that "we are on the threshold of manned space flight, and
the first man to be in space will undoubtedly be a Soviet citizen." That same day,

Time magazine had bemoaned "Lead-Footed Mercury" and ridiculed Wernher
yon Braun's calling MR-1 "a little mishap": "Project Mercury's latest failure,
third in a row, just about evaporated the last faint wisp of hope that the U.S.
might put a man into space before Russia does." A New York Times editorial
agreed with that evaluation and advised the new President-elect to persevere:
"The first man in space will not be the last, and after the tributes have been paid

r

m

300



FLIGHT TESTS

to that first man and those who made his feat possible the more important question

will arise of what man can do in space that is worth the immense cost of putting
him there." 83

Although there was some exultation in the United States after the success of

MR-1A on December 19, the public seemed to sense, without any deep under-

standing, a difference of several orders of magnitude between Soviet space flight

tests and American qualification flight difficulties. Within the Space Task Group,

NASA, and the Mercury team, technical understanding, sometimes divorced from

political intuition, appeared to buttress the hope that an American manned bal-

listic flight into space might still precede the substantially more difficult manned

orbital flight around Earth. Manned space flight was a name for a series of field

events in the space olympics. Although the odds were with the Soviets to win the

marathon of the first orbital circumnavigation, perhaps Mercury might win the

suborbital sprint.
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Tests Versus Time in the Race for Space

(JANUARY--APRIL 1961)

N January 3, 1961, two years and three months after it was formed, the
Space Task Group officially became a separate, autonomous NASA field

element charged with the conduct of Project Mercury and any other manned space

flight programs that might follow it. The Task Group, now composed of 667

people, was still located physically on the Hampton Roads side of the Langley .Mr

Force Base and was supported by the Langley Research Center, but now the

administrative marriage of STG with the Goddard Space Flight Center in Beltsville,

Maryland, was annulled? The Mercury team had not yet managed to launch a

manned rocket, but neither apparently had their Russian counterparts. The

United States still had a good chance to place the first man in space, at least for

five minutes. The Soviet lead in orbital flight tests argued heavily against the first

manned satelIite being American, but to score first would still be some consolation.

In only three years and three months since Sputnik I, the Soviet Union and

the United States had launched into space a total of 42 vehicles, 38 of which were

Earth satellites, three were solar satellites, and one was a lunar probe. The box

score in the "space race" between the United States and the Soviet Union was 33

to 9 in favor of the home team, as far as publicly successful space launchings were

concerned. But with only nine acknowledged launchings the U.S.S.R. had

hoisted some 87,000 pounds (as opposed to the U.S. total of 34,240 pounds),

the Soviets had hit the Moon and photographed its backside, and they had

recovered two dogs from one Earth orbital flight. Of the 33 American space

launches, only three had been done by NASA launch vehicles and crews. Of

the remainder, 24 had been launched by Air Force rockets, five by Army boosters,

one by the Navy. In contrast to the responsibility for launching these 31 Earth

satellites and two solar satellites, the credit for building the instrumented payloads

was spread more widely; the Air Force counted 15 successes, the Army and Navy

four each, and NASA 10 spacecraft. Already the complexity of accounting

properly for mankind's successful satellite and space probe projects was reaching

formidable proportions."-
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On January 11, 1961, three Soviet tracking ships were reported moving into

the central Pacific once again. The next day, in his final State of the Union

address, President Eisenhower commended the young space administration for

its "startling strides" and "real progress toward the goal of manned space flights:"

After listing all the successes of American instrumented payloads in space, Eisen-
bower said :

These achievements make us unquestionably preeminent today in space
exploration for the betterment of mankind. I believe the present organiza-
tional arrangements in this area, with the revisions proposed last year, are
completely adequate for the tasks ahead?

At this same time, President-elect John F. Kennedy announced that Jerome

B. Wiesner of the Massachusetts Institute of Technology, who had chaired the

Democratic science advisory committee for the campaign, would become the new

Presidential special assistant for science and technolog),. And with this announce-

ment Kennedy released most of a special report made to him by Wiesner's com-

mittee of nine campaign advisers on the state of the Nation's security and prestige.

A political document, the "Wiesner Report" called for a sweeping reorganization

of the national space program. It was critical of past leadership and direction,

and it called for more effective use of the National Aeronautics and Space Council,

better coordination with the Department of Defense, stronger technical manage-
ment, and a closer partnership with industry. On top of all this came the uncor-

roborated news that an Army officer had told a seminar of almost 500 civilian

and military participants that the United States had good evidence that at least

one and probably two Soviet cosmonauts had been killed in unsuccessful attempts

to orbit a man during Premier Khrushchev's visit to the United States in September
1960. 4

INTERREGNUM

On January 16, 1961, President Eisenhower delivered his annual budget

message to Congress, asking for amendments to the Space Act of 1958 and

referring to Project Mercury with far less confidence than he had shown five days
earlier:

In the program for manned space flight, the reliability of complex booster,
capsule, escape, and life-support components of the Mercury system is now
being tested to assure a safe manned ballistic flight into space, and hopefully
a manned orbital flight, in calendar year 1961. Further testing and experi-
mentation will be necessary to establish whether there are any valid scientific
reasons for extending manned spaceflight beyond the Mercury program2

Members of the Space Task Group and of the Mercury team at large could

take little comfort from the fact that this speaker was an outgoing President, for

they also knew that the incoming President's scientific policy adviser had been

quite critical of the "marginal" Mercury-Atlas program. Regarding "man-in-
space," the Wiesner Committee had said:
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We are rapidly approaching the time when the state of technology will
make it possible for man to go out into space. It is sure that as soon as this
possibility exists, man will be compelled to make use of it, by the same motives
that have compelled him to travel to the poles and to climb the highest moun-
tains of the earth. There are also dimly perceived military and scientific
missions in space which may prove to be very important.

By having placed highest national priority on the Mercury program, we
have strengthened the popular belief that man in space is the most important
aim of our non-military space effort. The manner in which this program has
been publicized in our press has further crystallized such belief. It exaggerates
the value of that aspect of space activity where we are less likely to achieve
success, and discounts those aspects in which we have already achieved great
success and will probably reap further successes in the futuref'

When the managers of NASA and of STG, a few days later, became aware

of the earlier, longer, confidential version of the Wiesner report, they were re-

minded of Mercury's tenuous standing as an urgent, but not an indispensable,

"crash" program. If they should fail on their first attempt to place a man in

space, or to put him in orbit, or to recover him from orbit, they not only would

sacrifice a human life but create a national humiliation. Mercury managers had

always been acutely aware of these portents, but the low status of Mercury in real

and rumored policy papers made these days darl_er than ever. Wiesner's Com-

mittee recommended that Kennedy not allow "the present Mercury program

to continue unchanged for more than a very few months," and that he not "effec-

tively endorse this program and take the blame for its possible failures." Above all
else the Wiesner Committee recommended that:

We should stop advertising Mercury as our major objective in space activ-
ities. Indeed, we should make an effort to diminish the significance of this
program to its proper proportion before the public, both at home and abroad.
We should find effective means to make people appreciate the cultural, public
service, and military importance of space activities other than space travel. 7

Next to Mercury, the Wiesner group was most critical of the Nation's booster

program, particularly of the inability of United States rockets to lift heavy pay-

loads into space. Measured by rocket thrust, Russian superiority continued

unchallenged. Profound criticism was levelled at the Atlas, which was now

truly operational as a weapon system, but which had failed signally in its five most

recent tests as a launch vehicle for NASA payloads. Wiesner's committee recom-

mended vigorous study of the Titan missile as an alternative Mercury launcher,

but STG had already studied and rejected the Titan as a launch vehicle?

Whereas there seemed to be threats of cancellation or modification of Project

Mercury from all sides, the Mercury teammates knew from their MR-1A expe-

rience of December 19, 1960, that nothing succeeds like success. While some of

them carefully but hurriedly made ready for MR-2, others just as desperately

sought to ensure the success of MA-2.

In moments of respite from its hectic pace, STG could see three essential tasks

that had to be performed within a matter of weeks if the Task Group was to
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be kept together and functioning. First was the necessity to send a chimpanzee

on a successful Redstone flight. Second was the need to qualify the McDonnell
capsule and all its systems by a Little Joe flight under max q conditions similar
to the worst possible Atlas abort. Third, but perhaps most important, was the
imperative need to test and prove as soon as possibIe the Mercury-Atlas combina-
tion, even if only on an elementary ballistic flighty

The admittedly "hasty" Wiesner report was received by the press with mixed
reactions. According to the Washington Post, the study was tacitly adopted by

the President-elect when he named Wiesner, simultaneously with its release,
Chairman of the President's Science Advisory Committee (PSAC) for the new
administration. Aviation Week said that Kennedy had rejected the committee's
advice to revamp or scrap Mercury and that he had decided to risk receiving the
blame if the first manned shot failed. To Roscoe Drummond, a syndicated
columnist, the Wiesner report read like "a melange of observations based on super-
ficial study." Drummond was highly critical of the entire political transition,
noting that T. Keith GIennan had departed from Washington on Inauguration
Day, January 20, 1961, leaving NASA headless, since no one had yet been named

as his successor. Hugh L. Dryden, too, had resigned in accordance with protocol,
but he remained on hand until he should be relieved. Drummond further

charged that no Kennedy representative had consulted NASA to study the work-
ings of the agency nor had any Kennedy official read or listened to briefings that
had been prepared for the new leaders by outgoing Administrator Glennan and
his staff. 1°

In this time of transition NASA officials expected a stronger challenge to the
civilian space agency's sphere of influence from the military, perhaps supported
by some defense industry contractors. Part of the "military-industrial com-
plex" against which Eisenhower had warned in his farewell address seemed
to be lobbying to shrink NASA's function to that of the former NACA--applied
research and development engineering? _ The retiring President also had
warned against the domination of science by the needs of the Federal government
and against the domination of public policy by a "scientific-technological elite."
On the other hand, the editors of Aviation Week had expressed alarm several

times over NASA's tendency toward enlargement of its own technical bureaucracy
and assimilation of other space research organizations?" Whether or not there

was actually any "power struggle" among the Air Force, Army, and Navy over
the spoils from a stripped NASA, any such fears of the Pentagon were premature
while the Mercury-Redstone attempt to fly and recover an "astrochimp" was still
pending.

For some time, NASA had endured attacks from various eminent American

men of science. The Wiesner report both reflected and encouraged such atti-
tudes. Vannevar Bush, James R. Killian, and George B. Kistiakowsky were all
long since on record as considering manned space flight a technological luxury

that ought not to be allowed to eclipse more urgent scientific necessities. Even
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within NASA, some scientists would have reallocated resources for manned

space efforts beyond Mercury so as to give more funds and priority to instru-
mented, more purely scientific, research flights. 1_

Such political opinions of scientists to a large degree had been translated
into official policy under the Eisenhower administration, whose last budget recom-

mended a manned space flight research and development cut of $190.1 million
from NASA's request for fiscal year 1962 of $1,109,600,000. The Bureau of the
Budget in January allowed a total NASA request of $919.5 million, only $114
million of which was earmarked for manned space flight, including Project
Mercury. Some $584 million was requested for military astronautics within the
total $41.2 billion request for the Defense Department's budget? 4 Surely this

contrast in funding carried significant meaning.

The criticisms of NASA and its struggle for money in Washington were serious
enough, but of far greater concern to the civil servants, contractors, and service-
men working with NASA and STG was the problem of "Mercury-rating" the
Atlas. Since the unsolved MA-1 disaster at the end of July 1960 had been blamed

on, but never isolated in, the interface area where the capsule and booster
were mated, both the Air Force and NASA shared uneasily the responsibility
for finding preventive medicine before MA-2 could be launched.

The Wiesner Committee apparently had been unaware of the Rhode-Worth-
man Committee, established on December 19, 1960, four days after the explosion
of the Atlas-Able 5-D Moon proble. NASA and the Air Force, acutely aware
of Wiesner's activity, were pressuring the high-level investigating committee of
seasoned engineers to find solutions to the interface problem. NASA Head-

quarters was very much concerned by the poor performance of the lighter-gauge
Atlas modified for NASA launches and by the inability of STG and the Air Force
complex to pinpoint the reason for the MA-1 failure. Richard V. Rhode, NASA
Headquarters' senior structural engineer, was sent to California to press for a
solution. The Air Force Ballistic Missile Division, under Major General O. J.

Ritland and Brigadier General H. W. Powell, likewise had appointed a senior
technical officer, Colonel Paul E. Worthman, to work with Rhode as co-chairman.

During the last week of December 1960 and the first week of January 1961, the
12 members of the Rhode-Worthman Committee met continuously at Convair/
Astronautics in San Diego and at the Air Force Ballistic Missile Division in Los
Angeles. One of the objectives of this meeting was to find a majority agree-

ment on the diagnosis for MA-1 and the prognosis for MA-2. Paul E. Purser and
Robert E. Vale, representing STG, with the aid of G. L. Armstrong of Convair,
argued that a "quick-fix belly band" could be effectively used to reinforce the
structural strength of the "thin-skinned" Atlas. Specifically they had in mind

Atlas No. 67-D, which had been at the Cape since September, being prepared
for mating with capsule No. 6 for the MA-2 launch. On the other hand, Bern-
hard A. Hohmann of Aerospace urged strengthening the adapter ring. James A.
Chamberlin forthwith had redesigned the fillets and stringers in that casing also.
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Because a "thick-skinned" Atlas--one whose upper conical sections would be

made of stainless steel approximately .02 instead of .01 inch in thickness, costing

thereby an extra 100 pounds in weight--could not be finished and shipped to the

Cape before late March 1961, the Rhode-Worthman Committee finally, but not

unanimously, agreed not to wait for a replacement booster. NASA assumed

the risk of a messy technical and political situation in the event of failure, and

the Air Force agreed to make every effort to push MA-2 through the region of

maximum aerodynamic and political stress as soon as possible. But precisely how
to do this still remained debatable. 15

New band stiffeners in the adapter ring, some 20 extra accelerometers, strain

gauges, pressure sensors, and mandatory operational restrictions for mild weather,

winds, and complete photographic coverage, plus the use of the improvised truss
or corset, called the "belly band," for MA 2, were all included in the interim

report of the Rhode-Worthman Committee, issued on January 19, 1961. The

joint team effort required for these decisions, said Purser to Rhode, "admittedly

has not always been easy, but we believe it has worked. 'Resolution of con-

flicts of technical judgment' has been achieved by mutual discussion and edu-

cation rather than by manager edicts." 1_. The reluctance of Aerospace and

STL representatives to accept the "belly band" truss was symbolized at first by

their use of the invidious metaphor "horse collar" to describe it. So apt and
fitting was the "horse collar" in distributing the load of max q over the Atlas

airframe that all parties accepted the nickname and the hardware by mid-

February. Meanwhile work proceeded frantically in laboratories and wind

tunnels at Ames and at Tullahoma, Tennessee, to provide all the information

possible through simulated conditions before subjecting this "quick-fix" to a

flight test. But there was great drama and suspense in the technological prep-

arations for the vitally important launching known as Mercury-Atlas 2. lr

Now that Vice-President Lyndon B. Johnson, an early advocate of a strong

space program and slated to become the new chairman of the strengthened Space
Council, promised energetic leadership among the countervailing powers in

Washington, the aerospace community waited impatiently to hear who would be

named the new NASA Administrator. Kennedy assigned Johnson this task of

selection. Considering Johnson's long-standing interest in space matters, many
observers had supposed that the selection would be made soon after the election

and that the designee might be a member of the Wiesner Committee. as But the

case was not so simple. The problem seemed to be one of settling on qualifications

and then finding a man who would agree to preside over an agency with an uncer-

tain future. The risk of becoming a political scapegoat was great indeed. The

Wiesner report stipulated that one of the prerequisites for a member of the Space

Council was that he be technically well-informed, and this requirement would

apply also to the NASA Administrator. But whereas a university scientist with

engineering and executive experience might meet this qualification, Washington
and management experience also was essential2 °
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Kennedy remarked at a press conference, five days after his inauguration,
that the NASA Administrator should be chosen by the end of the week, thereby
deflecting newsmen's attention to the Vice-President for the name of the new
Administrator. Johnson, in turn, received suggestions from his former Con-

gressional colleagues on the space committees, and Wiesner called to Washington
the man who accepted the post. On February 2, 1961, Senator Robert S. Kerr,
Democrat from Oklahoma and Johnson's successor as chairman of the Senate
Committee on Aeronautical and Space Sciences, presided at the confirmation
hearings on the nomination of James Edwin Webb.

An experienced business head of numerous corporations, a lawyer, Director
of the Bureau of the Budget from 1946 to 1949, and Under Secretary of the

Department of State from 1949 to 1951, James E. Webb also had been a directnr
6f the McDonnell Aircraft Corporation and a reserve officer and pilot in the
Marine Corps. Although his background was not that of a scientist, he was
widely known in governmental and industrial circles for having worked with
scientists on committees and with engineers as a director of such organizations
as Educational Services, Incorporated; the Oak Ridge Institute of Nuclear
Studies; Sperry Gyroscope Company; and as a trustee of George Washington
University. 2°

Webb's appointment as NASA Administrator came as a surprise to those
who expected one of the Wiesner Committee to be chosen. A few critics said
that he lacked the technical background necessary to attract scientists and eminent
engineers to NASA and that his nomination was a result of Senator Kerr's in-

fluence. But Wiesner supported and the Senate confirmed Webb's nomination
after Webb severed all his business connections with McDonnell Aircraft. His

active interest in science suggested that Webb would strive to keep a balance
between science and technology in space activities. His governmental and
executive experience promised that he could work well with the Bureau of the
Budget and with the aerospace industries to promote NASA's interests. Webb's
intellectuaI interests in public administration and international affairs indicated
that he might become instrumental in achieving international agreements to
prevent space from becoming a new theater for conflict in the cold war. Indeed,
Webb's supporters felt certain that he actively would invite the Soviets to co-
operate in American space exploration projects, a proposal that Kennedy had
made notable in his inaugural addressY

With a vigorous new Administrator as its spokesman, and with the reconfir-
mation of Dryden a_ second in command, NASA quickly regained confidence
regarding the scientific, budgetary, and military-industrial obstacles to its manned
space flight program. In facing the military, Webb had the support of Repre-
sentative Overton Brooks, chairman of the House Committee on Science and
Astronautics. Early in 1961, Brooks became the first highly placed government
official to lambaste the presumed campaign to build, at the expense of NASA,

a stronger military space program. _
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MR-2: HAM PAvEs THE WAY

By the end of January 1961, the technical outlook for Project Mercury was
much improved. The end of the qualification flight tests was in sight, if only
the Little Joe, Redstone, and Atlas boosters would cooperate. First priority was
to make sure the Mercury-Redstone combination was prepared for the first
manned suborbital flights. Now, according to the progressive buildup plan, the
reliability of the system required demonstration by the second Mercury-Redstone
(MR-2) flight, with a chimpanzee aboard, as a final check to man-rate the
capsule and launch vehicle.

Preparations for the MR-2 mission had begun long before the actual flight.
Between manufacturing the capsule and flight readiness certification, several

months of testing and reworking were necessary at the McDonnell plant, at
Marshall Space Flight Center, and at Cape Canaveral. Capsule No. 5, desig-
nated for the MR-2 flight, had been near the end of its manufacturing phase
in May 1960. When it was completed, inspectors from the Navy Bureau of
Weapons stationed at St. Louis, in cooperation with STG's liaison personnel at
McDonnell, watched it go through a specified series of tests, and the contractor
corrected all detected deficiencies? 3 After capsule systems tests and factory ac-

ceptance tests, capsule No. 5 was loaded into an Air Force cargo plane and
shipped to Marshall Space Flight Center on September 3, 1960. At Huntsville,

Wernher von Braun's team hurried through its checkouts of the compatibility
of capsule No. 5 with Redstone booster No. 2, and had finished well before its

16-day time limit? ' On October 11, 1960, the capsule arrived by air at the
Cape, where the first checkout inspections, under the direction of F. M. Crichton,
uncovered more discrepancies, raising to 150 the total of minor rework jobs to
be done. Because of the complexities of the stacked and interlaced seven miles
of wiring and plumbing systems in the Mercury capsule, however, each minor
discrepancy became a major cost in the time necessary for its correction. Check-
out work in Hangar S required 50 days for systems tests and 60 days for rework.
The capsule designated for the first manned space flight, No. 7, also had arrived
at the Cape for preflight checkouts, but the launch vehicle for MR-2 was de-

livered to the Cape by air freight on December 20, 1960, the day after MR-1A
was launched. It too had undergone exhaustive reliability testing in the shops

and on the stands in the hills west of Huntsville, Alabama. When Joachim
P. Kuettner, representing yon Braun, transferred the MR-2 booster to Emil P.

Bertram, representing Kurt H. Debus' Launch Operations Directorate, their

confidence in this particular booster of the "Old Reliable" series was high but
not towering. _5

Using the "quick-Iook" evidence from the MR-IA flight, Marshall guidance

engineers s_t about correcting the conditions that had made the trajectory too

steep and accelerations too high. MR-1A had climbed to its programmed

apogee of about 130 miles and landed 235 miles downrange, and high altitude

r
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winds had carried it too close to the range borders. Range safety restrictions
dictated that a launch vehicle must get out and away from the Cape as soon as
possible. For these reasons, Walter C. Williams, STG's Associate Director for
Operations, agreed with H. F. Gruene and Kuettner that the MR-2 trajectory

should be flattened. An apogee of 115 miles on a downrange distance of 290
miles should be well within the allowable safety limits. Gruene and others
calculated that this trajectory would still provide almost five minutes of weight-
less flight and a reentry deceleration of 10 g. Since this g load was slightly
less than that desired by STG, Williams had to use his best persuasion during a

series of consultations on the reentry loads to get Marshall to match the 12-g median
reentry load by moving the engine cutoff time ahead to assure such conditions.
At the same time, the range safety officer felt that the designated 105-degree
launching azimuth was uncomfortably close to the shoreline. Williams, Charles
W. Mathews, and Christopher C. Kraft, Jr., held out against a requested change to
a 100-degree azimuth, because they wanted to minimize pilot retrieval time in

case of an abort. To this STG later acceded, in exchange for its point on the
12-g reentry load; Marshall added a timer switch that would cut off the ignition
if the accelerometer cutoff signal should fail before fuel depletion. _

Capsule No. 5 contained several significant innovations. There were five

new systems or components that had not been qualified in previous flights:
the environmental control system, the attitude stabilization control system, the
live retrorockets, the voice communications system, and the "closed loop" abort
sensing system. Capsule No. 5 also was the first in the flight series to be fitted

with a pneumatic landing bag. This plasticized fabric, accordion-like device was
attached to the heatshield and the lower pressure bulkhead; after reentry and
before landing the heatshield and porous bag were to drop down about four feet,
filling with air to help cushion the impact. Once in the water, the bag and
heatshield should act as a sort of sea anchor, helping the spacecraft to remain
upright in the water. Chronic problems with wave-induced fatigue of the fab-
ric bag led STG and McDonnell engineers to concentrate on the harness linkages
inside. After the Big Joe ablation flight test in September 1959, STG had

decided to use on the Redstone flights, simply because they were on hand, the
expensive beryllium heatshields that had first been ordered for orbital reentry.
Since the anticipated reentry temperature would reach only 1000 degrees F,
the beryllium shields were not necessary as heat sinks, but they served as readymade
impact bumpers. Temperatures on the conical portion of the spacecraft might
approach 250 to 300 degrees F, but, compared with about 1000 to 2000 degrees
for an orbital mission, the ballistic flights should be cool. _7

Publicity once again focused on the biological subject in the MR-2 experiment.
The living being chosen to validate the environmental control system before

committing a man to flight was a trained chimpanzee about 44 months old.
Intelligent and normally docile, the chimpanzee is a primate of sufficient size
and sapience to provide a reasonable facsimile of human behavior. Its average
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response time to a given physical stimulus is .7 of a second, compared with man's

average .5 second. Having the same organ placement and internal suspension
as man, plus a long medical research background, the chimpanzee chosen to ride
the Redstone and perform a lever-pulling chore throughout the mission should
not only test out the life-support systems but prove that levers could be pulled
during launch, weightlessness, and reentry. "s

A colony of six chimpanzees (four female and two male), accompanied by
20 medical specialists and animal handlers from Holloman Air Force Base, where

the "astrochimps" were stationed and trained, moved into quarters behind Hangar
S on January 2, 1961. There the animals became acclimatized to the change
from the 5000-feet altitude in New Mexico to their sea level surroundings at the
Cape. Separated into two groups as a precaution against the spread of any
contagion among the whole colony, the animals were led through exercises by
their handlers. Mercury capsule mockups were installed in each of the

compounds. In these, the animals worked daily at their psychomotor performance
tasks. By the third week in JanuaI3, , 29 training se_ions had made each of the
six chimps a bored but well-fed expert at the job of lever-pulling. To condition
the chimps to respond properly, they received banana pellets as rewards and mild
electrical shocks as punishments. "'_

Although recovery procedures had worked well until now, recovery opera-
tions for MR-2, carrying life into space from the Cape rather than from Wallops
Island, demanded extra care and attention. So STG provided the Navy with

the detailed requirements, and the Navy again assigned Rear Admiral F. V. H.
Hilles to command the recovery forces. Under Hilles were several task elements.
One, located on the beach near the launch pad, consisted of numerous amphibious
vehicles and several helicopters. Should an abort occur near the pad, these
vehicles on the scene would pick up the pieces. Offshore the next recovery
perimeter was covered by a small naval vessel, the Opportune (Auxiliary Recover?"

Ship 41). The largest recovery unit, the one in the anticipated landing area,
consisted of six destroyers and a landing ship dock (LSD) with three helicopters
on board. If the capsule were shot beyond the expected impact area, an air
recovery unit consisting of four P2V aircraft from Jacksonville, Florida, would
go into action? °

STG's man in charge of recovery operations was Robert F. Thompson, a
Navy veteran who once had been first lieutenant of the deck crew aboard a

destroyer and who by now had coordinated STG's recovery requirements for
over two years, Through Walter Williams, Thompson asked the Navy to
provide for the recovery personnel participating in the exercise and to take along
photographers and public information people as well. Thompson assigned
Donald C. Cheatham to brief the naval crews from Charleston, South Carolina,

on postflight procedures for removing the biopack and primate from the
spacecraft. 31

According to the "Master Operational Schedule," a guidebook prepared by
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Debus' experienced staff, a simulated or dress rehearsal flight must always be
conducted three days before launch. For this exercise, the countdown started

only 180 minutes before "launch," when Complex 56, Pad 5, the site of all the

Mercury-Redstone launches, switched on the power to all systems in the Redstone.

The team training of the launch crew, even for the old Redstone, required thou-

sands of coordinated actions and easy familiarity by each of the 70 or so mem-

bers of the blockhouse crew, by each of the 100 men in the Mission Control

Center, and by each of another 100 people around the launch site to get a flight

off the ground. While the booster was ready for mate with the capsule as sched-

uled in mid-January, the capsule was not ready, and the simulated flight test

was carried out on January 27 for a "mission" that lasted 455 minutes? _

One of the procedural safeguards developed in the effort to man-rate the

Redstone was the "split-count," with a built-in hold in the countdown checklist.

The count began at 640 minutes before launch and stopped for a rest period

390 minutes short of liftoff time (T). At 640 minutes the complex went on

critical power and the prescribed systems checks were started, the communication

network readiness was verified, range equipment was checked, and the launch

vehicle telemetry was tuned. At T minus 390 minutes all systems were secured

for the standby period so that the crew could relax. This "split-count" became

a standard part of manned preflight operations.

Before the second half of the count began, on the following day, the booster

was again supplied its electrical power, the escape rocket igniter was installed but

not connected, the liquid oxygen trailer truck was moved into position, weather

forecast and range clearances were checked, and the booster guidance and control

battery safety wires were installed. When the count was resumed at T minus 390,

there were still at least 330 specific jobs to be performed or functions to be
validated before liftoff.

The launch plan for the MR-2 mission followed closely all of the foregoing

preparations, with each event preplanned and budgeted on the schedule. Many

new systems were being qualified and, with the chimpanzee aboard, the control

systems had to operate in the automatic mode. The operations directive for
MR-2 specified that in case of an unduly long hold, the test would be canceled

at high noon to avoid the risks of a recover), in darkness? a

Telemetry was to be all-important for the MR-2 mission. For that purpose

two transmitters were installed in the capsule, providing eight channels of informa-

tion to ground stations. These included three aeromedical channels to transmit

pulse, respiration rate, and breath-depth information. The other channels carried

information on structural heating, cabin temperatures, pressures, noise, and

vibrations from 90 different points throughout the spacecraft. 3.

All six chimps in the colony were accorded equal treatment until the day

before the flight, when James P. Henry of STG and John D. Mosely, the veteri-

narian from Hol[oman, had to choose the test subject and his substitute. First

the animals were given a physical examination, and then they were each checked
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on sensors, the psychomotor programmer, and consoles for comparative ratings.

The competition was fierce, but one of the males was exceptionally frisky and in
good humor. A female was selected as his alternate. At nineteen hours before

launch these two animals were put on low-residue diets, fitted with biosensors,

and checked out in their pressurized couch-cabins. Seven and one-half hours

before the flight a second physical examination was given, followed by more sensor

and psychomotor tests. About four hours before launch, the two chimps were

suited up, placed in their couches, and brought aboard the transfer van, where

their environmental control equipment was attached. The trailer truck arrived

at the gantry alongside MR-2, and there, an hour and a half before the scheduled

launch time, the chimpanzee named "Ham," in honor of Holloman Aerospace

Medical Center, still active and spirited although encased in his biopack, boarded
the elevator to meet his destiny. _

At sunrise on January 31, 1961, feverish preparations were underway in the

community around Launch Complex 56. Walter Williams was directing opera-

tions for the third time from the newly completed Mercury Control Center.

Supporting him were some 500 men from NASA, the military services, and

industrial contractors. Key supervisors included the recovery force commander,

range commander, launch director, capsule test coordinator, flight director,

Atlantic Missile Range coordinator, network status monitor, range safety observer,

and director of medical operations. 3_ About 5 o'clock systems checks were

progressing well, and Tecwyn Roberts, flight dynamics officer, reported that the

command checks were all working "A. OK." 3z Communications checks were

the same, with the exception of the Goddard link from Mercury Control on the

data selection loop, and trajectory checks and displays appeared to be in order.

The broken link with Goddard, discovered well before the flight, was cleared and

the data selection loop restored. Although the weather was threatening and

five-foot waves were reported in the recovery area, the second half of the count-

down began at 7:25 a.m. After the count had progressed 20 minutes, the first

trouble of the morning appeared with a report that a tiny but important electronic

inverter in the capsule automatic control system was overheating. Nevertheless,

at 7:53 Ham was inserted into the spacecraft, and the clear-the-pad signal horn
was sounded.

A few minutes after Ham went aboard, the inverter temperature began to

rise again, causing several more holds. As the wait wore on, Christopher Kraft,

the flight director, sought advice about Ham's ability to endure a long hold.

William S. Augerson, medical monitor in the blockhouse, assured Kraft that the

animal was all right. Ham's suit temperature remained in the comfortable

mid-60s, while the inverter temperature was at least three times that hot. Even-

tually the inverter cooled to 150 degrees F, and the count was resumed at 10: 45.

As soon as the power was turned on again, the inverter temperature shot up again.

So another cooling-off period was called until 20 minutes before noon, when it
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was decided that now or never was the time to go today. The countdown had

been delayed almost four hours because of the hot inverter, but there were some

other minor problems as well. The gantry elevator got stuck; too many people

took too long to clear the pad area; checking the environmental control system

required 20 minutes longer than planned; and the booster tail-plug cover flaps

were jammed for a whileY

At last, five minutes before high noon on the last day of January 1961, MR-2

ignition occurred and liftoff of the Redstone followed in less than a second. As
the launch vehicle rose, a transistorized television camera mounted externally

near the top of the Redstone scanned the surface of the capsule and adapter ring

to provide engineers with bird's-eye data on the flight behavior of the spacecraft

when it blasted away from the launch vehicle. Computers sensed one minute

after launch that the flight path angle was at least one degree high and rising.

At two minutes, the computers predicted a 17-g load. Then, 137 seconds into

the flight, the liquid oxygen supply became depleted, and in another half second

the engine shut down according to the new timer-programmed plan. The closed-

loop abort system on the Redstone sensed the change in engine chamber pressure

upon depletion of the lox supply and fired the capsule escape system earlier

than planned, within another half second. The abort properly signalled the

expected Mayday message to the recovery forces, and they sped off toward a

computed impact point farther downrange? 9

The high flight angle, coupled with the early abort, added 52,000 pounds of

thrust for one second, and yielded a maximum velocity of 7540 feet per second,

against a planned 6465 feet. The retrorockets jettisoned prematurely when the

tower aborted, which meant that the spacecraft on reentry would not be artificially

slowed down and therefore would gain still more downrange mileage. 4°

An unexpected and nearly ultimate test of the chimpanzee's air circuit arose

just before the abort, 2 minutes and 18 seconds into the flight, when cabin pressure

dropped from 5.5 to 1 pound per square inch. This 'malfunction was traced

later to the air inlet snorkel valve, a device that was spring-loaded to the closed

position and held in place by a small detent pin. Apparently vibrations had

loosened this pin and allowed the valve to open, as it was intended to do only

after the main parachute opened on descent toward a water landing. Ham did

not suffer, for aithough cabin pressure was lost, his couch pressure remained

nominal, and suit temperature stayed well within the 60- to 80-degree optimum

range. But the open valve caused problems after the capsule splashed. 41

Because of overacceleration of the launch vehicle plus the added energy of

the escape rocket, a speed of 5857 miles per hour was attained instead of the

4400 miles per hour planned, resulting in an apogee of 157 miles rather than the

charted 115. At its zenith Ham's spacecraft was already 48 miIes farther down-

range than programmed, and Ham endured the weightless state for 1.7 minutes

longer (6.6 minutes total) than the 4.9 minutes scheduled. He landed 422 miles
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downrange after a 16.5-minute flight; the preplanned figures called for 290 miles

and 14.25 minutes. His peak reentry g was 14.7, almost 3 g greater than

planned2 _

How did Ham fare through all this? The physician in the blockhouse, Wil-

liam Augerson, reported that at liftoff he was stable and working his levers per-

fectly to avoid the punishment that came from inattention. At waist level in

the chimpanzee's couch was a dashboard with two lights and two levers that

required two pounds of effort to depress. Ham knew well how to stay comfortable

by avoiding a series of electrical shocks. Each operation of his tight-hand lever,

cued by a white warning light, postponed the next scheduled shock for 15 seconds.

At the same time, the animal had to push the left-hand lever within five seconds

after a blue light flashed, about every two minutes, in order to avoid another series
of shocks to the soles of his feet.

Ham performed these tasks well, pushing the continuous avoidance (right)

lever about 50 times and receiving only two shocks for bad timing. On the discrete

avoidance (left) lever, his score was perfect. Reaction time on the blue-light

lever averaged .82 second, compared with a preflight performance of .8 second.

Ham had gone from a heavy acceleration g load on exit through six minutes of

weightlessness and to another heavy g load on reentry hardly missing a trick.

Onboard cameras filming Ham's reaction to weightlessness also recorded a sur-

prising amount of dust and debris floating around inside the capsule during its

zenith. The cleanliness problem still was not licked. _3

When Ham's capsule touched down, about 12:12 p.m., no human being was

in sight. Some 12 minutes later, the first electronic recovery signal from the

capsule was received, and quick triangulations showed that the capsule was
about 60 miles from the nearest recovery ship, the destroyer Ellison. Some 27

minutes after landing, Technician G. T. Beldervack, aboard a P2V search plane,

sighted the capsule floating uptight alone in the Atlantic. Reckoning that the

Ellison would require at least two hours to reach that point, STG officials decided

to request the Navy to dispatch its helicopters from the next closest ship, the LSD

Donner. When the helicopters arrived on the scene, they found the spacecraft on

its side, taking on water, and submerging. Wave action after impact had

apparently punished the capsule and its occupant severely. The beryllium

heatshield upon impact had skipped on the water and bounced against the capsule

bottom, punching two holes in the titanium pressure bulkhead. The plastic fabric

in the landing bag had worn badly, and the heatshield was torn free from the

spacecraft before recovery. After the craft capsized, the open cabin pressure

relief valve let still more sea water enter the capsule. When the helicopter pilot,

First Lieutenant John R. Hellriegel, and his copilot George F. Cox, finally latched

onto and picked up Ham's spacecraft at 2:52 p.m., they estimated there was

about 800 pounds of sea water aboard2 _ After a dangling flight back to the

Donner, the spacecraft was lowered to the deck and nine minutes later Ham

was out. He appeared to be in good condition and readily accepted an apple and
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Jan. 21, 1961

Mercury-Redstone 2, launched January 21, 1961, had the chimpanzee Ham as a

passenger. At le[t, Ham contemplates the psychomotor test le_ers in his special

%iopack" couch prior to the flight. At right, James Chamberlin (le[t) and Jerome

Hammack look at the spacecra[t upon its return to the Cape the [ollowing day. The

landing bag (bottom) had been badly damaged and the heatshield torn [ree when

the spaeecra[t was recovered by the helicopters o[ the U.S.S. Donner. Impact was

probably responsible [or the punctured pressure bulkhead, but the landing bag was

more likely mangled by the [atigue o[ wave action as the capsule bobbed be[ore pickup.

This led to a great deal o[ last-minute redevelopment be[ore the first manned mission.
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half an orange2 _ Ham had functioned like a normal chimpanzee in his flight

into space. Could homo sapiens do as well?

Ham's flight on MR-2 was a significant accomplishment on the American

route toward manned space flight. Now the Space Task Group knew that even

with some hazardous malfunction it might reasonably hope to complete a manned

ballistic mission successfully. Ham's survival, despite a host of harrowing mis_

chances over which he had no control, raised the confidence of the astronauts

and the capsule engineers alike. Except for an intensive effort to redesign the

harness and impact attenuation system inside the landing bag, an exhausting final

"quick-fix" led by Rodney G. Rose and Peter J. Armitage of STG, the Mercury

capsule and all its systems seemed ready to carry man into space. Since over-

acceleration had occurred in both the MR-1A and MR-2 missions, however,

the booster engineers responsible for "Old Reliable," Wernher von Braun and

Joachim Kuettner, Kurt Debus and Emil Bertram, neither shared STG's optimism

nor yet were satisfied that their launch vehicle was man-rated. 4_

MA-2: TgUSSED ATLAS QUALIFIES THE CAPSULE

So long and anguished had been the time since July 29, 1960, when the first

Mercury-Atlas combination had exploded out of sight overhead, that members

of the Mercury-Atlas launch team from STG were most eager to try to fly MA-2.

Laboratory and wind tunnel tests of the "belly band," or "horse collar," in late

January were practically prejudged as offering no ill omens. On Inauguration

Day, January 20, 1961, Robert R. Gilruth, Charles J. Donlan, Williams, Maxime

A. Faget, Mathews, William M. Bland, Jr., and Purser had attended an important

meeting of the STG senior staff to decide what to do about MA-2. The pre-
liminary recommendations of the Rhode-Worthman Committee were recon-

sidered; after more technical talks STG decided to accept the risk and

proceed with the trussed Atlas for MA-2 if top NASA management could be

persuaded. While a speedup of the flight schedule leading to the orbital mission

and of plans for a program to follow after Mercury's manned 18-orbit mission

were being discussed at length, the STG senior staff advised NASA Headquarters

that MA-2 could wait no longer. 47

A few days later the basic mission directive document appeared in its third
revised edition; in turn it was superseded by a fourth edition and by a technical

information summary. At the end of January, Robert Seamans and Abe Silver-

stein of Headquarters accepted Gilruth's STG recommendation to fly MA-Z

Before the middle of February preparations were complete. NASA had become

convinced, but the Air Force was not sure MA-2 should fly yet. This was a

hazardous and complex decision, shared by a number of people in Washington,

at Langley, St. Louis, Los Angeles, and San Diego28 On February 17, Seamans

called Rhode at Convair, asking his technical judgment as to MA-2's chances

for success with its "belly-band fix." Rhode replied that MA-2 was structurally
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Feb. 21, 1961

Mercury-Atlas 2 (right) [eatured the

"'horse collar" or "'belly band," an 8-

inch-wide steel corset to strengthen the

interlace area between this last o[ the

thin-skinned Atlases and the adapter

ring on the spacecra[t. Below, McDon-
nell and NASA officials chat at the

launch site: le[t to right, ]ohn Yardley,

Walter Burke, and/ames S. McDonnell,

]r., all o[ McDonnell Aircra[t Corpora-
tion; Wernher yon Braun and Kurt

Debus o[ NASA's Marshall Center.
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ready within acceptable wind velocities at launch? 9 George M. Low reported

to the new Administrator, James Webb, that MA-2 was scheduled for launch on

February 21 at 8 a.m. :

Atlas 67-D will be the launch vehicle for this test. This is the last of the

"thin-skinned" Atlases to be used in the Mercury program. It differs from the
booster used in the MA-1 test in that the upper part of the Atlas has been
strengthened by the addition of an 8-inch-wide stainless steel band. This band
will markedly decrease the stresses of the weld located just below the adapter
ring on top of the Atlas; the high stress region is shifted by about 8 inches,
to a point where the allowable stresses are considerably higher. In addition to
this strengthening of the top section of the Atlas, the bracing on the oxygen
vent valve, which fits into the top of the Atlas tank, has been changed. The
adapter between the Atlas and the capsule has also been stiffened.

The Atlas will be cut off prematurely at a velocity of about 18,000 feet per
second. The resulting trajectory will yield the most severe reentry conditions
that could occur during an abort in an orbital launching2 °

Webb and Seamans, pressed by Air Force worries over the technical, political, and

public effects if MA-2 should fail, decided to trust the judgment of Rhode and

Gilruth and to back NASA's commitment to accept all the blame if the worst

should happen. Timely decisions by NASA had been required to permit deploy-
ment of the recovery forces to maintain the scheduled launch date.

There was so much concern over the Atlas-Mercury compatibility problem

that many people almost forgot the first of several first-order objectives for the

capsule and its booster. That was to test the integrity of the structure, ablation

shield, and afterbody shingles of the capsule for reentry from the most critical

abort situation. A second first-order objective required the Atlas abort sens-

ing and implementation system (ASIS) to be operated "closed-loop" on the

Mercury-Atlas configuration for the first time. But because MA-2 had already

been made into a Federal test case, with the President, Congress, and top echelons
in the Pentagon and NASA Headquarters vitally interested in its outcome, the

engineers at the working levels were more anxious than ever to make this one

go. Its specific results were politically less important than its general appearance
of success.

The preflight checkouts had ticked off nicely the last several days before cap-

sule No. 6 was to undergo its ordeal. And spirits were rising with the Sun on

the morning of February 21, 1961. The Mercury crew for launch operations

was much the same as that for MR-2, but just as Atlas was an entirely different

vehicle from the Redstone, so was its military/industrial launch operations crew

quite different. From the factory in San Diego had come most of the senior engi-

neers in the Mercury booster program office, including Philip E. Culbertson,

Charles S. Ames, Howard Neumann, Joseph A. Moore, and Richard W. Keehn,

as well as the same machinists, welders, and test supervisors who had made the

"horse collar" work in bench and tunnel tests in California. At the Cape they
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worked alongside the executive agent for Mercury-Atlas launchings, the 6555th

Aerospace Test Wing of the Air Force, and with Thomas O'Malley and Calvin

D. Fowler, who had the industrial responsibility for actual launch operations of

the Atlas. The Air Force Ballistic Missile Division representatives, Lieutenant

Colonel R. H. Brundin and Major C. L. Gandy, together with Aerospace engi-

neers Bernhard Hohmann and Ernst R. Letsch, were also on hand, watching final

preparations to make this "bird" fly. Their special concern with the design and

implementation of the chief reliability component of the Atlas, namely the abort

system or "ASIS," also brought Charles Wilson and J. W. Schaelchlin of Con-

vair/Astronautics, and D. R. White of Space Technology Laboratories, into the

blockhouse of Launch Complex 14 on this special morning. John J. Williams

was the Mercury-Atlas test conductor presiding there.

Engineers and workers at lower levels in the industrial and military hierarchy

were beginning to call all these senior men "tigers" and to speak of them col-

lectively as "tiger teams." They were the senior designers and the old-line

specialists on Atlas subsystems who came out to the launch site to help the field

engineers actually doing the work of final preparation for a launch? 1 Waiter

Williams and Christopher Kraft, in the Mercury Control Center about three

miles southwest of the beach-side launch pad, watched the lights turn green one

by one as the gantry backed away and "foxing" commenced about 7 : 30 a.m. The

weather was perfect at the Cape, but 1200 miles downrange in the recover3_ area

there were scattered squalls, which delayed the launch for one hour. Outside

the Control Center that day stood Gilruth, Low, and Major General Ritland of

the Air Force Ballistic Missile Division, waiting and watching for the liftoff.

Each had prepared press releases in his pocket making this shot a NASA "over-
load" test in case of failure.

MA-2 roared off its pad at 9:12 a.m., and for the next 2 minutes the tiger

teams and the managers of Mercury. hardly dared breathe. An audible sigh

of relief spread through the Control Center and blockhouse about one minute

after liftoff, when it was announced that the "horse-collared" booster had gone

through max q intact and was accelerating. At that point, said Low, "Gilruth

became a young man again." Telemetry verified "BECO" and the staging of

the booster engines, escape tower separation, a good trajectory, capsule separa-

tion, capsule retrofire attitude, retrorocket firing, and retropackage jettison?-"

Capsule entry attitude looked excellent at the time tracking and telemetry were

lost, because of extreme range, about 9:22 a.m. Three minutes Iater, lookouts

aboard the uprange destroyer Greene reported observing the reentry of both

capsule No. 6 and Atlas booster No. 67-D.

The capsule passed directly overhead and was lost ira the sun at 09:37.
Reentry was clearly visible and the capsule could be seen ahead of the booster
tankage. The capsule was not glowing but a distinct smoke trail was seen
streaming behind it. The booster tankage was glowing with an intense white
gIow. Several fragments appeared to be traveling along with the tankage
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and tumbling at a high rate. One of the ship's observers tracked the reentry
on a gun mount and indicated a separation distance between the capsule and
tankage of 50 mils when it passed overhead? _

The landing ship dock Donner, almost at the center of the 20-by-40-mile

elliptical dispersion area, also sighted the reentry but lost sight over the horizon

northeastward before the parachute descent. Within 10 minutes, however, radio

signals from the sarah beacon pinpointed the floating capsule's location, and

helicopters were dispatched to pick it up after only 24 minutes in the water. It
was returned to the LSD less than one hour after launch.

MA-2 was a magnificent flight, "nominal in nearly every respect." This

second mission followed a flight path essentially the same as that for MA-1.

The Atlas-Mercury compatibility problem had been resolved, the sequence sys-

tem for the booster-capsule combination had worked perfectly, and the tracking

and real-time data transmission had given immediate and excellent impact pre-

diction from the computers at Goddard to the control centers at the Cape and

on Bermuda and to the recovery forces at sea. The capsule was in extremely

good condition, its ablation heatshield being charred no worse than that for Big

Joe,'its afterbody shingles neither burned nor warped. The Space Task Group

was pleasantly surprised to find the jettisoned antenna canister and to learn, even

more surprisingly, that the "mousetrap" aerodynamic destabilizing flap had

not, as expected, burned away? _

At a press conference later that day, Gilruth beamed as he announced that

this was "a very successful test" that "gives us new confidence in the integrity

of the system, although I would like to caution you all that there are still a num-

ber of critical tests that have to be made before we contemplate manned orbital

flight." Asked if a man could have survived this flight, Gilruth said yes. When

asked whether this flight also would aid the Mercury-Redstone program, Gilruth
again gave an affirmative answer, stressing the identical nature of the capsule

electrical, power, abort, and parachute systems. The Earth-fixed maximum

velocity of the MA-2 capsule had been approximately 12,000 miles per hour,

the highest velocity achieved by a Mercury launch since Big ]oe had demonstrated

the boilerplate model of the Mercury concept. As a capstone for this happy

occasion, Gilruth read a statement announcing that three out of the seven astro-

nauts, namely "Glenn, Grissom and Shepard, in alphabetical order," had been

selected to begin concentrated preparations for the initial manned Mercury space

flights. The nominees had known about and been in training for their missions

since January, but most Mercury engineers did not know who was assigned to

which flight? 5

WHEN Is A VEHICLE MAN-RATED?

As soon as they had recovered from their jubilant celebration after the MA-2

flight, the men responsible for Project Mercury at NASA Headquarters and in the

Space Task Group looked east and west to see where they stood in the race to
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put the first man into space. The Soviets had announced, on February 4 and
February 12, two more unsuccessful attempts, with heavy Sputniks IV and V, to
launch interplanetary space probes to Venus. These were impressive attempts
by instrumented vehicles to achieve scientific firsts, but they apparently had no
direct relationship to any immediate manned space flight. It had been three
months since the failure of Sputnik Cosmic Ship No. 3 on December 2, 1960.

At the end of February 1961, the Soviets' open record of two failures out of three
attempts with their prototype manned spacecraft made it appear that they were
having as many technical difficulties as the Americans were.

During the last week in February, therefore, the international space race
seemed to have cooled. At home the reliability of the Redstone was very much
at issue. It was at this juncture that the yon Braun and Debus Mercury-Redstone

teams presented to NASA Headquarters the results of three intensive reliability
studies that they had made at Marshall since the overacceleration of MR-2 had
given Ham such a rough ride. The first of these three separate probability studies
was based on 69 Redstone and Jupiter flight histories; the second was based on a
mathematical model using a reconstruction of the flight record of all components
and subsystems of the Mercury-Redstone; and the third was a still more refined
reliability study using adjusted values for the human factor and system design

improvements. Together these studies yielded confidence figures that "led MSFC
to the opinion that the Mercury-Redstone launch vehicle reliability was in the
range of 88 percent to 98 percent probability for launch success and crew survival,
respectively." _6 While President Kennedy, Defense Secretary Robert S. Mc-
Namara, and Administrator Webb were learning their executive empires and
were instituting a thorough review of the Nation's space program, Dryden,

Seamans, Silverstein, and Gilruth accepted von Braun's insistence to postpone
the first manned flight and to insert an extra Redstone booster test into the Mercury
flight scheduleY

Whereas the Space Task Group had been elated with the performance of

Ham in spite of difficulties with the capsule and the booster on the MR-2 flight

the last day in January, the yon Braun team at Marshall and the Cape had

undergone an anguished period of reappraisal during the first two weeks in

February as they tried once again to explain the "chatter" in the guidance system
of their Redstone rocket. On February 6, Debus recorded in his daily journal

his position with respect to the readiness status of the booster to be used for the

first manned flight: "At least one unmanned shot must be obtained with flawless

performance of the Mercury-Redstone mission booster flight, or at least no

major shortcoming must be discovered in the vehicle system." Eberhard F. M.

Rees, yon Braun's Deputy Director for Research and Development, concurred

and so informed yon Braun. The next day Kuettner drew up an elaborate memo
for internal use in deciding what shouId be Marshall's technical recommendation

on whether to man the next Mercury-Redstone flight. In a covering note,
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Kuettner explained the situation to von Braun, _8and concluded that he personally
would not advise calling a halt yet.

On Monday, February 13, 1961, Gilruth, Williams, Faget, Jerome B. Ham-

mack, G. Merritt Preston, and Kenneth S. Kleinknecht of STG, along with
John F. Yardley and R. L. Foster of McDonnell, met with the von Braun group
at Huntsville to decide on "man or no man" for MR-3. By that date Debus
had provided Kuettner with a list of 10 weak links, both in the hardware and in

procedure, that needed correction before MR-3. The Marshall engineers in-

corporated their numerical guesswork into a "priority list of weak spots" that
itemized seven major component problems, five minor component discrepancies,
and six procedural difficulties still under study in mid-February. 59

As Kuettner expected, political and medical considerations in the final decision

- to launch the first manned flight elevated the final choice to NASA Headquarters
in Washington. Gilruth, his Redstone project engineer, Hammack, and the rest
of STG were satisfied with the "quick fixes" made by Marshall and ground tested
after MR-2. Certainly the seven astronauts felt impatiently ready to go. But
von Braun and Debus reminded the Task Group of its own original ground rule

for reliability: no manned flight would be undertaken until all parties responsible
felt perfectly assured that everything was in readiness. Marshall engineers
doubted that the difficulties encountered on the MR-1A and MR-2 missions would

have endangered a human passenger. But they were committed to scrupulousness
in their reliability program, too, and during the last week in February there were
still seven significant modifications to the Redstone booster that seemed to require
another unmanned flight test. So during this last week in February, Robert Sea-

marls, Abe Silverstein, and Robert Gilruth acquiesced in the demands of Marshall
Space Flight Center to insert one more Redstone flight into the Mercury schedule.

The fateful decision was made to postpone MR-3, the first manned flight, until

April 25 so something then called "MR-2A" could be inserted for a launch on

March 28. On March 3 there seemed little question of the technical wisdom of

this decision, although there was extreme sensitivity about the time set for the

launch and about its possible public consequences, c°

Marshall undertoo_ to correct everything and asked STG only to provide the

payload for the additional mission. Neither the Task Group nor McDonnell had

an extra production capsule, so the boilerplate model that had been used on Little

Joe-lB in January 1960 was refurbished and sent to Huntsville for the first

mating with Redstone booster No. 5. Instead of the normal designation for the

second try at an unfulfilled mission, MR-2A was renamed "MR-BD" (Mercury-

Redstone Booster Development). Gilruth and company made no plans either to
separate the capsule from the launch vehicle or to recover the remains. MR-BD

was left primarily to yon Braun and Debus, while STG turned most of its attention

to Little Joe 5A. Only the operations team from STG would participate in

manning the Control Center. As Marshall and the Cape made ready this flight
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with the booster that had formerly been designated for the third manned sub-
orbital training flight (MR-5), they were unaware that the Soviet Union was
making ready another series of heavy Sputniks. 61

On March 9, 1961, the U.S.S.R. announced it had launched into orbit its

fourth cosmic ship, or Korabl Sputnik IV, weighing some 4700 kilograms
(10,364 pounds) and containing a dog passenger named Chernushka. When the
dog was recovered, later that day, the Soviet recovery record suddenly became
two out of four tries, and NASA saw the possible consequence of its MR-BD
decision. Outside of NASA, the implications were by no means clear. The

newspaper space race continued unabated.
In a highly publicized letter, Representative Overton Brooks wrote to President

Kennedy on March 9, 1961, of his concern over military and trade journal reports

that the space program might veer toward military control. Brooks thought the
Wiesner report had implied this, and he knew of a special PSAC investigating

committee of scientists, called the "Hornig panel" after its chairman, Donald F.
Hornig. This group, charged with an overall review of the manned space pro-
gram, had just finished spending the first four days of March traveling around
investigating Project Mercury. Brooks reminded the new President that the
intent of the Space Act of 1958 was to ensure that control of space research
remain in civilian hands so that resulting information and technological applica-
tions would be open for the benefit of all enterprise, both private and public.
Too much information would become classified, he said, if the military were
preeminent in space research, development, and exploration. Brooks asked for
and received Kennedy's reassurance that neither he nor Wiesner had considered
subordinating NASA to the military. 62

With Kennedy's affirmation of NASA's leadership role and its 10-year plan

for space research, development, and exploration, Administrator Webb concen-

trated on the scientific criticisms and budgetary deficiencies of the agency.

Program priorities and the funds necessary for them were taken up first. Webb

found that most of his staff and field scientists were enthusiastic about getting

on with advanced manned space exploration beyond Mercury. They wanted

large booster development and manned spacecraft and space flight development
leading to exploration of the Moon. Webb also learned that the scientific com-

munity outside of NASA was not so disenchanted with manned space flight as

some had supposed. Lloyd V. Berkner, a geophysicist and chairman of the Space

Science Board of the National Academy of Sciences, championed the cause of

NASA programs. Berkner and Hugh Odishaw had just edited an anthology,

Science in Space, attempting to garner the support of many disciplines for an
expanded space program. _

On March 13 and 14, Administrator Webb and his chief lieutenants began

a new series of annual presentations to Congress justifying their financial requests
for the coming fiscal year 1962. Abe Silverstein, spurred several times by Chair-
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man Brooks of the House Committee on Science and Astronautics, departed from
his prepared text on the progress of Mercury to explain the MR-BD decision in

connection with the imminent first manned mission into space:

1 don't know whether you heard our briefing here several weeks ago in
which we pointed out that this Redstone booster traveled 400 miles out when
it should have gone 293, and went to an altitude of about i50 miles, when it
should have gone to ll0. These were due to some booster malfunctions. We
have tracked these down and we intend to go ahead and make changes in the
booster so that we have better control of it. We are not about to operate
with a booster that is as sloppy in performance as that. c_

Several days later in a speech before the American Astronautical Society,

Administrator Webb publicly stated that NASA's program should be expanded
to include more scientific space exploration25 The effort of NASA management

to get White House approval at this time for post-Mercury manned flight and

basic funding for booster development was to prove of historical importance2 _

On March 22, President Kennedy called Webb, Dryden, and Seamans to meet

with himself, the Vice-President, and key White House staff to review the need for

supplementing the NASA fiscal 1962 budget. As a result a $125.76 million

increase was approved for NASA2 T In the mind of the general public, unaware

of these deliberations on an accelerated space program, NASA was thoroughly
identified with Project Mercury and attention was pointing toward the first
manned mission in the near future2 s

LJ-5A STILL PREMATURE

"The purpose of the Little Joe 5A," began the technical information summary

document issued for this flight on March 6, 1961, "is to qualify the Mercury

capsule, escape system, and other systems which must function during and after

escape at the combination of dynamic pressure, mach number, and flight path

angle that represent the most severe conditions that can be anticipated during

an orbital launch on an Atlas booster." Using McDonnell's capsule No. 14, the

Little Joe flight test engineers at Wallops Island were behind schedule and eager

to improve on the Little Joe 5 test, which had failed on Election Day in 1960.

The premature ignition of the escape rocket motor, followed by the failure of

the capsule to separate from the booster, still remained unexplained. It had

made the prevention of such a recurrence one of the unstated first-order test

objectives of LJ-5A. Using another of the beryllium heat-sink heatshields, two

Castor and four Recruit rocket motors in the booster, a special backup retrorocket

system, and much better instrumentation, William Bland and his crew from STG,

together with John C. Palmer, the Wallops Island range director, also hoped to

get better data on the capsule's structural integrity and on its sequential, landing,

and recovery systems29 The close simulation that Little Joe 5A should have with

the Mercury-Atlas configuration was shown by the following table: 7o
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Time (see.) ......................................

Max. q (p.s.f.) ...................................
Mach number ....................................

Flight path angle (deg) ....................... ".....
Altitude (ft) ......................................

FOR SPACE

L _- 5A Mercury-Atlas
34.4 60

972 973
1.52 1.58

48.6 ° 56.4 °

30,960 34,300

On Saturday, March 18, 1961, after a four-hour delay caused by checkout

problems, Little Joe 5A roared and soared up from the beach at Wallops Island
at 11 minutes before noon. The takeoff looked good, but 20 seconds later and

14 seconds too early the capsule escape rocket again fired without the capsule.

Warren North described this flight graphically:

At 35 seconds the normal abort signal released the capsule clamp ring. A
single retrorocket, which was installed as an emergency separation device,
received a premature firing signal at 43 seconds. The dynamlc pressure at this
point was 400 psf--ten times as great as dynamic pressure at apogee where
emergency capsule separation should have taken place. The capsule tumbled
immediately upon separating and narrowly missed the booster as it decelerated.
The retropack and escape tower were inadvertently jettisoned or torn off as
the capsule tumbled. Apparently the centrifugal force and/or the escape
tower removed the antenna canister, deploying both the main and reserve
parachutes. The capsule descended on both parachutes which were only
slightly damaged during high q deployment51

Postflight analyses showed that both LJ-5 and LJ-5A had failed primarily
because of structural deformations near the clamp rings that fouled the electro-

mechanical separation systems.
The impact bag on Little Joe 5A was deployed by its barostat at 10,000 feet.

The capsule drifted 10 miles on both its parachutes and finally splashed down
18 miles from the launch site, almost twice as far as planned. On top of that,

the parachutes fell unreleased over the capsule as it floated in the water, thereby

preventing helicopters from recovering it; a Navy salvage ship made the pickup
an hour later. The capsule was in fairly good condition, with only one shingle

damaged from its ordeal, and parachute loads six times higher than expected

had caused no significant damage to its structure.

Spectacular but disappointing had been this test. The primary objective of

qualifying a Mercury capsule during a maximum-q abort had to be rescheduled

four weeks later, utilizing the last Little Joe booster. Capsule No. 14 was

cleaned up, repaired where necessary, and furnished with another set of sensors,
instrumentation, and telemetry for the reflight coming up, the seventh in the

Little Joe series and for that reason called prematurely "LJ-7." The postlaunch

report for LJ-5A summarized the reason for renaming the last Little Joe flight

LJ-5B:

Analysis of data show that the escape-rocket motor fired prematurely and
prior to capsule release, thus precluding accomplishment of most of the first-
order test objectives. The premature ignition was apparently caused by un-
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scheduled closure of at least two of the capsule main clamp ring limit switches.
Operation of a capsule backup system by ground command separated the

capsule from the booster and released the tower, making it possible for the
parachutes to deploy. The main and reserve parachutes were deployed simul-
taneously under very severe flight conditions and enabled the capsule to make
a safe landing. However, in spite of the descent rate of 60 percent less than
normal, the heat shield caused some damage upon reeontact. Examination
of the recovered capsule showed that it did not sustain any structural damage
sufficient to preclude its rapid refurbishment for another flight testJ 2

There was no time for more contingency planning if the United States hoped to

orbit a man before the end of 1961. But for the moment the question in STG was

not what could be done in nine months but what might be done in nine weeks.

MR-BD Is NOT MR-3

In the midst of the restudies of Mercury-Redstone reliability in early Feb-

ruary, Wernher von Braun talked with his chief of public information, Bart J.

Slattery, Jr., about the way the public had been "conditioned" to believe that
the Mercury astronaut would not be allowed to ride the vehicle until 100 percent

assurance of his safe return was obtained from testing. "There isn't such a

thing !" proclaimed yon Braun, and he added that future publicity releases should

emphasize that there "is a risk," perhaps greater than the traffic risks Americans

take every day but possibly no greater than test pilots take with maiden flights

of new jet aircraftJ _

During the following month, while trying to reduce that risk to a minimum,

the yon Braun team represented by Slattery, the Space Task Group represented

by John A. Powers, and NASA Headquarters represented by Paul P. Haney,

agreed to plan the public information for MR-BD to avoid "over-emphasis or

overly optimistic assumptions reIating to future manned flights." TM

Redstone engineers meanwhile quickly fixed the MR BD launch vehicle,

making their seven technical changes during the first two weeks in March 1961.

The foremost cause of previous Redstone booster overaccelerations was a small

servo control valve that had failed to regulate properly the flow of hydrogen

peroxide to the steam generator, which in turn powered, and in the case of

MR-1A and MR-2 overpowered , the fuel pumps. Modifications were made

to the thrust regulator and velocity integrator, in hopes that MR-BD would be

physically incapable of exceeding the speed limit again. Another technical diffi-

culty had been some harmonic vibrations induced by aerodynamic stress in the

topmost section of the elongated Redstone. Four stiffeners were added to the

ballast section and 210 pounds of insulation was applied to the inner skin of the

upper part of the instrument compartment. Although oscillations at the second

bending mode frequencies were less on MR-2 than on MR-1A, several other

electronic changes were made to reduce the dangers from noise and vibration.

328



MR-BD

Mar. 24, 1961

The boilerplate spacecra]t used
on the Mercury-Redstone-Booster

Development [light on March 24
is li[ted by crane to its place atop
the Redstone. This was an extra

[light inserted into the schedule
at the request o[ yon Braun to ac-
quire [urther experience with the
man-rated Redstone be[ore a man-
ned flight was actually attempted.

High winds aloft probably had added some extra stress in the former case, but
in any event the next trajectory would smooth out the tilting maneuver in the
region of high dynamic pressure, and 65 telemetry sensors were placed where the
rocket's bending moments needed to be monitored. Finally, after a great deal
of diagnostic study, five resettings were made to ensure that the booster engine

cutoff time would not precede oxidizer depletion and hence cause another pre-
mature abort signal, as had happened with MR-2. All these changes proceeded

smoothly while the boilerplate capsule was ballasted and corrugated to approx-
imate the production model, McDonnell spacecraft No. 7, and fitted with an
inert escape rocket. The capsule did not have a posi-retrorocket package. _5

On the morning of March 24, 1961, the second half of the split countdown
for MR-BD was in progress, and so far everything had proceeded without a
hitch or a "glitch." To test procedures for the launch pad rescue crews, a
manned M-113 armored personnel carrier was parked only 1000 feet southwest
of the unmanned Redstone. The firemen in this vehicle were going to endure
bone-jangling noise and vibration during the launch to see how much emergency
rescue crews could stand. Closer still, an unmanned asbestos-covered truck was

329



THIS NEW OCEAN

parked 65 feet from the MR-BD blast deflector to simulate the position that the
"cherry picker," or mobile egress tower, would occupy during the launch of a
manned missile.

Liquid oxygen loading for MR-BD began only two hours before the sched-
uled launch time. During the automatically controlled loading process, winds

of about 20 knots swayed the Redstone and produced sloshing during the "topoff"
operation. The fuel temperature began to rise toward the boiling point, and
soon an overflow bled out the booster standpipe and boil-off valve. This po-
tentially dangerous situation was governed by a computer, which, when its
electronic bias in the topping circuit was lowered, continued the "lox-topping"
normally. No holds were called, and the countdown proceeded to launch
without further incident.

At 12:30 p.m., MR-BD lifted off straight and smooth from Cape Canaveral
on its programmed trajectory. The people in the armored vehicle on the ground
watched it all without discomfort, and a truck driver later moved the simulated

"cherry picker" away undamaged. Although the actual exit velocity was 89 feet
per second higher than planned, there was in general, said Hammack in his report
to STG, "hardly a plotting difference between the actual trajectory data com-

puted . . . and the nominal trajectory published in NASA working paper 178." 7G
The whole configuration impacted in the Atlantic 307 miles downrange (five miles
short of the plan) and sank to the bottom, exploding a sofar bomb en route.
MR-BD was highly successful; as George Low reported to Administrator Webb,
it "demonstrated that all major booster problems have been eliminated." 77
Telemetry revealed that the Redstone still wriggled a bit with high vibrations

in the instrument compartment, but all the "quick-fixes" had worked properly.
MR-BD satisfied von Braun's team, Debus' crew, and all of NASA that the

Redstone was now trustworthy enough to be called "man-rated." Enough experi-
ence was at hand to tackle the next step in Project Mercury, manned suborbital
flight. 7s

But the very next day, March 25, the Soviets announced the successful launch
and recovery of their fifth Korabl Sputnik, containing a dog named Zvesdochka, or
Little Star. Three out of five was their record now for successful recovery of

"cosmic ships" and dogs from orbit. Three days later, at a Soviet Academy of
Science press conference in Moscow, six of Strelka's pups, as well as four other
space dogs, were on exhibit as evidence and harbingers of the imminent flight
of man into space. MR-BD might have been that first flight had it been
"MR-3," as originally scheduled, but the decision of a month before froze the
Mercury-Redstone schedule for at least two months afterward. And the Mer-
cury team, aware of but not dominated by the space race, could only hope that

the "Sputnik Spacecraft Team" was having comparable final checkout difficulties.
At the beginning of April 1961, Mercury-Redstone launch vehicle No. 7 was

erected on its launch pedestal at pad No. 5 and made ready for the first mating
of the man-rated capsule No. 7. Feverish activity pervaded Hangar S and the
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service structure, where another "white room" was being hastily rigged on the third
level of the gantry at MR-3's capsule height. Rework on the capsule's reaction
control system was completed during the first week in April, while the three chosen
astronauts went through final procedures training and acceleration conditioning

in centrifuge runs at Johnsville. The Space Task Group now believed that the
development phase of the project was practically over. Symbolizing this shift,
the Associate Director responsible for development, Charles Donlan, left STG for-
maIly on the first of April to return to LangIey Research Center, leaving Walter

Williams, the operations chief, as Gilruth's sole Associate Director. TM

The Space Task Group nevertheless could not afford to become too preoccu-
pied with the preparations for MR-3 because MA-3 and Little Joe 5B were sched-
uled first, and within two weeks, as prerequisites for the orbital objective. On

April 10, foreign correspondents in Moscow reported rampant rumors sweeping
the city that the U.S.S.R. had placed a man into space. That same day at Langley
Field, Virginia, another rumor reached the attention of STG to the effect that
the 10 members and four consultants of the President's Hornig panel were recom-
mending at least 50 more chimpanzee runs before putting man in space. Gilruth
remarked facetiously that if this were true, the Mercury program ought to move
to Africa. s°

This hearsay recommendation did not become a part of the "Report of the Ad
Hoc Mercury Panel" or of the Hornig Committee, as it was more widely known,
which was submitted on April 12, 1961. Having been delegated by President

Kennedy and his scientific adviser, Wiesner, the panel visited the McDonnell plant,
Cape Canaveral, and Langley Field and talked with representatives of supporting

services and contractors. In its 18-page report it reviewed the accomplishments
and failures of the Mercury program, assessed the risks and probability of success,
and commented upon medical aspects of Project Mercury as a whole and medical
readiness for manned suborbital flight in particular. It concluded with some rea-
sonable medical reservations that a Redstone flight now would be "a high risk
undertaking but not higher than we are accustomed to taking in other ventures,"
such as in the initial flights of the Wright Brothers, Lindbergh, and the X-series
of research aircraft, sl

In its reliability assessments, the Hornig panel graded the Mercury subsystems
or components according to three classes of reliability percentages: Class 1, 95-100
percent; Class 2, 85-95 percent; Class 3, 70-85 percent. Eleven items were rated

as Class 1 : Capsule structure and reentry properties; separation mechanism and
posigrade rocket; tower and abort rockets; voice communications; abort sensing
instrumentation system; manual control system; retrorocket system; parachute
landing system; ground environment system; recovery operation; and pilot train-
ing. Three items were rated in Class 2 : Landing bag; environmental control sys-
tem; and automatic stabilization and control system. The two items in the Class
3 category, booster (Redstone or Atlas) and telemetry, were explained as "not

per sea cause for alarm" for pilot safety but only for mission success, s_
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VOSTOK WINS THE FIRST LAP

The firstunofficialrumors out of Moscow were confirmedby an Associated

Pressdispatchon April 12 thattranslatedan officialSovietnews agency Tass

announcement:

The world'sfirstspaceshipVostok with a man on board,has been
launchedon April12 intheSovietUnion on a round-the-earthorbit.

The first space navigator is Soviet citizen pilot Maj. Yuri Alekseyevich
Gagarin. Bilateral radio communication has been established and is main-
tained with Gagarin.

Aside from this assertion, the news out of Moscow and Turkestan on April 12

was neither crisp nor very detailed. For a few days a great deal of speculation
over conflicting reports, fuzzy photographs, and the lack of eyewitnesses encouraged
those disappointed Westerners who Wished to believe that Gagarin's flight in
Vostok I (meaning East) had not occurred. The danger that history might be
made to order in a closed society was compounded by the rumors in the London
Daily Worker and elsewhere since April 7. The propagandistic exploitation of
this magnificent deed was evident from the fact that no confirmed announcement
was made during the 108 minutes of flight--not until Yuri Gagarin landed intact
near the Volga River, some 15 miles south of the city of Saratov. The present

tense in the Tass dispatch above could easily have been doctored for control
purposes, drama, or even for more serious reasons, s3

Be that as it may, NASA officials from Webb and Dryden down to Gilruth
and Powers, at least six months earlier, had planned their comments for this
occasion, just in case. About 4 a.m., telephones began buzzing up and down the
east coast of the United States as reporters demanded responses from NASA
officials to the Tass dispatch. John A. "Shorty" Powers half-consciously replied

to his first inquisitor, "We're all asleep down here." Some journalists ignored
the fact that Gilruth had long since gone on record as saying he would not be
surprised to be awakened some morning in this manner. Webb went on nation-
wide network television at 7:45 a.m. to extend congratulations to the Soviets,
to express NASA's disappointment, and to reassure the nation that Project Mer-
cury would not be stampeded or panicked into a premature speedup of the
Mercury timetabie_ The next morning Webb and Dryden were roasted before
the verbal fire of the House space committee as they were asked to explain what
had happened. All the information available to the United States government,

said Dryden, and past experience with Soviet technical statements, tended to

confirm the report of Gagarin's flight. Representatives James G. Fulton of

Pennsylvania, J. Edgar Chenoweth of Colorado, Victor L. Anfuso of New York,

and David S. King of Utah were especially disappointed that the name Gagarin

would "go down in the history books." Webb and Dryden held up well under

this heat, taking the position that this particular race was lost "before the space
agency was founded." But Representative Joseph E. Karth, a Democrat from
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Project Mercury normal orbital mission profile.

Minnesota, gave the most popular rationale of why a Russian had won the first lap

in the manned space race:

The United States and the Soviet Union have proceeded along two dif-
ferent lines of attack. The Soviets have pretty much rifled their program, if
I may use the word, as opposed to the United States shotgunning their effort.
We have been interested in many programs and I think the Soviets have been
interested primarily in putting a man in space, s_

The flight of the first cosmonaut seemed remarkably similar in many respects

to the plans for the first Mercury astronaut's orbital mission, but there were

momentous differences as well--the single near-polar orbit, the lack of a world-

wide tracking network, and the provisions for pilot ejection before impact. "'_

According to the corrected and reduced data obtained from their measurements

and published in Pravda on April 25, 1961, the twin module spaceship-satelIite,

or Korabl Sputnik VI, was renamed generically as the first in the Vostok series.

Specifically its call sign was Swallow. The payload compartment, manned by

27-year-old, 154-pound Gagarin, weighed altogether 10,417 pounds, and attained
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an apogee of 203 miles and a perigee of 112 miles, with an orbital inclination

of 65 degrees to the equator. Cosmonaut Gagarin was probably launched by a

two-stage booster from the Balkonur cosmodrome, east of the AraI Sea, south of

the industrial district of Magnitogorsk, near Tyura Tam, a boom town comparable

to Cocoa Beach, Florida. Apparently the Gagarin flight had not been preceded

by a parabolic manned suborbital flight into space. The anonymous engineers

behind him, mysteriously called "the chief designer" and "the chief engineer,"

evidently had developed a mixed-gas air supply at sea-level pressures for his life

support system. Vostok I also had a separate and separable instrument section

and retrorocket package for telemetry, television, and radio telephone communica-

tions during orbit and for braking the spacecraft velocity 5000 miles and 30 min-

utes before the desired impact point. Gagarin rode in a capsule almost three

times the weight of the Mercury spacecraft and inside a spherical pressure vessel

7.5 feet in diameter, both of which were automatically controlled. Gagarin was

the first person in history to attain an Earth-fixed speed of 17,400 miles per hour,

and at this speed around his 25,000-mile course, as high as 203 miles from sea level,

he was also the first man ever to endure 89 minutes of weightlessness. 8"
What the Soviets announced after the fact was indeed true:

History's. first flight in outer space, accomplished by the Soviet cosmonaut
Yuri Gagarin in the space ship Vostok, has made it possible to draw the im-
mensely important scientific conclusion that manned flights in space are prac-
ticable. It demonstrated that man can normally bear up against the conditions
of a space flight, the placing of a ship in orbit, and the return to earth. This
flight showed that in a state of weightlessness man fully retains his capacity for
work, his coordination of movements, and his clarity of thought. 8r

And while it was hardly an overstatement to claim, as the Soviets did after

the celebrations in Red Square were over, that "in the progress of science, the

flight of a Soviet man in outer space pushed all other developments into the

background," it must certainly have been an oversimplification that prompted

Gagarin to say in retrospect: "I felt very well before the flight. I was fully

confident of its successful outcome. Our machines and equipment are very

reliable and I and all my comrades, the scientists, engineers and technicians, never

doubted the success of the undertaking." 8.

Gagarin's flight, while not having the depressive impact of Sputnik I in

October 1957, nonetheless came as a crushing disappointment to many Americans.

The announcement was received in this country with a variety of reactions:

admiration for the flight's purely scientific merits; disbelief, since various Russian

accounts carried conflicting statements, at least in transliteration and at most in

their technical secretiveness; and the feeling that the United States had lost face

once again. The Associated Press conducted a poll in Miami, Detroit, Akron,

Charlotte, Denver, Dallas, Minneapolis, Los Angeles, Oklahoma City, and

Washington, D.C., by having its reporters call all the Joe Smiths in the telephone

directories. The Joe Smiths registered a wide range of emotions, but perhaps
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the persons feeling the keenest disappointment were the American astronauts.
They knew how close and yet how far they had come toward being first in space,
if not in orbit. Of the four who made statements, Glenn was most articulate and

magnanimous:

The Russian accomplishment was a great one. It was apparently very
successful and I am looking forward to seeing more detailed information. I
am, naturally, disappointed that we did not make the first flight to open this
new era. The important goals of Project Mercury, however, remain the
same--ours is peaceful exploration of space. These first flights, whether Rus-
sian or American, will go a long way in determining the direction of future
endeavors. There is certainly work for all to solve the tremendous problems
involved. I hope the Russians have the same objectives and that we can
proceed with mutual dissemination of information so that these goals which
all mankind shares can be gained rapidly, safelyr and on a progressive scie_tific
basis2 9

"NEWS _rILL BE WORSE BEFORE IT IS BETTER": MA-3 AND LJ-5B

Although Project Mercury was not stampeded by the flight of Vostok I,

Congress nearly was. As Mercury approached its goal, its ends became merely

a means to the Moon. While the funding for Project Apollo was being discussed

in Congress, the Gagarin flight provided a tremendous impetus to the desires of

Americans, as mirrored in the lower house of their national legislature, to become

first once again. In the chagrin of the moment, some Congressmen appeared

willing to appropriate more money than NASA could spend. Robert Seamans,
third in command of NASA as Associate Administrator and general manager,

actually had difficulty restraining the House space committee's demands for an

all-out crash program for a lunar landing. President Kennedy, consistent with

one of his campaign promises, reacted to the Gagarin announcement by saying,
"We are behind.., the news will be worse before it is better, and it will be some

time before we catch up." _°
The President knew not how well he had prophesied the major Mercury

events of the next two weeks. The time was up for Mercury to be first in space,

but the qualification flight tests were still far from over. Mercury-Atlas 3, com-

posed of "thick-skinned" Atlas 100-D and capsule No. 8, was, on April 10, 1961,

standing on the pad at the Cape being groomed for a long ballistic flight over
Bermuda and the Atlantic Ocean. A primary purpose of MA-3 was to test the

dual abilities of the Cape and Bermuda to handle an abort about the time of

orbital insertion. Walter Williams had already satisfied himself that this was no

problem and that the MA-3 mission should be more ambitious. After Gagarin's

flight the Mercury senior staff on April 14 decided it was technically feasible to

change the MA-3 mission objectives to a full-scale one-orbit goal. When Warren

North informed Silverstein of this change on April 17, he also noted that MA-4

should be a chimp-carrying orbital flight about mid-July. 9_ However, Low,
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LJ-5B

Apr. 28, 1961
Little ]oe-5B (right) was launched from

Wallops Island April 28, 1961. Although

not nominal in flight trajectory, L]-SB did

finally demonstrate the ability of the

escape and sequence systems to [unction

properly at max-q conditions equal to the

worst a ,_fcrcury-Atlas could encounter.
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MA-3

Apr. 25, 1961
Mercury-Atlas 3 (left) was launched from

the Cape April 25, 1961. Its mission was

upgraded /tom a suborbital to an orbital

attempt only a few days before the flight.

MA-3 was destroyed by the range safety

officer after 40 seconds o/flight, the inertial

guidance system having failed to pitch the
vehicle over toward the horizon. The

spacecraft successfully aborted and was re-

trieved a short distance offshore. This was

the last major flight failure in Mercury.



TESTS VERSUS TIME IN THE RACE FOR SPACE

acting for Silverstein, in direct consultation with Seamans, Gilruth, Williams,

and others after Gagarin's flight, had already approved the speedup in the mission

objectives for MA-3.

Carrying a "crewman simulator," an electronic mannequin that could "inhale"

and "exhale" manlike quantities of gas, heat, and water vapor, MA-3 should test

not only the capsule systems but also the reliability of this standard Mercury-Atlas.

The critical tracking system and computer arrangement at Goddard, the Cape,

and Bermuda must prove its ability to predict the "go/no go" decision before the

danger of impacting in Africa. It was too late to change most of the documenta-

tion for MA-3, including the information summary and mission directive, but

revised preflight trajectory data were hastily computed and disseminated. Com-

puter programmers James J. Donegan of Goddard and John P. Mayer of STG

worked their men through the eve of the flight checking the changed flight plan? 2

MA-3 failed tactically, but strategically this orbital flight attempt probably

did more than anything else in the Mercury program to implement the "gold-
plating," or the real man-rating of the Atlas. It carried the last of the first series

of capsules with the dual ports and without a landing impact bag. The capsule

was to be inserted into orbit at an altitude of 100 miles and a slant range of 515

miles from Cape Canaveral. If the velocity of Atlas 100-D was not high

enough, it could be aborted into any one of several preplanned recovery zones
between Bermuda and the Canary Islands.

As it happened, the Atlas attempt to orbit a robot, made at 11:15 a.m. on

April 25, 1961, was intentionally destroyed by the range safety officer only 40

seconds after launch when the autopilot programmer on the Atlas failed to roll

and pitch the vehicle over toward the horizon. The mission having aborted,
however, the entire Mercury escape system worked perfectly and the launch site

recovery team responded exactly as if there had been a pilot's life at stake. The

spacecraft was towed to a maximum altitude of 24,000 feet by the escape rocket

and lowered gently by its main parachute a short distance offshore. The capsule

came through this relatively easy abort with only minor damages and was quickly

recovered and refurbished for reuse on MA-4. °a Destroyed after its failure to
initiate roll and pitch programs, booster 100-D left few artifacts as memorials of

its existence. Before the official investigation board could complete its report

two months later, however, a significant piece of the MA-3 autopilot, the pro-

grammer, was found buried in the mud near the beach, thereby leading to the

corroboration of one of the prime hypotheses for this failure? _

Meanwhile, back at Wallops Island, the seventh and last booster in the Little

Joe series was fitted with capsule No. 14 and made ready for a repeat of LJ-5
and LJ-5A in hopes that the third try would be charmed. This was to be an

extremely critical test before MR-3. Gilruth, from Low's home in Washington,

called William Bland at Wallops Island to encourage the launching if weather
permitted. The preflight documentation was virtually identical to that of the

previous Little Joe flight, as was the refurbished spacecraft. Still more instru-
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mentation and even more careful checkout procedures to ensure that the abort

would occur at the right time were instituted in addition to the redesigned clamp

ring and limit switches. A steep trajectory up to about 45,000 feet was desired

before tower separation and drogue chute deployment. The max-q punish-

ment of about 990 pounds per square foot was desired to match the worst of the
Atlas abort conditions? _

When on April 28, 1961, at 9:03 a.m., LJ-5B rammed upward, technical

observers cringed when they saw immediately that one of the booster's Castor

rocket motors failed to ignite for 5 seconds after liftoff. This resulted in a much

lower trajecto D, than planned, giving a maximum altitude of only 14,600 feet,

but the dynamic pressure, instead of 990 pounds per square foot, was about twice

that amount, 1920 pounds. The abort was initiated about 33 seconds after launch
as intended, and all events following the abort occurred as they should have.

Recovery by helicopter was quick and clean, even though the low-flying capsule

impacted two miles farther downrange after skidding through the atmosphere

rather than vaulting through it. Lewis R. Fisher, Leo T. Chauvin, and Norman

F. Smith of the STG Little Joe team were able therefore to wind up their program

with a boast despite the erroneous trajectory:

This launching successfully demonstrated the structural integrity of the
Mercury capsule and escape system and sequential system under significantly
more severe conditions than those expected to be encountered during a non-
tumbling type of abort from an Atlas booster during a Mercury orbital
launch .... Changes in circuitry and redesign of clamp-limit-switch installa-
tions in Capsule 14 for the Little Joe 5-B mission successfully eliminated the
probIem of premature ignition of the escape rocket motor, g"

One by one the major obstacles to the growth of the manned space flight

enterprise seemed to have dissoh'ed. The opposition of some in the scientific

community was not expected to become a factor in national policy. The so-

called "military-industrial complex" had failed, if indeed it had ever tried, to
reduce NASA. The White House and NASA administrators were determined to

advance national capability in space technology. Political dangers were now

neutraIized. Except for the Atlas and the spacecraft's orbital capacities, alI

Mercury systems were qualified. Despite the embarrassment to American

nationalism brought by Gagarin's flight, Mercury as a technological accomplish-

ment was on the verge of sending a man to visit the edge of the black sea of space.

And certainly this )'ear of grace 1961 should also see an American citizen orbit the

globeY
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Suborbital Flights into Space

T9:34 a.m. on May 5, 1961, about 45 million Americans sat tensely beforetheir television screens and watched a slim black-and-white Redstone

booster, capped with a Mercury spacecraft manned by Astronaut Alan B.

Shepard, Jr., lift off its pad at Cape Canaveral and go roaring upward through

blue sky toward black space.
At 2.3 seconds after launch, Shepard's voice came through clearly to Mercury

Control; minutes later the millions heard the historic transmission :

Ahh, Roger; lift-off and the clock is started . . . Yes, sir, reading you loud
and clear. This is Freedom 7. The fuel is go; 1.2 g; cabin at i4 psi; oxygen

is go . . . Freedom 7 is still go!

America's first man in space was in flight only 15 minutes and 22 seconds

and was weightless only a third of that time. Freedom 7 rose to an altitude of

116.5 miles, attained a maximum speed of 5180 miles per hour, and landed 302

miles downrange from the Cape. Shepard experienced a peak stress of 6 g

during booster acceleration and less than 12 g on reentry. Recovery operations

went perfectly, the spacecraft was undamaged, and Shepard was in excellent and
exuberant condition.1

In the light of later American space accomplishments, the flight of Freedom 7

was impressive for its benchmark of technical excellence in the new technology

of manned space flight and its hallmark of open media reporting. When com-

pared, as it inevitably was, with the previous April 12 orbital flight of Yuri

Gagarin, MR-3 was anticlimatic.
Ever since December 1958, when T. Keith Glennan, the NASA Administrator,

had announced Project Mercury, the American public had awaited the first

manned Mercury flight with fairly general misgivings. Many people whose

expectations had been stimulated by publicity became impatient at the long delays

and postponements. Some deplored the whole space program as wasteful and
of doubtful value. A few still believed space travel was impossible for human

beings.
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Then, on February 22, 1961, the Space Task Group announced that Shepard,

John H. Glenn, and Virgil I. Grissom had been chosen to begin special training

for the MR-3 vault into space. More than a month before the public announce-

ment, Robert R. Gilruth personally had made his choice, even to the exact flight

order of the men selected. In early January, back at Langley, the day after he had

bid outgoing Administrator Glennan goodbye in Washington, Gilruth had decided

to inform the flight crewmen of their selection status. He drove over to the

temporary building housing the astronaut offices, called the seven men together,

and told them of his decision that Shepard would be the first flight astronaut. 2

And while the West awaited the next development, Gagarin made his 108-

minute near-polar orbit of Earth aboard the five-ton Vostok I (meaning East)

spacecraft.

Although some Americans professed disbelief in the Gagarin flight, a majority

surely felt a twinge of nationalistic pain in admitting the Soviets had won the

first honor in the two-nation race into space. When Shepard's flight took place,

barely a month after Gagarin, even the skeptics appeared to derive consolation

from the fact that the American launch and recovery had been made in the light

of full publicity, with all world news media participating, whereas the Vostok

flight had been veiled in official secrecy until after the fact.

Freedom 7, Shepard's capsule, missed what had been widely considered a

"realistic" launch schedule by six months. When the capsule had finally been

delivered to the Cape on December 9, 1960, some assumed the flight could be

made at once. But 21 weeks of preparation--not all of it anticipated--were

required by STG's Cape preflight checkout group and a host of McDonnell engi-

neers based at the Florida site. Reaction control system checkout and rework

were responsible for a launch schedule postponement to March 6, 1961. Re-

placement of damaged and corroded peroxide lines forced a further delay of

eight days. Rerunning the simulated mission test and correcting structural and

equipment defects were other time-consuming problems?

Thus, technically, it was May 2 before the launch of capsule No. 7 might

have been made. Then why not use capsule No. 8 or 9 or 11 ? Because capsule

No. 7 had been selected in the summer and groomed since October 1960 as

McDonnell's best product to date, the only porthole version of the capsule that

had been or would be man-rated in all respects. By January 1961, after the

MR-1A flight had used up Mercury-Redstone booster No. 3, the one originally

intended for the first man-launch vehicle, it was clear that Redstone No. 7 would

boost capsule No. 7. At the end of March, when booster No. 7 arrived at the

Cape, Shepard already knew he was Robert R. Gilruth's prime choice to fly it.

"There was no hope," said Shepard, "that a later model of the capsule incorporat-

ing our suggestions could be ready in time for MR-3." So capsule No. 7 on

booster No. 7 should be the first combination of a series of at least seven flights to

put Americans into space. "What better name or call-sign could I choose than

Freedom 7?" asked Shepard. 4
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Although the delays were disheartening, there were compensatory benefits in

the way of astronaut training. Some psychologists feared that this long time lapse

before the flight actually took place might cause "over training" and staleness.

But in the postflight debriefing, Shepard complimented the so-called "over train-

ing"; he remarked that the similarity of training conditions to actual flight

conditions was a key factor in making the mission seem almost routine. In addi-

tion, new and better procedures were developed during repeated rehearsals of the

mission, which might not have come to light had the training not been expanded a
few weeks.

FINAL PREPARATION FOR MR-3

The Space Task Group had decided to train Shepard, Glenn, and Grissom

especially for the MR-3 mission because the competitive field had to be narrowed

for this particular mission to allow the remaining astronauts to prepare for

ground support jobs and the Mercury-Atlas orbital missions. Shepard's activity

chart for February 1961 shows that he spent 18 days at Cape Canaveral becoming

oriented to spacecraft No. 7 and its peculiarities. Long before the final phases

of pilot preparations came about, Shepard and Walter C. Williams had insisted

that the designated astronaut must become an integral part of the preflight

checkout activities. So, based on this procedure, Shepard and Glenn acquired the

special feel of No. 7's attitude control system in hangar checkouts. When the

capsule was placed in the altitude test chamber, Shepard went along for the

"ride" and exercised the environmental control system.

The most valuable operational training the astronaut received before his

mission came from sessions in two McDonnell-built, Link-type trainers, one at

Langley and the other at the Cape. These devices were first called "procedures

trainers" and later "Mercury simulators." Here the space pilot, supine in a mock-

up capsule, rehearsed the flight plan for a specific mission. The trainer instruments

were capable of being tied in with computers at the Mercury Control Center.

Overall operations team practice welded ground controllers and astronaut into a

unit. Although not devoted exclusively to the MR-3 mission, the simulators
were in use 55 to 60 hours a week during the three months preceding the

flight of Freedom 7. During the entire training period, Shepard "flew" 120

simulated Mercury-Redstone flights?

For an eight-week period immediately preceding the flight, the rehearsals

became even more exacting. In preparing for the altitude chamber runs at

space equivalent altitudes, the astronaut was examined in preflight physicals,

fitted with medical sensors, including a rectal thermometer, and helped into his

20-pound pressure suit. The pilot and his medical attendants then went through

the mission as realistically as conditions would allow, conducting pressure and
medical checks.

Another carefully rehearsed phase of the program consisted of the transfer
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In the delay-filled weeks before the first U.S. manned

spaceflight, Astronaut Alan B. Shepard, Jr., kept pro[-

itably busy with "'over training," the rerunning of all

phases and aspects of the [light to the point that re-

sponse to them became reflexive. Left, Shepard ar-

rives in the white room at Pad 5 on April 21, 1961,

ready/or the/ulI-scaIe simulation of the flight. Below,

he once more "'flies" the mission in the procedures

trainer at the Cape. Bklow left, he leaves the alti-

tude chamber in Hangar S following an altitude test.

MR-3

Preflight
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of the pilot from his quarters on the balcony of Hangar S to the transfer van, the

ride to the pad, and simulated flights with the astronaut sitting in the actual

spacecraft. Countdowns were conducted while controllers manned their consoles.

The first two rehearsal "flights," held on April 18 and 19, kept the sen, ice

structure, or gantry, against the vehicle, and the capsule hatch was not closed.

But the next day, on a third simulated mission, the hatch was closed, the gant_,

was pulled away, and the spacecraft was purged with oxygen as if an actual

mission were in progress. Training like this and in the procedures trainer con-

tinued until two days before the scheduled flight, c

Three purposes were served by this extensive training program. The astro-

naut became intimately familiar with the role and voice of each person supporting

the mission. He acquired more physical and mental familiarity with all of the
associated hardware. And he was made even more aware of the day-to-day

status leading to launch date. The operations team benefited by having the
astronaut attend the team's technical briefings. These discussions covered both

the spacecraft and the launch vehicle and included mission reviews held the
week before launch.

On the eve of the launch, a briefing was conducted exclusively for the astro-

naut, with specialists in each system reporting on final readiness. Walter J.

Kapryan presented the capsule and booster status; Robert B. Voas reviewed

astronaut flight tasks; Christopher C. Kraft, Jr., briefed the astronaut on flight

control and network status; Robert F. Thompson told him of recovery procedures;

and Ernest A. Amman gave him the forecast on weather conditions. Next

morning, L. Gordon Cooper, blockhouse communicator, obtained reports from

key operations personnel and gave the astronaut his final ready-room briefing

before he ascended the gantry. Plans for the postflight debriefing sessions,
wherein the student astronaut would become the teacher of his preflight instruc-

tors, were also laid out in detail by the end of April. 7

The planning of recovery operations was as important as any other phase of
the mission. Rear Admiral F. V. H. Hilles, in command of the experienced

flotilla of eight destroyers known as DesFlotFour, worked with another flag
officer, G. P. Koch, aboard the carrier Lake Champlain, on the tactics for this

mission. STG's primary strategy was to recover both man and capsule by using

land-based Marine helicopters for launch-site abort situations within about 80

miles of the Cape and carrier-based helicopters in the primary" recovery area,

within a hundred-mile radius. Makeup of the recovery force was similar to that

for MR-2, with tiered groups of men and equipment, beginning at Cape Ca-

naveral, ready to cover all contingencies--abort, normal flight, or overflight.

The main recovery force of ships was deployed in an elongated pattern 500 miles

down _ilong the range. It consisted of the carrier, eight destroyers, and one

Atlantic Missile Range radar tracking ship. The helicopters again were manned

by Marine Air Group 26, a veteran recovery unity
Some innovations were added to the recovery plans as a result of experience
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gained in the MR-2 chimpanzee flight. For one thing, there was still the

possibility that Freedom 7 might overshoot its landing target, in which case the
time factor could be vital. Obviously a highly mobile unit was desirable.

Walter Williams, operations director, requested an amphibian SA-16 aircraft

with a pararescue team as an emergency rescue measure. Two such teams were

provided, adding the support of the Air Rescue Sen, ice and Navy frogmen to

Project Mercur) r.

A second change involved communications. When the spacecraft was near

impact it passed below the radio horizon; Williams reminded the Mr Force
Missile Test Center commander that continuous voice communications with the

astronaut in the final moments of flight and after impact required a communica-

tions relay plane. The Air Force assigned a communications aircraft, code-

named Cardfile 23, to the mission?

The helicopter recovery technique was perfected late during the astronaut

preparation period. According to the original helicopter recovery procedures,
the chopper would lift the spacecraft with the pilot inside and ferry both to the

ship. John Glenn protested that the danger in this procedure to both astronaut

and helicopter pilots was too great in case trouble developed during the operation.

He strongly recommended further review. After much study and practice of

procedures, STG decided at a conference on April 15, 1961, to use helicopters

as the primary mode of recover),. The helicopter would arrive, hover over the

spacecraft, and talk with the pilot by UHF. The helicopter copilot would snip

off the capsule's high-frequency antenna, snare the capsule recovery loop, and

raise the vehicle slightly out of the water. By this time the astronaut would be

completely out of harness and the hatch would be clear of the water. Then the

astronaut would open the side hatch, crawl through, and catch a second sling

lowered from the helicopter. The helicopter would hoist both astronaut and

spacecraft and carry them to the main recovery ship? °
Since a man was to be aboard this flight, another vital part of the planning

activities involved weather reporting and surveillance. Beginning in June 1960,

Francis W. Reichelderfer, chief of the United States Weather Bureau, had

promised to Administrator Glennan and provided for the Space Task Group
full meteorological support for Project Mercury. By mid-April 1961, a special

weather support group, consisting of three units under Kenneth M. Nagler, was

utilizing ever)" resource of the Bureau (including the satellite Tiros H) to forecast

the weather accurately for STG? _

Before MR-3, the seven-man Miami forecast unit, headed by Jesse R. Gulick,

analyzed reconnaissance data on weather conditions for 200 miles beyond the

planned launch and recovery areas. Weather Bureau aircraft from Miami
overflew the area at altitudes of 5000 to 20,000 feet, then, three hours before

launch, dipped down below 1500 feet. The flight plan followed a box pattern,

with the amount of surveillance dictated by weather conditions at a particular

point. The recovery ships were integrated into a weather-reporting mission,

346



SUBORBITAL FLIGHTS INTO SPACE

making reports at assigned times and providing special surface observations, such
as sea state and wind velocity, at the critical time near launch. Weather ob-

servers at the launch site also kept a careful watch on air and seawater tempera-

tures, relative humidity, cloud cover, and winds)-"

As the flight date neared, STG personnel briefed the ship crews of the

recovery force. Martin A. Byrnes, Robert Thompson, and Charles I. Tynan, Jr.,

of STG found the naval crews not wholly trained in the specifics of this particular

mission. So they immediateIy initiated a brief education program, giving talks,

providing reading material, and showing motion pictures of the MR-2 chim-

panzee flight. Tynan also carefully briefed each man charged with capsule-

handling duties on his particular role. To cradle the recovered capsule the

Navy had constructed 20-by-25-foot dollies and topped them with old mattresses.

Then aeromedical teams arrived, prepared sick bay areas, and briefed the ships'

medical personnel. After one medical group found that two members of one

of the destroyers had recently contracted hepatitis, the crew members of that

ship were barred from donating blood, even in an emergency. Byrnes, who felt

that the recovery-force briefings should become standard procedure for succeed-

ing flights, said that the Navy was pleased with the pep talks, la

LAsT-MINUTE QUALI',IS

While the entire NASA program was under review by the new Administration

in Washington early in 196 I, Project Mercury was nearing its manned space flight

phase. During the first four months of the year the major discussion would

center around a proposed acceleration of the entire United States' space program

to include a lunar-landing mission. Conversely, the Mercury program in the same

time frame came under direct scrutiny of the President's Science Advisory" Com-

mittee (PSAC), which was charged with reviewing the scientific contents of all

major Federal projects. Some members of PSAC were not fully satisfied that

Project Mercury was all it should be, particularly with regard to the reliability of
the Redstone and Atlas boosters and to the novel life-science hazards.

The Mercury-Atlas and Mercury-Redstone failures of the year before, as was

made evident in the January 1961 report of the President-elect's Space Task Force
under the leadership of Jerome B. Wiesner, had not helped build the confidence

of physical and life scientists that Mercury was truly a man-rated program. An

ad hoc Mercury panel was created by PSAC to delve into the scientific details and

reliability of the overall Mercury system and advise the President if it appeared

likely that the United States would be beset with another well-publicized but

inexplicable failure. Basically, the PSAC panel sought to investigate the level of

risk involved in Mercury before a man was to be committed to an actual space

flight. This inquiry was penetrating. Panel members spent five days in March

visiting McDonnell, Space Task Group, and Cape Canaveral, receiving a series

of detailed briefings and interviews. Several medical uncertainties appeared
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outstanding and worrisome, although the panel had found the NASA presenta-

tions to be frank, competent, and impressive.

The scientific objective of Mercury in determining the effects of weightlessness

upon man, some felt, might have been pursued in a more clinical manner. Before

the first manned flight there might have been a greater number of animal flights

progressing toward absolute physiological and psychological limits. Past Mercury

flight tests appeared more systematic for hardware engineering than for medical

problems. As a case in point, it was noted by the panel members that the MR-2
mission had demonstrated excessive vibration and overacceleration in the launch

phase, so that an additional booster test flight (MR-BD) had been inserted to

precede the first manned suborbital flight. Pilots in the X-15 rocket research

airplane, as well as Ham, the "space chimp" aboard MR-2, had recorded sur-

prisingly high pulse rates concurrently with low blood pressures, yet there were

no plans to include a blood-pressure measuring device in the upcoming manned

flight (efforts to develop such a device were as yet unsuccessful). In addition,

the panel members learned that Ham had taken his turn on the centrifuge, but that

the acceleration profiles had no precise correlation with stresses and forces of those

predicted for the MR-2 mission.

Despite these gnawing medical doubts, in general the PSAC panel members
felt that the Mercury hardware and its reliability had been developed with great

care. They were especially impressed with the redundant systems of the space-

craft, as well as the procedures and devices that had been integrated to assure

pilot safety during launch. In fact, several panel members stated at STG that
it seemed everything neces_ry to assure pilot survival had been considered.

In their final analysis, the PSAC panel assessed all risks and agreed that

Mercu_' was ready to fly a man. The scientific purpose indeed was to determine

man's suitability for the stresses and weightlessness associated with space flight? *

The orbital flight of Yuri Gagarin on April 12 seems to have removed any

lingering medical qualms about manned flight. Mercury Director Gilruth had

full confidence in the Space Task Group physicians and their endorsement by the

space medicine community long before Vostok I. W. Randolph Lovelace II,

Brigadier General Don D. Flickinger, and others familiar with the medical stresses

of flight likewise had been convinced that pilot safety was fully assured. Yet

if the medical profession as a whole had voiced scientific opposition to manned

flight in Mercury, or if Vostok I had not flown when it did, it would have been

impossible to proceed with a man in MR-3 immediately? _

Centrifuge tests of the astronaut's couch continued to raise NASA confidence

in the adequacy of Mercury systems to maintain an astronaut's safety under accel-

eration into and deceleration from the space environment. But the abrupt nega-

tive acceleration of the final impact on Earth remained a nagging worry, particu-

larly in case of a land landing. The aluminum honeycomb shock-attenuation

material under the couch had been bought as insurance, but was it enough?

Continued experiments early in 1961 at Wright-Patterson Air Force Base, Ohio,
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were conducted to determine how rapidly one could stop, facing aft in the semi-

supine position, without exceeding human tolerance. These tests showed that
forces up to 35 times a person's weight could be endured for a fraction of a second.
But the volunteers so tested were momentarily stunned. In theory, this meant

that a spacecraft could land without an impact bag, but the idea of having a

"slightly stunned" astronaut in what should be made a routine operation was

unacceptable. So STG had reassigned the development of a suitable impact

bag system to Jack A. Kinzler's technical services team and to Rodney G. Rose

and Peter J. Armitage. These men worked around the clock in March and April

trying to perfect a seaworthy shock-absorber. All other pilot-safety systems were

ready for a safe and successful flight. 1_

Barely a month had passed after the three chosen astronauts began training
for MR-3 when the press began speculating as to which one would make the

flight. On March 25, John Glenn became the favorite contender, although one

report added that there was plenty of betting on Grissom, since the Air Force had

been designated by the Defense Department to manage and conduct military

space missions. This intimation of service competition spread quickly. Some

newspapers even implied that the Army and Navy strongly suspected the Air Force
had leaked Glenn's name to embarrass NASA and reduce his chances? 7

The astronauts themselves watched all these conjectures with amusement,

keeping tight the secret knowledge of their order of succession. According to

Voas, their psychologist and training officer, there was only one thing that terrified
all seven : the fear that something might prevent one of them from flying his own

mission when the time came? 8

Speculation on the designated pilot abated shortly after Robert C. Seamans,

Jr., third in command at NASA Headquarters, appeared before the House Science
and Astronautics Committee and testified that each astronaut would have his flight

training opportunity aboard a Mercury-Redstone at six-week intervals. Gilruth
had, of course, long since decided on an order of preference among the three astro-

nauts designated, and had informed them of it, but everyone kept the secret well

because of the everpresent likelihood of unforeseen changes.l_
Toward the end of April there was so much publicity that some Senators,

among them Republican John J. Williams of Delaware and Democrat J. W.

Fulbright of Arkansas, thought the flight should be postponed and then con-

ducted in secret lest it become a well-publicized failure. This was not the general

view in Congress, however. Most members, while aware of the danger of too much

publicity, felt tradition required the press to have free access to events of such

magnitude as the first American manned space flight. Besides, the Russians had

received international criticism for conducting an ultra-secret space program.

While many highly placed officials, several close to President Kennedy, were

apprehensive about the possibility of an overly publicized fiasco, others pressed
to get the manned space flight program moving. On March 22, at a White

House meeting, Hugh L. Dryden had explained to the President that no unwar-
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ranted risks would be involved in the first manned Mercury flight, and that the

decision to "go" was that of the project management best qualified to assess the

operational hazards. When the notion was raised in late April that MR-3 should

be postponed until all possible hazards had been removed, Edward C. Welsh,

Executive Secretary of the National Aeronautics and Space Council, observed to

the President, "Why postpone a success?"

President Kennedy wanted to be assured of a much better than average chance

for success and asked for these assurances almost until launch. On the day

preceding the flight, the President's personal secretary, Evelyn Lincoln, called

NASA Headquarters Public Information Officer Paul P. Haney at the MR-3

News Center in Cocoa Beach, Florida. She said the President wanted to review

television coverage plans. Live coverage was to begin two minutes before launch.

After some delay, Mrs. Lincoln said the President had asked Press Secretary Pierre

Salinger to handle the call. Salinger said the President was concerned over the

reliability of the escape system in the event of a Redstone malfunction. Haney

reviewed the history of the launch escape system for the President's office and

Salinger said the information should satisfy the President's inquiry. "°
Cancellation of the flight on Tuesday, May 2, because of inclement weather,

forced a recycle of the systems countdown for a 48-hour period. On Thursday

unfavorable weather again prevented the launch. Countdown did begin, how-

ever, for a Friday launch. "1
As it happened, the press and public learned the MR-3 astronaut's identity

only after the countdown had been canceled, 2 hours and 20 minutes before launch,

on May 2. Shepard had been waiting in Hangar S in his pressure suit ready to

go for more than 3 hours. Gilruth reaffirmed his prime pilot decision a day before

the scheduled launch, basing Shepard's selection on advice from his medical, train-

ing, and technical assistants. 22 But he had withheld his announcement because

of the chance for a last-minute change.

The American public participated vicariously in the experiment. For the first

time, the maiden flight of a revolutionary manned vehicle, climaxing years of

research and development, was open wide to public view. Only a handful of

spectators saw the Wright Brothers accomplish man's first powered flight in 1903.

In many parts of the country and the world, people accepted that event only years

afterward. But for the American taxpayers' first manned space flight, NASA

arranged procedures well in advance to enable all domestic news media and foreign

news services to view and report the events surrounding MR-3. By April 24,

some 350 correspondents were registered. As a result of their activities, the date-

line "Cape Canaveral" soon became familiar to all the world. Radio and television

coverage was equally energetic; telecasts originating at the Cape, particularly

on May 5, were enthralling? 3

Starting at 8:30 p.m. on May 4, the countdown proceeded without a hitch.

Around midnight a built-in hold was called for the purpose of installing the

pyrotechnics, servicing the hydrogen peroxide system, and allowing the opera-
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tions team some rest. The countdown was resumed in the early morning hours

of May 5, and another intended hold occurred some two and a half hours before
the 7 a.m. anticipated launch to a_ure that spacecraft checkout was complete

before transporting the astronaut to the pad area.

Shepard, awakened at 1:10 a.m., began an unhurried but precise routine

involving a shower and a shave. With his physician, William K. Douglas, his

understudy, John Glenn, and a few other members of the operational team, he

sat down to a breakfast consisting of orange juice, a filet mignon wrapped in

bacon, and some scrambled eggs. Shepard had begun a low-residue diet three

days before the anticipated launch. At 2:40 a.m. he received a physical examina-

tion. This was followed by the placement of biosensors at points indicated by

tattoo marks on his body. He was now read)" for Joc W. Schmitt, an STG suit

technician, to assist him in donning the pressure suit."-'

Shepard entered the transfer van at 3:55 a.m. In the van, on the way to

the pad, he lay on a couch while technicians purged his suit with oxygen. When
the van arrived at the pad, Schmitt began to attach the astronaut's gloves while

Gordon Cooper briefed him on the launch status.

At 5:15 a.m. Shepard, cart)'ing his portable air conditioner, ascended the

gantry, and five minutes later he entered the spacecraft. If everything went

well, he had two hours and five minutes to wait before liftoff. While Shepard

was preparing to lower himself into the couch, his right foot slipped off the

right elbow support. But he eased himself into position without further

difficulty.

Schmitt fastened the harness and helped with the hose connections. Then

he solemnly shook the spaceman's gloved hand. "Happy landings, Com-

mander!" chorused the gantry crew.

For Alan Shepard, this was the most dramatic moment of his 37 }'ears,
a moment he would recall with the most acute poignancy for the rest of his

life. Afterward he told how his heart quickened as the hatch was closed.
The sensation was brief; his heartbeat soon returned to normal. At 6:25

a.m. he began a denitrogenation procedure by breathing pure oxygen. This

was to prevent aeroembolism, or decompression sickness, the airman's equiva-

lent of the deep-sea diver's bends. -"5
Now the countdown resumed.

At 15 minutes before launch the sky became slightly overcast, so photo-

graphic conditions were below par. Weathermen said the conditions would

clear in 35 to 40 minutes, and a hold was called. Shepard became resigned

to this hold and relaxed by peering through the periscope. He was not uncom-

fortable, because he was able to shift his body in the couch. Telemetered

biomedical data confirmed that his condition was good. While waiting for

the clouds to clear away, a hold was called to replace a 115-volt, 400-cycle

inverter in the electrical system of the launch vehicle. This hold lasted for
52 minutes, after which the count was recycled to 35 minutes before launch.
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At the 15-minute point, one of the Goddard IBM 7090 computers in Mary-
land was found to be in error. Making this correction required a complete

computer recheck-run. After a total hold time of two hours and 34 minutes,
the count continued and progressed without more trouble. Shepard had been
in the capsule four hours and 14 minutes when the final seconds ticked off to
liftoff? _

Two minutes before the launch, voice communications between the astro-

naut and the operations team switched from Cooper in the blockhouse to Don-
ald K. Slayton in the Mercury Control Center. From that point until launch,
the "talk" was continuous as each panel monitor advised Slayton of his system's
status for relay to Shepard. To the astronaut the monitors seemed slow in

reporting the go condition, and this he attributed to his own eagerness to be
off. Schirra was now circling above in his F-106 chase plane, waiting to fol-
low the Redstone and Shepard as high as he could. Because of his excite-
ment, Shepard said he failed to hear much of the closing countdown, with the
exception of the firing command. During this period his pulse rate rose from
80 per minute to 126 at the liftoff signal. This rise caused no medical concern,
for it was about the same as that of an automobile driver moving out from a
service road to a freeway crowded with heavy traffic. Shepard was not alone
in his excitement; he was joined by the operations team, the press corps at the

Cape, and millions of people viewing the llftoff on television? 7

St-IE PARDJS RIDE

Shepard saw the umbilical cable supplying prelaunch electrical power to
the Mercury-Rcdstone and its supporting boom fall away. He raised his hand
to start the elapsed-time clock that ticked off the seconds of the flight. The
onboard camera, clicking at six frames per second, confirmed his alertness as
the MR-3 combination roared and began to climb. He was surprised by the
smoothness of the liftoff and the clearness of Slayton's voice in Mercury Con-
trol. All his transmissions were acknowledged without requests for repeat.
The ride continued smoothly for about 45 seconds; then the rocket, capsule,

and astronaut began vibrating. Conditioned to these circumstances, Shepard
realized that he was passing through the transonic speed zone, where turbulence
built up. The buffeting became rugged at the point of maximum aerodynamic
pressures, about 88 seconds after liftoff; Shepard's head and helmet were bounc-
ing so hard that he could not read his panel dials. Sound levels were notice-
ably higher at that point but still not uncomfortable. Shortly thereafter both
the noise and the vibration abated. Now enjoying a much smoother ride,

Shepard told Slayton that the dlal-scanning procedure he was supposed to follow
was impractical. He had to omit reading the electrical power dials to pay
more attention to his oxygen and hydrogen peroxide supply indicators.

The cabin pressure inside Freedom 7 sealed off at 5.5 pounds per square inch,
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as programmed. Pressed by 6 g at two minutes after launch, Shepard still was

able to report "all systems go." The Redstone's engine shut down on schedule

at 142 seconds, having accelerated the astronaut to a velocity of 5134 miles per

hour, cIose to the nominal speed. The trajectory, similar to that of the MR-BD

flight, was only one degree off court, which meant a variation of slightly more

than a mile in peak altitude. After engine cutoff, Shepard heard the tower-

jettison rocket fire and turned his head to peer out the port, hoping that he might

see the smoke from the pyrotechnics. There was no smoke, but the green tower-

jettison light on his panel assured him that the pylon was gone. Shepard strained

in his couch under an acceleration that hit a peak g load of 6.3. Outside the

capsule the shingle temperature reached 220 degrees F, but inside the cabin the

temperature was only 91 degrees. The astronaut was hardly perspiring in his
pressure suit at 75 degrees.

After tower separation, which occurred two minutes and 32 seconds after

launch, Shepard disarmed the retrorocket-jettison switch and advised Slayton

that his capsule was free from the booster. At three minutes the automatic

attitude control system about-faced the capsule to a heatshield-forward position

for the remainder of the flight. Momentary oscillations climaxed the turnaround

maneuver, whereupon the automatic thrusters cut in for five seconds to steady,

or "damp," the capsule into its proper attitude. Now almost at the top of his

suborbital trajectory, Shepard went to work on his most important task, deter-

mining whether an astronaut could control his spacecraft's attitude.

He began to switch the control system to manual, one axis at a time. First

he took over pitch, which he was able to adjust by moving the handcontroIler

in his right grip forward or backward to give the spacecraft the proper up or

down attitude. His first action was to position the spacecraft in the retrofire

attitude, tilted 34 degrees above a local horizontal mark. The pitch indicator on

Freedom 7 was scribed at 45 degrees, as earlier studies had proposed, but more

recent investigations had indicated that 34 degrees was a better angle.

While Shepard was in control of pitch, the automat:c system was controlling

yaw, or left and right motion, and roll, or revolving motions. When Shepard

assumed control of all three axes, he was pleased to find that the feel was about

the same as in the procedures trainer, the Mercury simulator. Although he could
control his ship well, he was unable to hear the spurting control jets above the

noise of his radio. He encountered one smalI problem whiIe using his hand-

controller: when he moved his hand to yaw, the wrist seal bearing of his suit

bumped into his personal parachute. To make the proper displacement, he had

to push hard. 2S

When he tried to carry out another of his flight objectives, observing the scene

below him, Shepard immediately noticed that the periscope had the medium gray

filter in place. While waiting on the pad, he had used this filter to eliminate

the glare of the intermittently bright sunlight and had planned to remove the

filter when he retracted the periscope, just before launch. But being otherwise
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occupied at the time, he had forgotten to make the change. During spacecraft
turnaround he tried to remove the filter, but as he reached for the filter knob

the pressure gauge on his left wrist banged into the abort handle. He carefully

pulled his hand away. After that he forgot about the intensity filter and observed

the wondrous sights below through the gray slide. He first tried to estimate the

span of his terrestrial vision. The periscope, located two feet in front of him,

had two settings, low and high magnification. On low at the 100-mile altitude,

there theoretically should have been a field view of about 1900 miles in diameter,

and on high, a segment 80 miles in diameter. Shepard was able to distinguish

clearly the continental ]and masses from the cloud masses. He first reported

seeing the outlines of the west coast of Florida and the Gulf of Mexico. He saw
Lake Okeechobee, in the central part of Florida, but could not see any city.

Andros Island and the Bahamas also appeared in the scope. Later Shepard would

remark that Earth displays flashed before him in his air-lubricated free-axis trainer

had been most valuable in helping him to distinguish land masses passing beneath

the spacecraft.
As Shepard sped over the peak of his trajectory, now under fully automatic

attitude control, he began to notice a slow pitch rate. At this point his flight plan

dictated that he switch to the fly-by-wire mode of operation, wherein the astronaut

operated the handcontroller to change the position of the capsule, using the

hydrogen peroxide jets of the automatic system to effect the changes rather than

those of the manual system. Thus Shepard would manually position Freedom 7

for the retrofire that was scheduled to occur shortly after attaining the zenith of

his trajectory at 116.5 miles. The astronaut switched to fly-by-wire, but as he
started to make a yaw and roll maneuver he noticed that the spacecraft pitch

position was low, being 20 to 25 degrees rather than the desired 34 degrees for

retrofire attitude. Although he could not remember exactly whether he made a

yaw or roll maneuver, he did immediately begin to work on his pitch problem.

Then the retrorockets fired, creating a noise that was easily heard but was not

as loud as the sound of the ALFA trainer jets. This provided what later astronauts

on orbital missions described as "a comforting kick in the pants." Pieces of debris,

including a restraining strap, flashed by the capsule portholes as the retropack was

jettisoned. Glancing back to the control panel, Shepard saw no confirming

sequence light, but Slayton radioed his telemetered knowledge of retropack jettison.

So the astronaut pushed the manual override; finally the reluctant light appeared.

This was the only failure of an event-sequence light during the MR-3 mission.

While riding down the reentry curve toward a water landing, Shepard again

assumed the fly-by-wire mode of control. He later reported that the feel of

fly-by-wire was veD" similar to that of the trainers. Although he had a tendency

to overcontrol in the fly-by-wire mode, he had the pleasant feeling of being in

full command, for a few minutes at least, of his spacecraft's attitude. Then

Shepard allowed the automatic system to regain control and stabilize the spacecraft
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for reentry. The periscope automatically retracted when Freedom 7 began its

plummet into Earth's atmosphere.

On the way down, Shepard tried to look out the awkwardly placed ports to

observe the stars. He saw nothing, not even the horizon. These futile attempts

at star-finding got him behind in his work. As he commented later, this was

the only time during the flight when he did not feel "on top" of the situation

and ready for anything. The feeling of indecision passed quickly. He immedi-

ately reported when the .05-g light came on, the indication that the g-load buildup

was about to commence. He was surprised that the light flashed and zero g ended

about a minute ahead of the time he had come to expect from his simulated

experience in the procedures trainer. As the reentry loads began to build up to

a peak of 11.6 g, the oscillations also increased moderately. As soon as the

highest g point had passed and the spacecraft had steadied, Shepard left fly-by-wire

and cut in the automatic control system.

Shepard was supposed to give an altimeter reading between 80,000 and

90,000 feet, but since his rate of descent was faster than he expected, he became

worried over the deployment of the drogue parachute and forgot to report his

altitude. As the ahimeter dial slipped past 40,000 feet, the astronaut braced and

listened closely for the drogue mortar to fire. He gave the Cape a reading of

30,000 feet, and 9000 feet later the drogue snapped out without a kick. Once

his fall was broken the periscope extended, giving a view of the trailing and

reassuring drogue. The opening of the air-inlet snorkel valve to accept ambient

air pressure at 15,000 feet struck Shepard as coming a trifle late. The antenna

canister atop the spacecraft blew off as planned at 10,000 feet, pulling the main

parachute with it. Shepard clearly saw and felt it in its initial reefed and

partially unfurled condition, which prevented the lines from snapping. Within

seconds it spread to its 63-foot diameter, giving the astronaut a reassuring jolt,

but one considerably less violent than he had received in centrifuge simulated

training. "I was delighted to see it," Shepard remarked with considerable under-

statement. And well he might be, for at that stage of the flight most of the

critical moments had passed. Freedom 7 had closely followed its assigned

trajectory and the recovery forces were standing by for its pickup.

Falling toward the water at a rate of 35 feet per second, in contrast to the

maximum rate of 6550 feet per second during the powered phase of the flight,

Shepard pushed the switch to dump the remaining hydrogen peroxide fuel.

Glancing at the dials, he noted another green light, indicating that the landing bag

with its four-foot impact skirt had dropped down to cushion the water landing.

He reported to the Cape that everything was in order before Freedom 7 dropped
below the radio horizon.

The astronaut used the brief remaining time before impact to remove his

knee straps, open the faceplate shield, and remove the hose connections of his

pressure suit. Then came the thud of water impact, comparable to landing an
aircraft on a carrier. Freedom 7 splashed and listed over into the water on the
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astronaut's right side, about 60 degrees from an upright position. The chutes
cast loose automatically on impact to prevent dragging. As the water sloshed
over the ports, the spaceman saw the fluorescein dye spreading over an ever-
increasing area. Shepard quickly checked the spacecraft interior to see if any
leaks had resulted from impact. There were none; it was dry. Now slowly
Freedom 7 came to an upright position, taking about a minute's time, and

Shepard jubilantly reported to Cardfile 23, the communications airplane, that he
was all right.

Helicopters of Marine Air Force Group 26 were waiting. Wayne E. Koons
and George F. Cox, pilot and copilot, respectively, of the primary helicopter, had
watched the spacecraft for about five minutes on its descent. After splashdown,

Koons quickly maneuvered his chopper into position for the retrieval exercise.
Glancing at Freedom 7, Cox noted that the high-frequency antenna was not in
its correct position as he hooked the cable through the recovery loop. Koons
maneuvered the helicopter to lift the spacecraft partially out of the water, awaiting

pilot egress. All of a sudden the high-frequency antenna pronged upward, hit
and dented the bottom of the helicopter, and broke off. But no damage was done;
Shepard told Koons he would debark as soon as Freedom 7's hatch cleared the
water.

While Shepard worked himself into a sitting posture, Koons asked again if he
was ready. Not yet, he replied; he was still removing his restraint harness and
he could still see water against the ports. So the chopper raised the spacecraft
further and Shepard unlocked the hatch.

The astronaut then wormed his way over the hatch sill and grappled for his
"horse collar" hoisting sling. He soon grasped the line and fitted the sling
under his arms. On the way up he brushed against the remainder of the high-

frequency antenna, but it was flexible and did no harm. The hovering chopper
had no difficulty getting Shepard aboard and in lifting Freedom 7 from the water
and transporting it to the carrier Lake Champlain. When Shepard finally stepped
on the carrier's deck, only 11 minutes had elapsed since the water landing. About
half an hour after he had begun his free-dictation report, Shepard was called to the

flag bridge to answer an unexpected telephone call from President Kennedy, who
had watched the launching and followed flight details closely via television and
who now congratulated the astronaut on his flight into space. 2°

Aboard the Lake Champlain, the immediate task was determining what shape

Shepard was in after that brief but awesome excursion through space, with its ac-
companying high acceleration load, weightlessness, and deceleration loads. Some
physiologists had feared that even a few minutes of weightlessness could cause dis-
orientation, while some psychologists were equally apprehensive about what would

happen to a space passenger's mind. But Shepard reported that he found his
five minutes of weightlessness quite pleasant. In fact, he said, he was already in
the weightless state before he realized it. For evidence, he cited a washer that
had floated beside his left ear. The weightless Shepard had grabbed for the
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weightless washer--and missed. Anticipating his debriefing, the astronaut

had used an analog 3' from his professional experience to describe his sensations.

The best comparison in his memory was riding in the back seat of an F-100F air-

plane. "It was painless," he said, "just a pleasant ride." As for any other effects

of weightlessness and g stresses, Shepard had demonstrated by assuming direct pilot

control that man was quite capable of fimctloning in space. He experienced

no impairment of his faculties. He had reported to Mercury Control with perfect

clarity regarding his and the spacecraft's status, and when two physicians, M.

Jerome Strong and Robert Laning, made a preliminary postfllght physical exami-

nation of Shepard aboard the carrier, they found him to be in excellent condition.

From beginning to end the flight mission had been almost perfect. The jubilant

but technically perfectionist engineers called it only an "unqualified success." _0

Now there remained no possible doubt that man could function intelligently

aboard the Mercury spacecraft and with relative safety in a true space environment

for 15 minutes. What of the primitive spacecraft that he had inhabited? How

well did it perform? The answer seemed to be, very well indeed. But could its

systems be trusted to work under even more demanding conditions in orbital

flights? Had all the flight preparations been adequate? These were only a few

of the questions that the returning astronaut would have to answer, if only par-

tially and indirectly, at the seemingly interminable debriefings.

BRIEFING THE BRIEFERS

The initial postflight period of debriefing, held aboard the recover}' ship,

included a medical examination and free dictation by the astronaut of his

flight impressions. This was followed by a short debriefing questionnaire. From

the ship, the astronaut was taken to Grand Bahama Island for an exhaustive two-

day debriefing by medical and technical personnel. This session used a prepared

list of questions. Interrogations were led by Carmault B. Jackson on medical

matters, by Robert Voas on pilot activities and performance, and by Harold I.

Johnson and Sigurd _k. Sjoberg on systems performance. Some 32 specialists

joined in the Grand Bahama debriefing, including program managers, operations

physicians, engineers, photographers, and public relations personnel.

Astronaut Shepard arrives at

Grand Bahama Island [or medi-

cal and flight debriefing [ollowing

his flight in Freedom 7. He is

flanked by (le[t to right) SIayton,

Keith LyndeIl, and Grissom.
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His pressure suit, Shepard said, was generally comfortable and allowed

sufficient mobility, but the left wrist pressure gauge was difficult to see during

acceleration. It should be moved, perhaps to the knee. And there was a

circulation problem caused by the rubber cots at the ends of his gloved fingers,

which meant he had to keep drawing his fingers back inside the gloves to maintain

comfort. The helmet was satisfactory. Shepard had obtained an enlarged face-

plate for his own helmet to gain better vision. He had no complaints against

the couch or restraint harness. He remembered only minor pressure points from

the couch while waiting on the pad. The straps around his shoulders had

seemed tight at times before launch, but slight shrugs had relieved the tension and
_timulated circulation.

The biosensors caused some skin irritation for Shepard, as they had for others

in the Mercury program, both astronauts and test subjects. Better adhesives

were promised. Throughout the mission the suit temperature and humidity had

been quite comfortable, Shepard reported. During the hours while he was

waiting on the pad he was able to maintain a suit reading of 75 degrees, although

this rose to 77 degrees a minute or two before liftoff. His suit temperature dropped

back to 74.5 degrees for most of the flight, with a brief rise to 82 degrees during

reentry. Just before the loss of contact as the spacecraft dropped below the

radio horizon, his suit temperature dropped to 77 degrees. Then, in the capsule

awaiting pickup, Shepard experienced the hottest part of the mission. When

Byrnes suggested that ventilation procedures should be improved, Shepard re-

marked that he could have obtained some relief by simply unzipping his suit. 3_

Other parts of the environmental control system also worked satisfactorily.

The cabin temperature inside Freedom 7 stayed within a tolerable range from 92

to 100 degrees. Only part of one of the two four-pound bottles of oxygen aboard

had been needed. The drain on the coolant supply had been slight.

The engineers among the debriefing team quizzed Shepard about the whole

of the spacecraft attitude control systems, but especially about the workings of

manual control. According to the flight plan, Shepard was to exercise three modes

of control--automatic, manual, and the fly-by-wire combination of the two.

He reported that the manual mode was quite responsive and felt the same as

the manual mode in the procedures trainers. There seemed to be a tendency

for the spacecraft to roll slightly clockwise while in the manual control. Postflight

inspectors found a small piece of debris lodged in the hydrogen peroxide tubing,

which probably caused the jets to leak a tiny increment of thrust. Near the six-

minute point in the flight, according to plan, Shepard was supposed to switch

to the fly-by-wire mode of control. Apparently he forgot to turn off the manual

valve, so the capsule's attitude control system sucked fuel from both manual and

automatic tanks. The debriefing interrogators asked him whether he got more

control than desired; he replied that rate changes seemed high but that he thought

this was caused by microswitch positions rather than the addition of manual-

proportional fuel. Shepard could not recall for certain whether he had turned
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off the manual valve; telemetry data monitoring the spacecraft movements and
countermovements indicated that he had not.

The accessory rockets and pyrotechnics on the capsule performed adequately

during the Freedom 7 mission, each sequence firing on time and as designed. One
exception was a secondary escape-tower jettison rocket, which was later disas-
sembled and found to have ignited by manual pull-ring actuation. Since Shepard
did not remember whether or not he pulled that ring, how the rocket fired re-
mained a mystery. It was known that this backup component had not been

used to separate the escape tower from the spacecraft. Otherwise the capsule
rocketry had performed flawlessly. The posigrades effected spacecraft separation,
the three retrograde rockets ripple-fired to provide a 510-feet-per-second velocity
decrement, and the drogue parachute mortar discharged correcdy. The green
sequence lights appeared on Shepard's panel with heartwarming regularity except

for the retropack jettison indicator.
At impact the landing bag had performed as designed to cushion the shock,

but one heat sink stud did pierce the fiber-gIass protective shield. While the pres-
sure vessel was undamaged, recovery had been too rapid for the seaworthiness
of the impact bag to be tested. Several rips observed in the impact skirt aboard
the carrier apparently occurred during postflight handling rather than at impact
or by bobbing in the water.

In general the radio communications during flight had been extremely clear.
Slayton, the Mercury Control Center capsule communicator ("Cap Com"), said
Shepard's voice transmissions were slightly garbled at liftoff but that seconds later
the quality improved markedly. Using the ultra-high-frequency system, Slay-
ton was able to maintain crisp contact with Freedom 7. Shepard and Slayton

staye d on UHF, using the Cape antenna, but then as distance increased, voice
communications deteriorated. In Mercury Control Center the communications

technician monitoring the Grand Bahama Island antenna reception switched
Slayton onto a relay from Bahama, and Shepard came in loud and clear once
again. Slayton and Shepard communicated well with each other until main
parachute deployment. The Mercury Control Center communicator then tried
unsuccessfully to use Cardfile 23, the communications relay airplane. Having

lost contact with Cap Com, Shepard had expected the recovery forces to garble
the radio in competition to talk with him, but circuit discipline was businesslike
both before and after countdown? _

PRECIPITATION FROM MR-3

The _'unquatified" success of the Shepard suborbital flight brought immense

joy and satisfaction to the managers, engineers, associates, and astronauts of the
Space Task Group. They had labored almost two and a half years for this first
triumph. Flight failures, schedule slippages, press criticism, and most recently
the U.S.S.R.'s attainment of the first orbital flight, all had tempered the pride of
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the Mercury team. But May 5, 1961, saw the Nation rejoice with relief and

pleasure in the success and safety of Alan Shepard. President Kennedy's shore-to-

ship radio telephone call to the astronaut was spontaneous, though difficult to link,

and symbolic of the American mood that day. Although the seven-member corps

of astronauts had combat records and test-pilot experience to their credit, one of

them at last was truly a hero and not just a celebrity.
In the aftermath of the flight of Freedom 7, Gilruth once again published a

morale memorandum for his staff. This time the subject was not a single favor-

able newspaper article, as had been the case of a story by Los Angeles news-

paperman Marvin Miles the year before, but a compilation of formal congratula-
tions to Alan Shepard from indMduals in various walks of life, including the

King of Morocco and a group of scientists in Peru? 3

At the postflight press conference, Admiral Hilles quipped that the space

race had turned into a world series played with a space ball, and that the Navy,

naturally, had "caught the crucial fly." But the much more impressive Gagarin

flight tempered everyone's pride but the Soviets'. What most enhanced the

United States' prestige was not the technical prowess exhibited by MR-3 but the

contrast between the open-door policy toward news coverage of its flight and

the impenetrable secrecy surrounding the Soviet program.

One result of all this publicity was a widespread skepticism toward the space

claims of the U.S.S.R. Many people around the world questioned whether a

Red cosmonaut had flown at all. An Istanbul newspaper called Millyet, for

example, reported that Turkish journalists, after viewing official films of both

Shepard's and Gagarin's flights, asked of the Soviet consul general, "In the

Shepard film we followed all phases of his flight, but in yours we followed only

Khrushchev. Why don't you show us your space flight, too?" A Tass corre-

spondent, replying for the consul general, was quoted as having explained, "We

are mainly interested in the people's excitement and reaction. This is what we

wanted you to see." 34 Premier Nikita Khrushchev was supposed to have been

much chagrined because the "up and down" flight of Shepard gained such

extensive media publicity even though Gagarin had long since orbited the world.

Although NASA had kept a few secrets--such as ground-control command

frequencies and persisting classifications of old military data--the agency made

reasonable efforts to cooperate with newsmen.

President Kennedy presents the

NASA Distinguished S e r v i c e

Medal to Astronaut Shepard in
the White House Rose Garden.

They are flanked by the other as-
tronauts and Administrator Webb.
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The President awarded NASA's Distinguished Service Medal to Alan Shepard

in a Rose Garden ceremony at the White House on May 8. Although little notice

was given, crowds of people lined Pennsylvania Avenue, cheering the veteran

Nax T pilot and new spaceman as he rode to the Capitol for lunch and back. Here

and abroad, millions of people later filed by an itinerant NASA display to inspect

Freedom 7 at close hand. Members of Congress sensed a formidable change in

the public's attitude toward the space program. In place of widespread apathy

or lack of understanding toward space exploration, many of their constitutents

now seemed aware of tile meaning of the adventures into the space void. Con-

gressmen who had been reviewing manned space flight plans and proposals since

early April began thinking about increased allocations of national resources, such

as scientific manpower, for future manned space exploration.

On May 25, 1961, President Kennedy presented a special message to Con-

gress on "urgent national needs." At one point he spoke of space and of Shepard :

Now is the time to take longer strides--time for a great new American
enterprise--time for this nation to take a clearly leading role in space achieve-
ment, which in many ways may hold the key to our future on earth.

I believe we possess all the resources and talents necessary. But the facts
of the matter are that we have never made the national decision or marshalled
the national resources required for such leadership. We have never specified
long-range goals on an urgent time schedule, or managed our resources and our
time s.oas to insure their fulfillment.

Recognizing the head start obtained by the Soviets with their large rocket
engines . . . and recognizing the likelihood that they will exploit this lead
for some time to come in still more impressive successes, we nevertheless are
required to make new efforts on our own. For while we cannot guarantee that
we shall one day be first, we can guarantee that any failure to make this effort
will make us last. We take an additional risk by making it in full view of the
world, but as shown by tim feat of Astronaut Shepard, this very risk enhances
our stature when we are succesfful ....

I believe this nation should commit itself to achieving the goal, before this
decade is out, of landing a man on the moon and returning him safely to the
earth. No single space project in this period will be more impressive to man-
kind, or more important for the long-range exploration of space; and none will
be so difficult or expensive to accomplish) 5

The Congress, believing that the American people were also ready to support

an expanded and ambitious long-term space exploration program, quickly

endorsed these words of leadership from President Kennedy. Project Apollo

shifted from a circumlunar expedition plan to a lunar landing endeavor, to be

achieved before 1970, or "before this decade is out."

All through March, April, and May, members of the space committees

of the Senate and the House busily quizzed James E. Webb, DD'den, Seamans,

and other leaders of NASA about the implications of the Russian program and

about how the planned time for the development of Apollo could be cut in half.

But the appropriations debate was brief. By August 7, the Senators and Repre-
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sentatives had agreed on $1,671,750,000 for NASA's fiscal 1962 budget. This was

the first time Congress had appropriated over a billion dollars for NASA's space
program at one time. Only $113 million less than President Kennedy had
requested, this billion and a half c]ollars was but an initial appropriation, for the
legislators understood that NASA would ask for a supplement about January
1962. 3_

Thus American aspirations in space, personalized by Astronaut Shepard on
May 5 and codified by President Kennedy's endorsement of NASA's follow-on
plans on May 25, 1961, gained clear direction, ample funds, and official sanction.
The national mood for space had definitely changed from what it had been at
the uncertain beginning of the Kennedy administration. A goal of developing
space technology for space exploration was a tangible means to "get the country
moving again."

Industries born of the frantic missile race of the mid-fifties would turn more

and more to space-related research and development. Unlike military tech-
nology, such products were not needed in quantity; reliable performance was
their highest criterion. Whereas Project Mercury, toward the end of its manu-
facturing phase in June 1961, supposedly affected approximately one out of

90 people in the United States through industrial support of some 10,000 com-
panies, Project Apollo as redefined by NASA and approved by the President
would take far more of a national effort. 37 Kennedy had promised that ex-
panded conquest of space would be difficult and costly. But so impressive and
dramatic an enterprise was Apollo, so full of engineering and gadgetry, that the

project seemed made to order for a new American destiny. To President
Kennedy, the United States could win an open competition with the Soviet
Union in space because of the inherent superiority of an open society.

Besides its portents, the President's decision had an immediate impact on the
Space Task Group, an organization that had been studying the possibilities of
advanced manned flight as early as 1959. In September 1960, the Apollo
projects office formally appeared on the organization chart of the Space Task
Group's Flight Systems Division, indicating the fulhime status of planners for
Apollo. But the day after President Kennedy's speech of May 25, Wesley L.
Hjornevik, formerly Glennan's administrative assistant and now Gilruth's, signed
a notice to the Space Task Group that reassured the Mercury team of a future

with Apollo. New funds and facilities, if approved by Congress as expected,
would certainly affect the personal tives of the Space Task Group members by
the necessity to reorganize and perhaps to relocate. '_

NASA Headquarters had recognized for some time that a center was needed

to survey the whole spectrum of manned space flight programs. On January
3, 1961, the Space Task Group had at last been designated an autonomous
field element, no longer to be considered a part of the Goddard Space Flight
Center. The Space Task Group's personnel strength had increased to a total
of 794 people in mid-1961. Until Kennedy's lunar landing decision was en-
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dorsed by the Congress, the Space Task Group had had only one responsibility,

Project Mercury, and no authorization to proceed with more ambitious endeavors.

The end of Project Mercury could have meant the end of the Space Task Group.

But President Kennedy's clarion message to Congress verified a new course

for the Space Task Group's civil servants. Back in February 1961, Gilruth had

asked his second in command, Charles J. Donlan, to begin considering the most

feasible programs to succeed Project Mercury. Whatever the future programs

were, they would require new, separate, functional facilities. By May a draft

study was completed on how such undertakings should be managed. Entitled

"Organizational Concepts and Staffing Requirements" for a "Manned Space-

craft Development Center," the study declared in its preamble:

One of the essential elements required to implement an agressive national
effort for manned space exploration is a capability within government to con-
ceive, manage, and technically monitor the development of large manned
spacecraft and to operate the spacecraft and related ground support equip-
ment. This portion of the total job is in itself one of the largest, if not the
largest research and development job ever undertaken in war or peace.

The nucleus of the caI_bility now exists in the Space Task Group, which
has handled, with industry and other government resources, the Mercury Pro-
gram. However, a program of the much larger magnitude now contemplated
would require a substantial expansion of staff and facilities and instituting
an organizational and management concept consistent with the magnitude
of the program. How--and how effective--the capability is organized will
have a direct bearing on the success or failure of the total program? 9

Only a few days had elapsed after President Kennedy's call to Congress for

approval of the lunar landing program when the rank and file members of the

Space Task Group began to read speculations in their local Virginia newspapers

about where they might have to move. Few were eager to leave the Virginia

peninsula. Many were glad to stop worrying about a move to Beltsville, Mary-
land, but no one knew what the alternative site would be. While wives and

families fretted, the men and women of the Space Task Group were busier than

ever before, because the group had just entered the final manned phase of the

Mercury program. In August 1961, NASA Headquarters ordered John F.
Parsons, Associate Director of the Ames Research Center, to head a survey team

to recommend the permanent location for a manned spacecraft center. One of

the members of the Parsons team, Martin Byrnes, was subsequently assigned to

study relocation programs for STG's members? °

Responsibilities lay heavily upon STG. It had to accelerate the Mercury

program to achieve its primary objective, manned orbital flight. It should start

to recruit personnel and organize activities for the newly authorized Project Apollo.

And, most immediately, it must carry out the second suborbital Mercury flight

as scheduled. Once the next astronaut was recovered, the operations team in

concert with the Space Task Group management would have to decide just how

far to carry the Mercur3,-Redstone suborbital program. Many of the 30 or so
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who had attended Shepard's postflight debriefing felt that this phase had served

its purpose and that now the manned orbital phase should be initiated. This point
was discussed in June but not by any means decided. From Shepard's success,

however, one thing seemed clear: it was certainly not necessary to train all the

astronauts on suborbital flights before trying to duplicate or triplicate Gagarin's

feat.

SECOND SUBORBITAL TRIAL

Preparation for the second suborbital flight of man into space was essen-

tially the same as that for Shepard and Freedom 7. Much of the astronaut

and ground support training, spacecraft checkout, and booster preparation

had been accomplished concurrently with the grooming of MR-3, since the

anticipated six-week interval was too short to begin anew. Thus Air Force

Captain Virgil I. Grissom, told by Gilruth in January 1961 that he would

probably be the pilot for Mercury-Redstone 4, and John H. Glenn, Jr., once again

the suborbital backup pilot, returned to work quickly after Shepard's flight.

In April all three had undergone refresher centrifuge training at Johnsville,

and now they were well fortified to endure the actual Redstone acceleration

profile.
Most of their training period was spent at the Cape so that Grissom and

Glenn could follow the technical progress of spacecraft and launch vehicle by

participating in minute checkout operations. In Hangar S the astronauts
exercised themselves and all their capsule systems in the simulated high-altitude

chamber tests. Their physicians recorded metabolic data and refined physio-

logical reactions. Communication checks, manual control system checks,

sequence system verifications, and many simulated missions in the procedures

trainer kept them busy. Twice Grissom and Glenn went back to Langley for ses-

sions in the ALFA trainer. In all,,each simulated about 100 Mercury-Redstone

flights before the upcoming MRM_ launch, scheduled for July. 41

Spacecraft No. 11, designated since October for the second manned Mercul3 _

flight, had come off the production line at McDonnell in May 1960. As the

first operational capsule with a centerline window, No. 1 1 more nearly' approxi-

mated the orbital version of the Mercury capsule than Shepard's Freedom 7,

or spacecraft No. 7. 45

Among other innovations in No. 11 for MR-4 was an explosive side hatch,

whose evolution, encouraged by the astronaut corps, had begun early' in the

Mercury program. The original egress procedure had been to climb out

through the antenna compartment, a difficult maneuver that required the re-

moval of a small pressure bulkhead. Since all the astronauts had found it

hard to snake out the top of the frustum and cylinder, the STG and McDonnell

designers had concluded that removal of an injured astronaut would be even

more precarious. Moreover, valuable time would be lost in such a rescue
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At left, Grissom in spacecraft check. At right, Grissom (seated inside) tests space-

cra# on the gantry with Guenter Wendt of McDonnell Aircraft Corporation.

MR-4

Preflight

MR-4 Mission Review Conference at the Cape: left to right, Slayton, Grissom, Ken-

neth M. Nagler, Warren ]. North, William K. Douglas, Glenn, Shepard, Charles

W. Mathews, ]ohn D. Hodge, Stanley C. White, and Christopher C. Kraft, ]r.
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operation; to open the hatch from the outside, someone had to remove several

shingles and 70 bolts.

McDonnell engineers set to work on the problem and came up with two

egress hatch models--one with a latch, which was used on Ham's MR-2 and

Shepard's MR-3 missions, the other with an explosive hatch cover. The

simple latch mechanism weighed 69 pounds, too much of a weight addition

for incorporation in the orbital version of the spacecraft. The explosive hatch,
on the other hand, utilized the 70 bolts of the original design; a .06-inch hole

was bored into each of the quarter-inch titanium bolts to provide a weak point.

When a mild detonating fuse, placed in a groove around each bolt, was ener-

gized, the bolts were sheared simultaneously and the hatch sprang open.

There were two ways to activate the explosive egress hatch during recovery.

About six to eight inches from the astronaut's right arm, as he lay in his couch,

was a knobbed plunger. The pilot would remove a pin and press the plunger

with a fist-force of five or six pounds, detonating the small explosive charge and

blasting the hatch 25 feet away in a second. If the pin was in place, a fist-force

of 40 pounds was required. A rescuer outside the capsule could blow open the

hatch simply by removing a small panel from the fuselage side and pulling a

lanyard. This complete explosive hatch weighed only 23 pounds. 43

The welcome new trapezoidal window assembly on spacecraft No. 11 re-

placed the two 10-inch side ports through which Shepard strained to see. The

pilot now could look upward slightly and see directly outside. Visually the

field covered 30 degrees in the horizontal plane and 33 degrees in the vertical.

The Corning Glass Works of Coming, New York, designed and developed the

multilayered panes. The outer pane was made of Vycor glass, .35-inch thick,

and could withstand temperatures on the order of 1500 to 1800 degrees F.

Three panels were bonded to make the inner pane, one a .17-inch-thick sheet

of Vycor, the two others made of tempered glass. This fenestration was as

strong as any part of the capsule pressure vessel.4,

The manual controls for the second manned flight incorporated the new

rate stabilization control system. With it the astronaut could control the rate

of spacecraft attitude movements by small turns of his hand controller rather

than by jockeying the device to attain the desired position. This rate damping

or rate augmentation system, like power steering on an automobile, gave finer

and easier handling qualities and another redundant means of driving the pitch,

yaw, and roll thrusters.

By the time of the MR-4 flight, Lewis Research Center and Space Task

Group engineers had analyzed the thrust rating of the posigrade rockets and

had made a valuable discovery. Fired into the booster-spacecraft adapter, the

posigrade rockets developed 78 percent greater thrust than when fired openly.

,Accordingly the capsule separation rockets when ignited inside the adapter,

producing what the NASA testers called a "popgun effect," afforded an initial
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separation velocity of about 28.1 feet per second. This determination provided
the engineers with the confidence that spacecraft-booster separation would occur
with little likelihood of recontact.

STG's calculations indicated that the Redstone booster and the Mercury

spacecraft should be about 4000 feet apart on their suborbital trajectory at
retrofire. The unbraked booster would hit the water some 566.2 seconds after

launch, while the longer and steeper trajectory of the spacecraft would keep it
aloft 911.1 seconds. The booster would land about 16_2 miles beyond the space-
craft? _ Because of the relatively short distance between the two impact points,

STG was concerned enough to a_ign John P. Mayer and Ted H. Skopinski
to study the problem, especially as related to possible recontact of the spacecraft
and the booster after separation. As a result of the studies, Skopinski's recom-
mendations for minor changes in the sequencing of retrofire were accepted as
solutions to prevent recontact.

Other hardware changes involved attaching a redesigned fairing for the
capsule adapter clamp-ring, rearranging the capsule instrument panel, and add-

ing more foam padding to the head area of the contour couch. The fairing
and some more insulation should overcome the vibration and consequent blurred
vision Shepard had complained about, while the rearrangement of the instru-
ments sought to improve the eye-scan pattern, which Shepard had found poor.
These changes cost several more weeks' time. On July 15, 1961, Gilruth
affirmed that Grissom would be the prime pilot for Mercury-Redstone No. 4
and that Glenn would be his stand-in. Grissom in turn announced that he had

chosen the name Liberty Bell 7 as the most appropriate call-slgn for his bell-
shaped capsule, because the name was to Americans almost synonymous
with "freedom" and symbolic numerically of the continuous teamwork it

represented .46
Modifications made on Grissom's pressure suit reflected the experiences of

Shepard's flight. Nylon-sealed ball-bearing rings were fitted at the glove con-
nections to allow full rotation of the wrists while the suit was pressurized. A
new personal parachute harness was designed to keep the chute out of the way.
On the chest of Grissom's suit was a convex mirror, called a "hero's medal" by

the astronaut corps, that served simply to allow the pilot-observer camera to
photograph instrument readings. Another welcome addition to the suit was
a urine reservoir, fabricated the day before the flight. Although during his
flight Grissom would find the contraption somewhat binding, it did work.
Lastly, Grissom's helmet was equipped with new microphones that promised to
filter out more noise and make transmission quality even betterY

Materials successfully used in other phases of the space program also became
a part of the second manned flight. In the continuing quest for weight reduction,
a lightweight, radar-reflectlve life raft was developed jointly by the Langley

Research Center and the Space Task Group. Weighing three pounds and four
ounces (45 percent lighter than the original version), this raft was constructed
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of Mylar and nylon, the same materials used in Echo I, the passive communication
satellite balloon that began circling the globe in August 1960. The survival pack,
with the raft inside, was secured on a shelf in the spacecraft conveniently near the
astronaut's left arm. 4s

Grissom's flight plan was revised rapidly and altered substantially as a result
of MR-3. Shepard had really been overloaded with activities during his five
minutes of weightlessness. Now Grissom was given a chance to look through his
new trapezoidal window to learn more about man's visual abilities in space. If

he could recognize landmarks for flight reference, the pilot tasks for the Mercury
orbital frights might be considerably simplified. Shepard had assumed manual
control of only one axis of movement--yaw, pitch, or roll--at a time, whereas
Grissom had instructions to assume complete manual control as soon as he could,
to make three maneuvers in about one minute instead of Shepard's 12 minutes,

and then to spend as much time as possible making exterior observations.
Mercury-Redstone booster No. 8 had arrived at Cape Canaveral on June 8.

Kurt H. Debus' contingent of Wernher von Braun's team and G. Merritt Preston's
capsule checkout team had proceeded with the mating of the launch vehicle and
capsule and the checkout requirements. On July 13, the flight safety review was
held and the spacecraft was pronounced ready for flight. Two days later
Walter Williams heard the reports during the mission review; the Redstone and

Liberty Bell 7 were pronounced ready to go. The recovery ships, anticipating
the launch date on Tuesday, July 18, moved into their assigned positions.

Essentially a repeat of MR-3, Grissom's flight was to reach an apogee of
116 miles, over a range of 299 miles, with the astronaut feeling a maximum
acceleration load of 6.33 g and deceleration of 10.96 g. Only the launching

azimuth, changed by three degrees to stay within range bounds, varied from
Shepard's flight into spaceY

On July 16 the news media received a weather bulletin predicting that the
cloud cover in the launch area for the next 48 hours would be below average,

but that the impact area would be slightly cloudier than usual. The mission was
postponed early Tuesday, the 18th, in hope of better weather. Fortunately the
frosty liquid oxygen had not been loaded so the launch delay was only 24, rather

than 48, hours.
Early Wednesday, July 19, Grissom, asleep in his quarters on the balcony of

Hangar S, was awakened by his physician, William Douglas, who told him that
Walter Williams' operations team was pushing for a 7 a.m. launch to beat the
weather. The launch day routine began again. By 5 a.m. Grissom was up in
the gantry. He slid into his niche; the count resumed and continued unbroken
until 10 minutes and 30 seconds before launch, when a hold was called to wait

for a rift in the cloud cover. When no break appeared, the mission was scrubbed

again. This time the liquid oxygen had been tanked, so a dreary 48-hour delay
would be necessary, z°

The weather conditions on July 21 were still not ideal. The view from an
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altitude of a hundred miles would show that all the northern portion of Florida

was completely obscured by high cirrus and lower patches of cumulus clouds.

Southern Florida and Cuba would be splotched by scattered cumulus. The

operations team nevertheless decided that since the view was not essential to the
success of the mission, the launch should come off as scheduled. _1

Because Grissom had shaved and showered before going to bed rather than

before his low-residue breakfast, and because Slayton, the blockhouse communi-

cator, briefed the astronaut on the status of the capsule and booster during the

van ride to the pad rather than just before gant D" ascent, the routine was a bit

less hurried. George E. Ruff, an Air Force psychiatrist, had time to interrogate

Grissom about his feelings before he lay in his contour couch for MR-4's llftoffY

Gri_om was unruffled, calm, and poised as he entered Liberty Bell 7 again.

The count resumed and proceeded smoothly until 45 minutes before launch time,

when a gantry technician discovered that one of the 70 hatch bolts was misaligned.

A 30-minute hold was called, during which the McDonnell and STG supervisory

engineers decided that the remaining 69 bolts were sufficient to hold and blow

the hatch, so the misaligned bolt was not replaced. The countdown was resumed,
but two more holds for minor reasons cost another hour's waitd 3

Alone in his capsule awaiting liftoff, Grissom experienced a wide range of

impressions. As the gantry, or service structure, moved back from the launch

vehicle, he had the illusion that he was falling. His pulse rate ranged from 64 to

162 beats per minute, depending upon his feelings. His heart beat rose during

the oxygen purge, fell while the hatch bolt repair decision was being made, rose

again when the go decision was made, and finally doubled at launch. His liftoff
was at 7 : 20 a.m._

LIBERTY BELL TOLLS

Grissom later admitted at the postflight debriefing that he was "a bit scared"

at llftoff, but he added that he soon gained confidence along with the g buildup.

Hearing the engine roar at the pedestal, he thought that his elapsed-time clock

had started late. Like Shepard, he was amazed at the smooth quality of the

liftoff, but then he noticed gradually more severe vibrations, never violent enough

to impair his vision. To the watchers on the ground, the Redstone and the

capsule appeared to rise slowly and to pass through a thin, broken cloud window.

Then the rocket disappeared, leavlng a contrail that was visible on the beach for

about a minute. Grlssom's cabin pressure sealed off at the proper altitude, about

27,000 feet, and he felt elated that the environmental control system was in good

working order. The suit and cabin temperature, about 57.5 and 97 degrees F,

respectively, were quite comfortable. Watching his instruments for the pitch rate

of the Re&tone, Grissom saw it follow directions as programmed, tilting over

about one degree per second.
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Under a 3-g load on the up-leg of his flight, Grissom noticed a sudden change

in the color of the horizon from light blue to jet black. His attention was dis-

tracted by the noise of the tower-jettison rocket firing on schedule. The pilot felt

the separation and watched the tower through the window as it drifted off, trailing

smoke, to his right. At two minutes and 22 seconds after launch, the Redstone's

Rocketdyne engine cut off after building a velocity of 6561 feet per second.

Grissom had a strong sensation of tumbling during the transition from high to

zero g, and, while he had become familiar with this sensation in centrifuge

training, for a moment he lost his bearings.

The Redstone coasted for 10 seconds after its engine cut off; then a sharp

report signaled that the posigrade rockets were popping the capsule loose from

the booster. Although Grissom peered out his window throughout his ship's

turnaround maneuver, he never caught sight of his launch vehicle. Angular

motion was perceptible to Grissom only by watching the needle move on the dial

or by seeing an Earth reference by chance. Another cue to the spacecraft's

movement was the Sun's rays, which gradually moved up his torso toward his

face, threatening temporary blindness. Grissom fretted over the automatic turn-

around that should have reversed the capsule faster.

With turnaround accomplished, the Air Force jet pilot for the first time

became a space pilot, assuming manual-proportional control. A constant urge
to look out the window made concentrating on his control tasks difficult. He told

Shepard back in Mercury Control that the panorama of Earth's horizon, presenting

an 800-mile arc at peak altitude, was fascinating. His instruments rated a poor

second to the spectacle below.

Turning reluctantly to his dials and control stick, Grissom made a pitch move-

ment change but was past his desired mark. He jockeyed the handcontroller

stick for position, trying to damp out all oscillations, then made a yaw movement

and went too far in that direction. By the time the proper attitude was attained,

the short time allocated for these maneuvers had been used, so he omitted the roll

movement altogether. The manual controls impressed Grissom as very sluggish

when compared to the Mercury procedures trainer. Then he switched to the

new rate command control system and found perfect response, although fuel

consumption was high? 5

After the pitch and yaw maneuvers, Grissom made a roll-over movement so

he could see the ground from his window. Some land beneath the clouds (later

determined to be western Florida arounc! the Apalachicola area) appeared in

the hazy distance, but the pilot was unable to identify it. Suddenly Cape Canav-

eral came into view so clearly that Grissom found it hard to believe that his slant-

range was over 150 miles.

He saw Merritt Island, the Banana River, the Indian River, and what appeared

to be a large airport runway. South of Cape Canaveral, he saw what he believed

to be West Palm Beach. He tried to report to Shepard on the high-frequency
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communications circuit ever)' landmark he saw, but his transmissions were not

received. These observations got Grissom behind in his work procedures, as he

realized when he saw the periscope retract.

With Liberty Bell 7 at an altitude of 118.26 miles, it was now time to position

the spacecraft in its reentry attitude. Grissom had initiated the retrorocket

sequence and the capsule was arcing downward. His pulse reached 171 beats

per minute. Retrofire gave him the distinct and peculiar feeling that he had

reversed his backward flight through space and was actually moving face forward.

As he plummeted downward, he saw what appeared to be two of the spent retro-

rockets pass across the periscope view after the retrorocket package had been

jettisoned.
Pitching the spacecraft over into a reentry attitude of 14 degrees from Earth-

vertical, the pilot tried to see the stars out his observation window. Instead the

glare of sunlight filled his capsule, making it difficult to read the panel dials,

particularly those with blue lights. Grissom felt that he would not have noticed

the .05-g light if he had not known it was about to flash on.

Reentry presented no problem. Grissom could not feel the oscillations follow-

ing the g buildup; he could only read them on the rate indicators. Meanwhile

he continued to report to the Mercury Control Center on his electric current

reading, fuel quantity, g loads, and other instrument indications. Condensation
and smoke trailed off the heatshield at about 65,000 feet as Liberty Bell 7 plunged

back into the atmosphere.

The drogue parachute deployed on schedule at 21,000 feet. Grissom said

he saw the deployment and felt some resulting pulsating motion, but not enough

to worry him. Main parachute deployment occurred at 12,300 feet, which was

about 1000 feet higher than the design nominal altitude. Watching the main

chute unfurl, Grissom spotted a six-inch L-shaped tear and another two-inch

puncture in the canopy. Although he worried about them, the holes grew no

bigger and his rate of descent soon slowed to about 28 feet per second. Dumping

his peroxide control fuel, the pilot began transmitting his panel readings.

A "clunk" confirmed that the landing bag had dropped in preparation for

impact. Grissom then removed his oxygen hose and opened his visor but

deliberately left the suit ventilation hose attached. Impact was milder than he

had expected, although the capsule heeled over in the water until Grissom was

lying on his left side. He thought he was facing downward. The capsule

gradually righted itself, and, as the window cleared the water, Grissom jettisoned

the reserve parachute and activated the rescue aids switch. Liberty Bell 7 still

appeared watertight, although it was rolling badly with the swells.

Preparing for recovery, he disconnected his helmet and checked himself for

debarkation. The neck dam did not unroll easily; Grissom tinkered with his

suit collar to ensure his buoyancy if he had to get out of the spacecraft quickly.

When the recover)' helicopters, which had taken to the air at launch time and

visually followed the contrails and parachute descent, were still about two miles
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from the impact point, which was only three miles beyond the bullseye, Lieutenant

James L. Lewis, pilot of the primary recovery helicopter, radioed Grissom to ask

if he was ready for pickup. He replied that he wanted them to wait five minutes

while he recorded his cockpit panel data. Using a grease pencil with the pressure

suit gloves was awkward, and several times the suit ventilation caused the neck

dam to balloon, but the pilot simply placed his finger between neck and dam to

allow the air to escape.
After logging the panel data, Grissom asked the helicopters to begin the

approach for pickup. He removed the pin from the hatch-cover detonator

and lay back in the dry couch. "I was lying there, minding my own business,"

he said afterward, "when I heard a dull thud." The hatch cover blew away,

and salt water swished into the capsule as it bobbed in the ocean. The third man

to return from space was faced with the first serious emergency; Liberty Bell 7

was shipping water and sinking fast.

Grissom had difficulty recollecting his actions at this point, but he was certain

that he had not touched the hatch-activation plunger. He doffed his helmet,

grasped the instrument panel with his right hand, and scurried out the sloshing
hatchway. Floating in the sea, he was thankful that he had unbuckled himself

earlier from most of his harness, including the chest restraints. Otherwise he

might not have been able to abandon ship.

Lieutenant John Reinhard, copilot of the nearest recovery helicopter, reported

afterward that the choppers were making their final approach for pickup. He

was preparing to cut the capsule's antenna whip (according to a new procedure)

with a squib-actuated cutter at the end of a pole, when he saw the hatch cover

fly off, strike the water at a distance of about five feet from the hatch, and then

go skipping over the waves. Next he saw Grissom's head appear, and the astro-

naut began climbing through the hatch. Once out, the pressure-suited spaceman

swam away.
Instead of turning his attention to Grissom, Lewis completed his approach to

the sinking spacecraft, as both he and Reinhard were intent on capsule recovery.
This action was a conditioned reflex based on past training experience. While

training off the Virginia beaches the helicopter pilots had noted that the astronauts

seemed at home in and to enjoy the water. So Reinhard quickly clipped the

high-frequency antenna as soon as the helicopter reached Liberty Bell 7. Throw-

ing aside the antenna cutting device, Reinhard picked up the shepherd's hook

recovery pole and carefully threaded the crook through the recover)' loop on top

of the capsule. By this time Lewis had lowered the helicopter to assist Reinhard

in his task to a point that the chopper's three wheels were in the water. Liberty

Bell 7 sank out of sight, but the pickup pole twanged as the attached cable went

taut, indicating to the helicopter pilots that they had made their catch.

Reinhard immediately prepared to pass the floating astronaut the personnel

hoist. But at that moment Lewis called a warning that a detector light had

flashed on the instrument panel, indicating that metal chips were in the oil sump

373



Grissom is helped into Liberty
Bell 7 by backup pilot Glenn.

Flight of

Liberty Bell 7

July 21, 1961

Water-filled Liberty Bell 7
denies the helicopter's lilt.
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because of engine strain. Considering the implication of impending engine

failure, Lewis told Reinhard to retract the personnel hoist while he called the

second chopper to retrieve the pilot.
Meanwhile Grissom, having made certain that he was not snared by any lines,

noticed that the primary helicopter was having trouble raising the submerged

spacecraft. He swam back to the capsule to see if he could assist but found the

cable properly attached. When he looked up for the personnel line, he saw the

helicopter start to move away.
Suddenly Grissom realized that he was not riding as high in the water as he

had been. All the time he had been in the water he kept feeling air escape

through the neck dam. The more air he lost, the less buoyancy he had. More-

over, he had forgotten to secure his suit inlet valve. Swimming was becoming
difficult, and now with the second helicopter moving in he found the rotor wash

between the two aircraft was making swimming more difficult. Bobbing under

the waves, Grissom was scared, angry, and looking for a swimmer from one of

the helicopters to help him tread water. Then he caught sight of a familiar

face, that of George Cox, aboard the second helicopter. Cox was the copilot

who had retrieved both the chimpanzee Ham and Astronaut Shepard. With

his head barely above water, Grissom found the sight of Cox heartening.

Cox tossed the "horse-collar" lifeline straight to Grissom, who immediately

wrapped himself into the sling backwards. Lack of orthodoxy mattered little

to Grissom now, for he was on his way to the safety of the helicopter, even though

swells dunked him twice more before he got aboard. His first thought was to

get a life preserver on. Grissom had been either swimming or floating for a

period of only four or five minutes, "although it seemed like an eternity to me,"
as he said afterward.

As the first helicopter moved away from Grissom, it struggled valiantly to

raise the spacecraft high enough to drain the water from the impact bag. Once

the capsule was almost clear of the water, but like an anchor it prevented the

helicopter from moving forward. The flooded Liberty Bell 7 weighed over 5000

pounds, a thousand pounds beyond the helicopter's lifting capacity. The pilot,

watching his insistent red warning light, decided not to chance losing two craft

in one day. He finally cast loose, allowing the spacecraft to sink swiftly. Martin

Byrnes, aboard the carrier, suggested that a marker be placed at the point so that

the capsule might be recovered later. Rear Admiral J. E. Clark advised Byrnes

that in that area the depth was about 2800 fathoms.
On the carrier Randolph, examining physicians Strong and Laning, the

same men who had gone over Shepard, found Grissom extremely tired. But

the MR4 astronaut elected to proceed with his preliminary debriefing before

going on to Grand Bahama. The recovery finale, of course, continually intruded

in the discussion. Grissom said he was extremely grateful to Walter Schirra for

the developmental work he had done on the neck dam. He felt that this had

saved his life, although later tests disclosed other difficulties. The debriefing
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sessions aboard the Randolph and at Grand Bahama centered on the need for
more egress training (there had been none since April) and the formulation

of specific emergency recovery procedures. Grlssom said that he thought he
should have been a little more precise in his attitude control functions. This was
a moot point in view of the sluggishness he had encountered with the manual

system and the apparent play in the control stick linkage. Other than this
anomaly, the spacecraft had performed well; noises of the sequential events had
provided good cues; vibrations had been minimal; the new window had been a
delight and should prove useful on orbital flights; and the environmental control
system had functioned well. But, said Grissom, there were too many couch
restraint straps; the panel lights were too dim; the oxygen consumption rate was
high; the urinal device needed further development; the high-frequency com-
munication circuit was unsuccessful; and hydrogen peroxide fuel consumption
proved to be high on the rate control system. The last item of that list caused
little concern among the Space Task Group engineers, for they had decided that
the rate command mode would be used primarily for reentry, when fuel economy

was less important.
At Grand Bahama, Grissom rested and appeared to have suffered no abnormal

effects from flight into space. The evaluators conceded, however, that the ab-
normal recovery experience would have made any such effects difficult to analyze
or to attribute to flight causes. Further questioning of the astronaut followed
the routine established in Shepard's debriefing? _

Obviously one of the major problems to be explained and resolved following
the flight of Liberty Bell 7 was the malfunction of the explosive egress hatch.
Before the mission, Minneapolis-Honeywell had conducted environmental tests

to qualify the hatch and igniter assembly. Although the tests had been run with
the pin installed, conditions had been severe. The component had been sub-

jected to low and high temperature ranges, a 100-g shock force, and salt-spray
and water-immersion tests. After MR4, the Space Task Group established
a committee that included Astronaut Schirra to study the hatch problem. Tests
were conducted in an environment even more severe than that used by the
manufacturer, but no premature explosions occurred. Studies were made of

individuals operating the panel switches on the side nearest the actuator; the
clearance margin appeared to be adequate. According to Schirra, "There was
only a very remote possibility that the plunger could have been actuated
inadvertently by the pilot."

The mystery of Grissom's hatch was never solved to everyone's satisfaction.
Among the favorite hypotheses were that the exterior lanyard might have become
entangled with the landing bag straps; that the ring seal might have been omitted
on the detonation plunger, reducing the pressure necessary to actuate it; or that
static electricity generated by the helicopter had fired the hatch cover. But with
the spacecraft and its onboard evidence lying 15,000 feet down on the bottom
of the Atlantic Ocean, it was impossible to determine the true cause. The only
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solution was to draft a procedure that would preclude a recurrence: henceforth

the astronaut would not touch the plunger pin until the helicopter hooked

on and the line was taut. As it turned out, Liberty Bell 7 was the last manned

flight in Project Mercury in which helicopter retrieval of the spacecraft was

planned. In addition, Grissom would be the only astronaut who used the hatch

without receiving a slight hand injury. As he later reminded Glenn, Schirra, and

Cooper, this helped prove he had not touched his hatch plungerY

TITOV WIDENS THE GAP

Despite the loss of Liberty Bell 7, the Mercury-Redstone phase of the program

had been so successful that there was little reason for keeping it alive. The

termination of the manned suborbital flights had seemed predictable after

Gagarin and certain after Shepard. A month and a half before Grissom flew,

the Space Task Group had decided to cancel the fourth such flight, MR-6.

Silverstein and Gilruth also had considered canceling the third flight, MR-5,

to concentrate on Mercury-Atlas operations. But Silverstein believed that data

obtained from Grissom's MR-4 should be appraised before deciding whether

to bypass the MR-5.

Besides, at that time the subject was politically sensitive. Since three astro-

nauts were training for the Mercury-Redstone missions, the public expectation,

expressed in Congress and through the press, was that there would be at least

three manned Redstone flights. But if Mercury-Atlas could be expedited, an

astronaut making three orbits would eclipse the cosmonaut who had made one
orbit.

On August 7, 1961, all such hopes were erased by the day-long, 17-orbit

flight and successful recovery of Cosmonaut Gherman S. Titov. When

the U.S.S.R. announced its spectacular second space flight, some Americans were
filled with awe, some with admiration, and some even with fear, while a few

expressed only scornful disbelief. At 9 a.m., Moscow time, on August 6, 1961,

the Soviet pilot rocketed into orbit aboard Vostok lI. The space voyage of this

26-year-old Russian covered 17.5 orbits and took 25 hours and 18 minutesY

After the data gathered from the Grissom flight had been evaluated, NASA

and Space Task Group managers decided that little could be gained from any

further Mercury-Redstone missions. On August 14, Paul Purser drafted a

termination recommendation for Gilruth's submittal to Silverstein. Purser pointed

out that the Redstone had done well its job of qualifying the spacecraft, astronauts,

and most other critical aspects of the operation. Mercury-Redstone also had

validated the various training devices, and it had uncovered many technical

problems, none of which appeared to be insoluble before an American orbital

flight? 9 Now it was time to turn to the principal Mercury-Atlas problem areas,

such as explosive hatch, inverter heating, oxygen usage rate, control system linkage,

and egress training, and to cope with the more complex Atlas program. Four
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days later, on August 18, NASA Headquarters publicly announced that the objec-

tives of the Mercury-Redstone program had been achieved, and that accordingly

it was canceled. Six days later, Joachim P. Kuettner, Mercury-Redstone Project

Chief at the George C. Marshall Space Flight Center, toId his subordinates that

the Redstone must now be retired after helping gain a toehold on space, c°

Several accounts of the Soviet manned space feats indicated striking similarities

in cosmonaut and astronaut selection and training. The Russians were chosen

by a strenuous selection program, which was much like the American procedure,

but their selection emphasized youth and stamina, rather than flight experience

and engineering. Soviet training, like American, employed the human centrifuge,

altitude chamber, isolation, technical systems study, and personal physical training.

Also, three pilots trained in competition for the first flight, Titov being Gagarin's

backup pilot on Vostok I of April 12. Gagarin's and Titov's accounts of llftoff

and orbital flight described the same phenomena--g-load buildup, vibrations, and

impressions of weightlessness.

Titov was reported to have exercised manual control. This transliteration was

taken in some circles to mean that he changed his orbital plane, but the Mercury

experts believed that Titov's manual control was for attitude only, like that

exercised by Shepard and Grissom. Titov reported sleeping seven hours or more,

and some translations indicated that he was awakened by his weightless arms

floating. This last claim was too much for David Lawrence, a syndicated

columnist, who suggested that the flight might have been a hoax. But the mem-

bers of the Space Task Group never doubted the authenticity of either Vostok I

or Vostok II. Too much was similar. Although only two or three people in the

Space Task Group could read Russian, the reports translated from Soviet journals

seemed to correspond to their own experience.

One of Titov's publicized problems caused concern among NASA and Space

Task Group medical specialists. Before entering his rest period, Titov complained

of feelings "akin to seasickness" and became nauseated. He had to be careful

not to move his head too swiftly in any direction. After sleep, his nausea appar-

ently abated; it finally disappeared completely when Titov began to feel reentry

pressures. NASA aeromedical advisers suggested that the first American in

orbital flight ought to guard against, watch for, and test out this peculiar

physiological reaction reported by Titov and the Soviets. cl

Psychologically, the Russian Vostok feats created some uneasiness in the

United States. Many people admired the Soviet's technological proficiency but
were concerned by the strategic implications. The fact that Titov's orbital track

in a near-polar plane carried him over the United States three times was alarming

to some people. In spite of the fact that the decision for the accelerated space

program was confirmed, the term "space lag" began appearing more frequently

in the press and in the statements of some Congre_men. Criticism of NASA,

the departed Eisenhower administration, and even the Kennedy administration

mounted. After the Gagarin flight, for example, Democratic Senator Stuart
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Symington of Missouri caustically pointed to the years of indecision that had so

long delayed the Saturn launch vehicle. After the Titov flight, John W. Finney,

aerospace and science writer for the New York Times, pictured Washington

officialdom as carping over NASA's "easy pace" in implementing the lunar

landing program outlined by President Kennedy. No specifications for a lunar

spacecraft yet were evident; no agreement on the route to take or on the necessary
launch vehicle had been reached. But these were mostly NASA Headquarters

worries; the primary task of the Space Task Group still lay ahead. Regardless

of the fact that Mercury could now only duplicate the feats of the Vostoks,

Project Apollo, the manned lunar-landing project, depended upon Mercury

Mark II (later named Gemini), the two-man rendezvous and docking project;

and Gemini depended upon the fulfillment of Mercury; in turn, that depended

upon the strength and stability of Atlas. The day Titov came back to Earth,

NASA's Space Task Group announced candidly, if not calmly, that the first try

at putting an American in orbit might slip unavoidably into January 1962. _2
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Final Rehearsals

ITH the 1961 Labor Day holiday passed, the Space Task Group buckled
down to an exceptionally busy season, one that was to be climaxed with

STG's own demise and phoenix-like resurrection. Its activities had become
farflung. Dead ahead, at Cape Canaveral, loomed the first orbital flight test
of a Mercury capsule, carrying a true "black box," called a "crewman simu-
lator," instead of an astronaut. Then, too, plans long had been ripening for
a mu_ti-orbitM Mercury-Scout light to qualify the ground tracking and com-
munications network. A second orbital flight carrying a chimpanzee in the

spacecraft couch also had an early place in the program.
Meanwhile NASA agents had completed an extensive survey of potential

sites for the new development and operations installation for manned space
projects of the future. At its Langley Air Force Base domicile, STG was busy

planning for its expanding role in manned space exploration. Its personnel
were weighing persistent rumors that the new Manned Spacecraft Center might
be located in Texas, somewhere near the booming city of Houston.

The first objective of all this simuItaneous activity was Mercury-Atlas 4,
the fifth flight of an Alas-launched spacecraft. This mission had been planned

and replanned many times before the unsuccessful launch of MA-3 back in
April 1961, and the failure of that mission directly affected the MA-4 plans.
During the early months of 1960, MA-3 had been scheduled for a suborbital
flight, with a crewman simulator aboard. First plans called for the Atlas booster
to be held 150 feet per second below orbital velocity, with capsule separation
occurring at the normal 100-mile-orbital-insertion altitude. Forty seconds after

separation, retrofire was to have produced a landing beyond the Canary Islands
and about 100 miles short of the African coast. And when this test was com-

pleted successfully, MA-4 was to repeat MA-3, but with a chimpanzee in the
cockpit. Spacecraft No. 9 was to be specially fitted for the MA_t flight.

Toward the end of 1960, however, Walter C. Williams advised the com-
manding officer of the recovery force, Destroyer Flotilla Four, that MAM_ would
try for three orbits with a crewman simulator aboard and that the targeted

launch date was April 1, 1961. But the MA-3 launch, still scheduled for a sub-
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orbital flight with its "mechanical astronaut," slipped to April 25. While many

Americans worried over the Soviet space coup represented by Yuri Gagarin's

one-orbit flight on April 12, Robert R. Gilruth and Williams already had made

the decision to change MA-3 to a one-orbit mission?

April 25, 1961, came, but the day's recorded results were far from hearten-

ing. The MA-3 launch vehicle failed to program over into the proper tra-

jectory; after 40 seconds of flight straight upward the Air Force range safety offi-

cer destroyed the Atlas booster. So it was necessary on MA-4 to strive for the

same one-orbit objective and to delay still further the nominal three-orbit Mer-

cury mission.

Meanwhile, for various reasons, production of the spacecraft and booster
for MA-4 fell behind schedule. Atlas No. 88-D, allotted for MA-4, did not

receive its factory rollout acceptance inspection until June 29-30, 1961, and it

was July 15 before it was delivered to Cape Canaveral. And spacecraft No. 9

was not used, though originally planned. Instead No. 8 was fished from the

Atlantic after its ill-fated flight in MA-3 and shipped back to McDonnell in

St. Louis on April 27 for extensive overhauling. That meant cleaning, install-

ing new insulation, replacing the external portion of the hydrogen peroxide

control system, making spot-weld repairs in the large pressure bulkhead, and

replacing the heatshield, antenna canister, escape tower, tower clamp ring,

adapter, main clamp ring, and the inlet and outlet air snorkels. The overhauled

spacecraft, redesignated 8-A, was returned to the Cape, but G. Merritt Preston's

crew still had plenty of work. A leak had to be repaired in a reaction control

system fuel tank; the environmental control system and the automatic stabiliza-

tion and control system had to be reworked. A fairing to reduce launch vibra-

tion, like the one used on the Little Joe 5-B flight on April 28, 1961, and similar

to that used on Virgil I. Grissom's suborbital mission in July, was added to the

adapter clamp ring?

Because of all this modification and overhaul, it was August 3 before the

spacecraft for MA-4 was delivered to the pad and mated with the booster, sup-

posedly to be launched on August 22. The day before the scheduled flight the

Air Force's Space Systems Division in California called Cape Canaveral and

reported that solder balls had been found in some transistors of the same brand
that had been installed in the MA-4 booster. Coordination of this information

among the various Mercur3,-Atlas teams at the Cape brought to light the fact

that these types of transistors also had been used in the spacecraft. There was

nothing left to do but postpone the launch and give both vehicles a thorough

going-over to replace the defective transistors. On August 25 the spacecraft

was returned to Hangar S, when it became apparent that this work might en-

compass several days. After these labors in the hangar, spacecraft 8-A was

mated with the booster again on September 1. This time the engineers con-

ducting the prelaunch checkouts found nothing wrong. Although 8-A was a

secondhand capsule, its landing bag had not been installed, it had ports instead
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of the new window, and the explosive egress hatch had been omitted, it still passed

inspection. 3
Besides the problem with the defective transistors, the Mercury-Atlas booster

had been proceeding along the same tortuous route as the capsule toward flight

qualification. By September, the Atlas had undergone so many changes that

had to be integrated into launch vehicle No. 88-D, and experienced so many

setbacks, that a successful orbital mission was necessary for the sake of NASA

and national morale and to forestall any new attacks on the Atlas as the Mercury

launch vehicle. The year in which the Soviets had orbited a man now was in

its ninth month, yet the United States was still preparing to orbit a box full of

instruments. The Mercury-Atlas flight record had produced only one com-

pletely successful launch--the MA-2 reentry heating test--out of four tries.

This was scarcely an enviable record. Many hours, days, and months had

been spent by special committees and working groups in ferreting out the sources

of trouble. The STG, Space Technology Laboratories, Convair, and Air Force

engineers who had reviewed the failure of MA-1 had concluded that the for-

ward end of the Atlas was not designed to withstand the flight dynamic loads

fed through the adapter section, that the adapter was too flexible, and that
stiffeners were needed. MA-2 had confirmed the controversial "fix" of the

adapter section. MA-4 would be the second of the "thick-skin" Atlases. Review-

ing the MA-3 abort, the engineers assumed that the programmer's failure to

pitch the booster into a proper trajectory was due to a transient voltage. Also,

some two years previously, another anomaly caused the Big Joe Atlas to fail to

stage, and even in MA-2 there had been some propellant sloshing in the booster.

To correct the programmer problem, Convair modified the autopilot controls
to give the gimbaling engines of the Atlas a preventive counteraction capability.

One objective of MA-4, therefore, was to assess this innovation. 4 In September

the NASA-Air Force-contractor engineering team that had been beset with Atlas

problems for two years felt that the ICBM-turned-space-launcher was ready to

do its part in Project Mercury. In the words of Scott H. Simpkinson, STG's

liaison man at the Convair factory, "MA-4 just had to work."

Not only would a successful orbital mission on MA-4 provide the necessary

data on the performance of systems and components, but the Mercur), tracking

network crews and Department of Defense recovery forces would receive valu-

able training for supporting a manned orbital circumnavigation by an American.

Many components, elements, procedures, and flight maneuvers had to be
watched and assessed before one of the "Mercury seven" could be committed
to an orbital mission around Earth.

Of the manifold segments of an orbital flight, reentry was perhaps the most

critical. As it dropped back into the heavy atmosphere, the capsule would be

subjected to searing temperatures of about 2000 to 3000 degrees F for six or seven

minutes, or about eight times longer than on the previous Mercury suborbital

shots. Retrofire between Hawaii and Guaymas, Mexico, would bring about a
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gradual descent over the North American continent. About 345 miles east of

Savannah, the first contact with atmospheric resistance would begin, at an altitude

of 55 miles. At this point the appearance of the .05-g light on the panel would

telemeter a signal that reentry was coming up. Peak aerodynamic heating would

come when the spacecraft had descended to an altitude of 37 miles and was

traveling at 15,000 miles per hour. Braking would be dramatic. Between 46

and 12 miles high, traveling over a slant range of 460 miles, the capsule's air speed
would be reduced from about 17,000 to 1350 miles per hour. Aerodynamic

stresses in this region would provide a severe test of the spacecraft's structural

strength, particularly the heatshield and the afterbody shingles.

Perhaps the second most critical segment of the orbital mission would come

during the powered phase of the flight. The Space Task Group, supported by

the DOD and industry, would also monitor carefully the vibration levels to ascertain

if they would be tolerable for an astronaut. Even more important as the capsule

was rocketed toward orbit was a reliable e_ape system, to wrench the capsule

clear if the launch vehicle failed to perform. Also it was necessary to judge the

ability of the Atlas to release the spacecraft, to evaluate the abort sensing and

implementation system, to determine if the launch vehicle could withstand the

aerodynamic loads of max q, and to demonstrate the capability of the Mercury

network to perform its intended flight-control and data-collection functions. 5

If all went well, MA-4 would provide data proving the validity of years of engi-

neering calculations.

MA-4 would be launched from complex 14 at the Cape on a true azimuth

heading of 72.51 degrees east of north. Following engine ignition, after being

held to the pad for three seconds to ensure smooth combustion, the

Atlas booster engines would propel the spacecraft withifi two minutes to

a speed of about 6500 miles per hour and an altitude of 35 miles over a
downrange distance of 45 miles. The sustainer engine would continue to

burn. A gradual pitch program would begin to tilt the Atlas toward the sea about

20 seconds after llftoff. Seconds after booster engine cutoff (called "BECO" by

the various Mercury-Atlas working teams at the Cape), or at about 41 miles' alti-

tude and a slant range of 56 miles from the pad, the launch vehicle programmer

would trigger a greater pitch-over maneuver to put the Mercury-Arias combination

on a course parallel to Earth's surface. At this time the escape tower would be

jettisoned. After capsule separation, orbital insertion would occur about 498 miles

downrange from the pad at an altitude of about 100 miles. The nominal inertial

velocity at this point was supposed to be 25,695 feet per second, increased to 25,719

feet per second by the ignition of the posigrade rockets, which separated the space-

craft from the booster. Within 50 seconds, the spacecraft should have drifted

some 790 feet from the booster. The Atlas, rather than falling away, would trail

the orbiting spacecraft around Earth at an altitude of about 100 miles, and should

complete each circle about once every 90 minutes for an estimated three days. G

Instrumentation affixed to the spacecraft would provide data from nearly
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every conceivable point about the capsule. Noise levels in the vicinity where an
astronaut's head would rest would be measured and recorded on magnetic tape.

Excess vibration, a problem during early Mercury-Redstone flights, would be

monitored closely by seven strategically placed sensors, mostly in the area where

capsule and adapter joined. To determine what radiation dosages a pilot would
encounter, four standard and two special film packs would be carried. The

.standard p_ks were placed on the sides and at the top and bottom of the couch.

Carrying a heavier emulsion, the two extra packs would measure the radiation

spectrum--the range of all kinds of radiation to which the capsule would be

exposed--as well as penetration levels. Flight data other than radiation would

be transmitted by two separate telemetry links, each providing essentially the
same information.

The flight would be well covered photographically. Located on the left side

of the capsule cabin was the instrument panel camera, which would start operating

at liftoff, provide about 20,000 frames of panel information during the mission,

and cease five seconds after impact. Placed near the right-side port, the Earth-

sky camera was loaded for about 600 frames of pictorial data, which would be
exhausted somewhere over the Indian Ocean. A third camera, affixed to the

periscope, was loaded with about 10,000 frames of film for the mission. This

camera would provide especially useful information on the spacecraft's orbital

attitude reference to Earth at points where landmarks were recognizable.

Five recorders aboard the spacecraft would tape most of the mission data.

Three were seven-track systems to record all telemetry outputs, vibration levels,

noise, and shingle strain. The two others were single-track recorders, to be

operated in tandem and used to check the reliability of the tracking network

communications system. _

Plans for spacecraft operations after the powered phase were essentially the

same as those for the suborbital flights, only on a much larger scale. Retrofire

was scheduled at 1 hour, 29 minutes, and 4 seconds after launch, with the three

rockets firing at five-second intervals in order: top-left, bottom, top-right, s

Recovery plans for orbital missions were considerably more complicated than

they had been for the suborbital flights, since many more contingency areas,

including abort and overshoot, had to be considered. Besides the nominal land-
ing area off the coast of Bermuda, five secondary landing areas were selected.

Providing that the launch was nominal and proceeded according to the preflight

calculated trajectory, the abort recovery areas were spaced as follows: Area A

began about 13 miles from the launch pad and continued along the track for 2200

miles. For the first 550 miles the coverage extended 30 miles to each side of the

track. This area covered the first 72 seconds after launch, or through booster

staging. The remainder of Area A, accounting for the period up to 298 seconds

after launch, narrowed to about 15 miles on either side of the track. Areas B

and C were small elliptical blips on the track, 4 and 8 degrees of longitude beyond

A. These were designated for a possible abort at 298 or at 301 seconds, respec-
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tively. The third contingency site, Area D, was a longer ellipse (20 by 122 miles)

beginning about 7 degrees of longitude past C. At this point the "go/no go" flight

decision would be made. The last, Area E, an ellipse 24 by 231 miles along the

track, covered aborts up to 304 seconds after the go/no go decision."

The MA-4 capsule also was fitted with a number of aids to assist the DOD

forces in their recovery task. Two one-pound _far bombs, one set to eject upon

main parachute deployment and the other set to detonate at 4000 feet of hydro-

static pressure if the spacecraft sank, were carried. A flashing light with a life

of about 24 hours was set to activate upon impact. Fluorescein dye, ejected at

touchdown, would be visible for about six hours. Navy recovery forces were asked

to attempt the recovery of the drogue and main chutes and the spacecraft antenna

canister. Balsa wood blocks and Styrofoam had been attached to these components
for flotation, a°

As the launch date of the Mercury-Atlas 4 combination neared, weather

problems began to threaten this attempt to orbit a "mechanical astronaut." Not

one but two hurricanes thrashed the Mercury tracking areas. "Carla" raked

the Corpus Christi tracking station, while "Debbie" moved in a northerly direction

on the day before the launch, menacing and causing the ships to get rather a

"rough ride" in the prime recover), zone. The equipment at the Texas site with-

stood the storm without damage. The STG-Air Force-Navy recovery planners

at the Cape felt that Weather Bureau support predictions had given them a

sufficient margin of safety in the Atlantic to allow the mission to proceed. 11

MERCURY ORBITS AT LAST

On launch day', September 13, the cloud coverage was scattered; visibility' was
9 miles; the wind velocity was about I I miles per hour; and the temperature was

78 degrees. Ninety minutes before launch time a half-hour hold was called to

replace a broken screw in one of the afterbody shingles. The liquid oxygen was

loaded by 8:30 a.m., and 5 minutes later the operations crew determined that all

systems were go. At 8:57, however, the low-speed data timing was momentarily

lost at the Bermuda tracking site, and the countdown was recycled to T minus 3
minutes and 30 seconds.

A little after 9:04 a.m. on September 13, 1961, MA-4 was launched on its

one-orbit mission. During the first 20 seconds from liftoff, fairly severe booster
vibrations were detected by the flight dynamics officer in the Control Center.

The "thick-skin" Atlas passed its max-q test. At the 52-second point, a space-

craft inverter that was convcrting electrical power from direct to alternating cur-

rent failed, but the standby' inverter switched on automatically. Guidance data

soon disclosed that the trajectory was .75-degree high; later, at engine cutoff, it

was .14-degree low. Ahhough booster engine cutoff occurred 2.5 seconds early,

booster velocity was about I00 feet per second too high. Then the sustainer

engine cut off I0 seconds early, so the desired velocity was essentially achieved.
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Despite these dispersions, which were within design limits, perigee and apogee of
the orbit were only slightly more than a mile and 12 miles, respectively, below

plan. The Goddard computers instantly indicated a go for the mission. The

powered phase, plus posigrade rocket increment, provided a peak velocity of 25,705

feet per second; g loads during the powered phase reached a peak of 7.6Y

Despite a slight disturbance in the roll, pitch, and yaw of the booster, separation

occurred properly, and after a 5-second steadying or damping period the capsule

began its turnaround maneuver. Soon, however, large attitude excursions were
observed, and the spacecraft took 50 seconds to reverse its ends to heatshield

forward, as opposed to a normal 20 seconds, using 9.5 pounds of hydrogen

peroxide attitude control fuel against the 2.2 pounds supposedly required. Even

with the abnormal turnaround, the spacecraft attitude gyros and scanners soon

transmitted nominal readings, and there seemed no doubt that the mission would

proceed to its orbital conclusion. The cause of these undue excursions later was

found to be an open electrical connection in the pitch-rate gyro. 13

A high oxygen usage rate like that on Grissom's suborbital mission cropped

up early and continued throughout the flight. At the 27,000-foot point the

system sealed off at 5.5 pounds per square inch; then an abrupt drop was indi-

cated in the primary oxygen supply and a concurrent rise in cabin and suit

pressure values to 6 pounds per square inch. "Primary oxygen going down fast,"

Paul E. Purser jotted in his notes as he listened to the communications circuit.

"Zanzibar reported 30 percent of primary oxygen left," he later added. Toward

the end of the mission, with the primary supply depleted, the system switched

over to secondary. Usage from this source was so slight, however, that Walter

Williams, commenting on the high usage problem in a press conference following

the mission, said that the secondary supply was virtually untouched. Throughout

the flight the crewman simulator continued to use oxygen to produce moisture
and carbon dioxide, and to monitor the operations while recording heat and suit

pressure changes?*

Despite the abnormalities with the oxygen supply, once the automated Mer-

cury spacecraft was on its orbital course, the computers indicated that the mission
could go for more than seven orbits. In general, the control systems operated

well, although on three occasions the spacecraft dropped out of its 34-degree,

Earth-reference mode, once just before the ignition of the retrorockets and twice

just before the .05-g light telemetry signal. These attitude variations came from

the failure of a one-pound yaw-positive thruster and a one-pound roll-negative

thruster.

Communications between the capsule and the tracking stations were good,

especially on high frequencies, which on the earlier suborbital flights had been
virtually unsuccessfu|. In some cases radar tracking was not good, largely because

a few of the operators lacked experience. Telemetry reception was excellent,
with some 137 observations received by the various tracking stations during the

flight? 5
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One hour, 28 minutes, and 59 seconds after MA-4's liftoff, the first retrorocket

fired in the vicinity of Hawaii. Monitors at the Guaymas station in Mexico

indicated that retrofire, triggered by the spacecraft clock, had gone off as planned.

Within the range of the Cape Canaveral control center, telemetry data disclosed

that MA-4 was in the proper reentry attitude. Over the Atlantic the drogue

parachute opened at 41,750 feet, and the main chute deployed at 10,050 feet.

At 10:55 a.m. the capsule splashed down 176 miles east of Bermuda. After an

hour and 22 minutes, the destroyer Decatur, which had been about 34 miles from

the impact point, pulled alongside the spacecraft and hoisted it aboard. From

there the capsule and its robot "astronaut" rode to Bermuda, whence they were

airlifted to the Cape for an exhaustive examination. 1G
The cause of the oxygen supply malfunction was immediately attacked by

the STG and McDonnell engineers. Onboard film, they found, disclosed that

the oxygen supply emergency light had blinked on, which would have signaled
an astronaut to take corrective action. The inspectors also learned that vibration

had dislodged the rate handle from its detent, allowing a valve to crack open.
But the flow rate had not been sufficient to trip the microswitch that would have

given the Mercury Control Center a telemetry indication of an emergency rate

actuation while the mission was in progress. Normally a force of from three to

eight pounds was needed to break the handle free from the detent, whereas in
this case the inspectors moved the handle with very little force. A new emergency

rate handle with a positive latching mechanism was to be devised for later
missions. 17

Other postflight analyses by the engineers found the MA-4 spacecraft and

its systems in good condition. There was no afterbody shingle buckling or warp-

ing, and the structural materials were only mildly discolored. The horizon

scanner window was partially coated with a film of oxidized material caused by

aerodynamic heating. Some internal debris, including solder balls and washers,

had apparently escaped preflight tumbling and vacuum cleaning. Six buckled

skin panels between the base ring and the lower pressure bulkhead indicated that

the capsule landed with the heatshield edge striking the water first. Still the in-

spectors concluded that the structural damage was not enough to have endangered
an astronaut. The center section of the heatshield was partially delaminated and

the center plug was loose, conditions apparently caused by water impact and

cooling. Two cracks were found on the shield in the vicinity of the water-impact

point. The depth of the char on the ablation shield was very shallow. 1_

NASA officials showed their pleasure at the success of MA-4 at the press

conference held at the Cape immediately after the flight. Gilruth pointed out

that this had been the hardest test flight in the whole NASA program. He added

that the Atlas had demonstrated that it was capable of boosting a man into orbit,

as he, Maxime A. Faget, Purser, and others from NACA-Langley days had long
believed. Without hesitation Gilruth concluded that a man would have survived

the flight.
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Above, architect's conception o[ the new NASA Manned Spacecra# Center, Houston,

Texas, as o[ early 1962. Right, the Center under construction as o[ the end o[ Proj-

ect Mercury, May 1963. The structure in the center is the administration building.

At that point a reporter asked whether a man would fly the next Mercury.
orbital mission. Walter Williams answered that a three-orbit circuit, either

unmanned or carrying a chimpanzee, was still necessary. Then why was the

upcoming Mercury-Scout mission necessary, asked a newsman. Again Williams

affirmed his confidence in the wisdom of the agreed-upon schedule of flights? '

SPACE TASK GROUP GETS A NEW HOME AND NAME

Between flight planning and scheduling launches in August 1961, a NASA

site survey team headed by John F. Parsons, Associate Director of Ames Research

Center, had inspected a number of sites competing for the permanent location

of a center for manned space flight projects. The new center had been approved

in principle by President Kennedy in accordance with his strategic decision, en-

dorsed by the Congress, to accelerate the space program. The team appraised the

sites on 10 points, briefly stated as follows: availability of educational institutions

and other facilities for advanced scientific study, electric power and other utilities,

water supply, climate, housing, acreage, proximity to varied industrial enterprises,

water transportation, air transportation, and local cultural and recreational re-

sources. On September 19, 1961, NASA Administrator James E. Webb an-

nounced that the new Manned Spacecraft Center (MSC) would be established

on a 1000-acre tract to be transferred to the Government by Rice University, near

Houston. The site was in Harris County, Texas, on the edge of Clear Lake, an

inlet of Galveston Bay on the Gulf of Mexico. s°
Webb maintained that selection of the Houston site had been influenced by
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recent decisions to expand the launch complex at the Atlantic Missile Range and

to establish a fabrication facility for large booster and space vehicle stages at the

Michoud Plant, near New Orleans, where torpedo boats had been manufactured

during World War II. The Manned Spacecraft Center, the Michoud Opera-

tions, and the Cape Canaveral complex would become a vast integrated enter-

prise coordinating the development, manufacture, and operation of the manned

space flight program.

Not unexpectedly, there was some criticism of the Texas site chosen for the

new development center. Charges of inordinate political influence involved the

names of Vice-President Johnson, a Texan and chairman of the National Aero-

nautics and Space Council, and Democratic Representative Albert Thomas of
Houston, Chairman of the House of Representatives Independent Offices Sub-

committee of the Appropriations Committee. NASA spokesmen categorically

denied that there had been any improper influence. Particularly crestfallen were

the citizens of the Virginia peninsula, who realized they were losing some of the

activities at the Langley Research Center and the Wallops Station. All through

August, September, and October, the dailies of Newport News echoed this dis-

appointment. To Houston, of course, this "&as "wonderful news," as the Cham-

ber of Commerce proclaimed, and local business leaders dispatched representatives

to brief the transferring NASA employees in Virginia on the advantages of the
Texas coast. 2x

Less than a month after Webb's announcement, a Houston journalist went

on an inspection tour of the site planned for the spacecraft center. He found

cowboys driving herds of cattle to new pasture, a crew of surveyors from the

Army Corps of Engineers mapping the prairie near Clear Lake and fighting
snakes, and a lonc wolf hunter with the carcass of a freshly slain wolf. The

hunter said he had just seen several wild turkeys, a fox, and many deer tracks? 2
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Gilruth and other officials of the Space Task Group reacted quickly to the

Webb announcement. The very next day they flew into Houston to begin a

search for an estimated 100,000 square feet of temporary floor space. Moving

began in October 1961, when Martin A. Byrnes, as the local manager, and a

small cadre of center operations, procurement, and personnel employees opened

offices in Houston's Gulfgate Shopping City. By mid-1962, when the move was

completed, activities were scattered in ll locations, occupying 295,996 square

feet of leased office and laboratory space in the vicinity of Telephone Road and

the Gulf Freeway. For both old and new employees, a street map was a necessity

in the coordination of information among the various offices located in the dis-

persed buildings. Besides the leased quarters, NASA personnel liberally used
surplus facilities available at nearby Ellington Air Force Base? 3

By early October 1961, the Space Task Group had established an information

relocation center in its Public Affairs Office to help personnel facing the move.

Inquiries from the employees about schools and housing were numerous. Shortly

thereafter, members of the Space Task Group received procedure directions for

permanent change of duty station and then were advised on November 1, 1961,

that "the Space Task Group is officially re.designated the Manned Spacecraft
Center." The center was now a de facto NASA unit, a nerve center of the

accelerated manned space flight program. It was several months, however,

before the administration of projects was subdivided for management of the

three major programs--Mercury, Gemini, and Apollo. NASA outlined its

building requirements for the center on October 13, 1961, at which time two

pIans were under consideration, one with 13 major buiIdings and the other with

14, to accommodate 3151 people. The estimated cost was $60 million for the

first year's construction. _4

WmEs GET CROSSED: MERCURY-ScouT I

Despite the flurry of activity at Hampton, Virginia, Houston, and elsewhere,

generated by the impending move, STG did not pause in its scheduled Mercury

flight test program. Plans had been in progress for several months and by the

summer of 1961 were well developed for Mercury-Scout, whose flight was to

provide a dynamic checkout of the Mercury tracking network.

Early in May, Purser and Williams of STG, Charles J. Donlan, who had

returned to the Langley Research Center rolls in April, and Warren J. North of

NASA Headquarters had met to discuss how the Mercury tracking network,

completed at the end of March, could be exercised and evaluated. They agreed

that the four-stage, solid-propellant Scout, originally designed at Langley and

popularly called the "poor man's rocket," could perform this task economically.

North briefed Abe Silverstein, NASA Director of Space Flight Programs, when

he returned to Washington from Langley. In the meantime, William E. Stoney

of STG had inquired of the Air Force, which also used the Scout, about the
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availability of a Scout launch vehicle. The planners proposed to use the Air

Force and its contractors for payload design and construction and for vehicle

assembly and launch. On May 11, Air Force officials replied that a Scout was

available, but concurrently North reported that Silverstein was not interested in

a Scout shot. Purser, relaying this information on to Gilruth, remarked that

"you or Williams will have to talk to him [Silverstein] about it." Mercury-

Scout mission planning, meanwhile, was already in progress, and Marion R.

Franklin of STG was temporarily appointed as project engineer. This responsi-

bility took on the aspects of a revolving door, with the assignment being shuffled

among several Task Group engineers. James T. Rose was named to head the

project a few days later; then Rose and Lewis R. Fisher had co-responsibility,

until Rose was relieved to continue his work with James A. Chamberlin on what

became the Gemini two-man spacecraft project proposals. 2_

Although Silverstein at Headquarters opposed such a test, those on the oper-
ations end of Mercury felt that a flight to train the operators and check the

tracking stations was a necessity. On May 15, 1961, personnel of NASA Head-

quarters and several of its cognizant centers, including Harry J. Goett of Goddard,

WiUiams and Purser of Space Task Group, Low from NASA Headquarters, and

Thomas A. Harris, G. Barry Graves, and Paul Vavra from Langley, met to

review the proposed Scout launch in view of Silverstein's reluctance. They still

concluded that the Scout was the best booster for network checkout purposes.

The problem was how to sell the idea to Silverstein.

Low and Graves saw Silverstein the next day. They told him that only a

one-orbit flight, possibly carrying a chimpanzee, was scheduled for the next six

months; moreover, the Air Force had a spare research and development Blue

Scout booster. This readiness gave promise of a reasonably early launch date,

which was necessary if the communications exercise were to be worthwhile.

Silverstein tentatively acquiesced, but he demanded a_urance that all the design

problems, including payload and antennas, would be resolved before he gave

final Headquarters approval. After that approval, he added, all effort should be

made to meet an August 15, 1961, firing date. _ This stipulation apparently

was made so that the flight would precede the scheduled August 22 launch date

of the MA-4 one-orbit flight.

With Silverstein's reluctant blessing, the planners wasted no time in getting

the Scout enterprise rolling. At a meeting at Langley on May 17, attended by
Williams, Purser, Merritt Preston, Franklin, and Chamberlin of STG; North of

NASA Headquarters; and Graves, Virgil F. Gardner, and Elmer J. Wolff of

Langley, responsibilities were assigned and some general requirements were out-

lined. As noted, Rose and Fisher were named project engineers. Rose was in

Los Angeles discussing boosters for the two-man project at the time. He received

a call from Chamberlin requesting him to go to Aeronutronic in Newport Beach,

California, to talk about instrumentation for the payload. He was joined there

by Earl Patton, communications expert from McDonnell Aircraft Corporation.
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Graves asked the Goddard Space Flight Center to supply minitrack equipment

and Goddard tentatively agreed to do so. The purpose of the minitrack equip-
ment (used in the instrumented satellite programs) was to furnish data for com-

parison with that which would be transmitted by Mercury instrumentation.

Mercury instrumentation was to include C- and S-band beacons, telemetry

carriers, and either a command channel on the minitrack or a receiver operated

by a command transmitter. Graves also planned to arrange with Goddard for
minitrack drawings, and Chamberlin volunteered to contact McDonnell for the

Mercury instrumentation drawings and hardware components. Some thought

was briefly given to the possibility of using the Langley Research Center to in-

strument the payload; otherwise the Ford Motor Company's Aeronutronic

-'Division, Air Force contractor for the Scout, probably would provide the
instrumentation. 2'

On May 23, North in Washington telephoned Purser at Langley and reported

that Silverstein "had bought the Scout." There was a qualification, however: plan-
ning could proceed, but money was not to be committed until Robert C. Seamans,

Jr., NASA's "general manager," approved. Silverstein immediately sought Sea-

roans' concurrence, offering the inducement that only the payload would require

NASA funding ($130,000) ; the Air Force, using the operation to provide expe-
rience for its launch crews, would bear the cost of the launch vehicle and launch.

Silverstein argued to Seamans that delays in the Mercury-Atlas program, with a

reduction of the flights to be conducted before a manned orbital mission, made

using the Scout to check out the network seem sensible. The proposed payload,

he said, would be prepared by Ford Aeronutronic, using components from

Mercury capsule No. 14, which had already flown in the Little Joe 5-B test of

April 28, 1961. The STG planners estimated that the earliest possible launch

date was sometime in July, but SiIverstein told Seamans that an August date

seemed more realistic. Seamans agreed and returned the formal STG request

onMay 26, stamped "approved." 2s

Now that the blessing was official, the Space Task Group made a sustained

effort to launch in July. In June STG engineers considered the components that

were to make up the 150-pound payload. Since Associate Administrator Seamans

at NASA Headquarters had suggested in his approval document that a backup

launch vehicle be obtained, STG secured the Air Force SSD's commitment to

supply a second four-stage Scout. Seamans' suggestion proved to be prophetic;

although no second Mercury-Scout mission was ever launched, the backup fourth

stage had to be used in the first attempt. _

By early July, the trajectory data and mission directive for Mercury-Scout

were completed. MS-1 would be launched at the Cape from complex No. 18-B,

formerly the Project Vanguard launching site, on a true azimuth heading of

72.2 degrees east of north, aiming at an apogee of about 400 miles and a perigee

of about 232 miles. Orbital insertion of the payload was to occur some 1100

miles from the Cape, at a speed of 25,458 feet per second and an altitude of
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232 miles. A small rectangular box held the payload, which consisted of a C-
and S-band beacon, two minitrack beacons, two command receivers, and two

telemetry transmitters, all with antennas; a 1500 watt-hour battery; and the

fourth-stage instrumentation package. The payload equipment was to function

for 18½ hours in orbit. To conserve electrical power while in flight, the equip-

ment would be turned off by a ground command after the first three orbits. During

shutdown, the results would be analyzed, and the equipment would then be

activated to make another three-orblt data collection. The planners felt that by

repeating the shutdown and reactivation operation they could obtain data equiva-

lent to three full missions, gather a wealth of information for comparison, and

give the DOD and NASA trackers a good workout? °

The launch vehicle for the mission was a 70-foot, solid-propellant Scout

rocket weighing 36,863 pounds at liftoff. The booster had four stages. Starting

from the bottom, these included an Aerojet Algol engine with a steel case and

steel nozzle, burning polyurethane fuel and guided by hydraulic exhaust vanes;
a Thiokol Castor motor, also with steel case and nozzle, burning a polybutadiene-

acrylic acid propellant, with a precision autopilot employing hydrogen peroxide

reaction motors; an Allegheny Ballistic Laboratories Antares motor encased in

filament-wound fiber impregnated with epoxy resin, propelled by nitrocellulose

nitroglycerin, and guided by an autopilot identical to that in the Castor; and

an Allegheny Altair engine of the same construction as stage 3, using the same

propellant, but with a spin-stabilizing control mechanism? 1

The Scout was erected on the pad on July 25 to await mating with the pay-

load. Ford Aeronutronic had completed what turned out to be the initial

packaging and had shipped the payload to the Cape on July 3. There the equip-

ment Underwent spin-ballast and operational checks and was mated with the

booster. But trouble with faulty solid-state telemetry transmitters, developing

during the pad checkout, caused such a delay that a July launching became

impossible. At about that same time NASA Headquarters decided that the

payload had not had sufficient vibration testing, so it was shipped to Aeronutronic

at Newport Beach, California, for testing and repackaging. After it returned to
the Cape, malfunctions appeared in the Scout's fourth stage, and the Cape engi-

neers had to lift the fourth stage from the backup vehicle. The question in August

was which would be ready first, the launch vehicle or the payload. Then on

September 13, MA-4, carrying its mechanical astronaut, essentially preempted

the Mercury-Scout by its orbital trek around Earth. The Scout payload reached

the Cape on September 20, but all four Scout stages did not return to the pad

until OctOber 22. The anticlimactic Scout launch was supposed to take place
on the 31 st? z

On Halloween, 1961, a launch crew under the technical supervision of the

Air Force launch director (who, in turn, was responsible to the NASA operations

director) attempted the Mercury-Scout launch. The countdown proceeded well
down to the moment of ignition--when nothing whatever happened. The
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ignition circuits were rechecked and repaired and the next day, November 1,

1961, Mercury-Scout took off. Immediately after liftoff, the vehicle developed

erratic motions, and after 28 seconds the booster began tearing apart. The range

safety officer gave the destruct signal 43 seconds after launch. The failure, it

was later determined, resulted simply from a personal error by a technician who

had transposed the connectors between the pitch and yaw rate gyros, so that

yaw rate error signals were transmitted to pitch control, and vice versa? _ Six

months of plans and labors had disintegrated in less than a minute.
Ambitions for a second Mercury-Scout, such as had been advocated earlier

by Seamans, collided with the reality that another Scout rocket would not be

ready before a Mercury-Atlas launch afforded a satisfactory and complete ground-

tracking network checkout. The first stage of the backup Scout rocket failed

its inspection tests, while the fourth stage had been used on the ill-fated Mercury-

Scout 1 mission. Besides, Mercury-Atlas 5 was scheduled to go in mid-November,

and the first manned orbital mission was set for December 19. Consequently, Low

recommended the cancellation of the Mercury-Scout program to D. Brainerd

Holmes, who had taken on manned space flight duties in NASA Headquarters? *

So the Scout had a short but chaotic life as a member of the Mercury family of
launch vehicles.

MAN OR CHIMPANZEE FOR MA-5?

From its unseemly beginning embodied in the Mercury-Scout failure on the

first day of its formal existence, the newly titled Manned Spacecraft Center would

go on in November to direct and record a resounding success, Mercury-Atlas 5.

A curious atmosphere surrounded the approaching animal orbitaI mission, a sense

of impatience, as though the Nation wanted to see it done quickly so the program

could hurry forward to a manned orbital shot. The press clearly deplored any

slip in MA-5 that would delay the manned flight. Putting an American into

orbit before the end of 1961 was popularly regarded as something sorely needed

for national prestige. NASA officials obviously were influenced by these pressures,

and rank-and-fliers in the space program were like members of a football team

committed to a warmup game before a conference classic. _

Some NASA leaders flatly opposed the chimpanzee flight. Administrator

Webb's office questioned MSC on the need for another unmanned Mercury

mission in view of the successful orbital flights of Cosmonauts Gagarin and Titov.

A Washington newsman suggested that the President's advisers feared another

American animal flight would only invite Soviet ridicule. Paul P. Haney, a public-

affairs spokesman at NASA Headquarters, finally cleared the air when he an-

nounced to the public, "The men in charge of Project Mercury have insisted on

orbiting the chimpanzee as a necessary preliminary checkout of the entire Mercury

program before risking a human astronaut." 3G

Other space-related events soon distracted public attention from the impend-
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ing primate voyage on MA-5. One was the perfect launching of the mammoth

Saturn I on its maiden flight. On the morning of October 27, the 163-foot-tall

vehicle, with its 1.3 million pounds of thrust, rocketed 215 miles into space.

The flight immediately triggered public discussion of whether a super-Saturn

might bc selected for launching the lunar mission spacecraftY In Houston,

the Manned Spacecraft Center, site for the direction of manned space projects

of the future, captured the imagination of local citizens. A space-age tradi-

tion was bo,_. when H. T. Christman, a procurement officer, became the first

member of the organization to buy a home in the Houston area, which was located

in the Timber Cove residential development that was to become the neighbor-

hood of several Mercury astronauts, near thc site of the to-be-constructed Space-
craft Center.

Preparation for MA-5, initiated many months previously, continued without

much fanfare. As early as January 1961, notes on the status of hardware for

this mission had begun to appear in STG's quarterly progress reports to NASA

Headquarters. Both booster and spacecraft then were bcing manufactured

and tested. On February 24, spacecraft No. 9 had arrived at the Cape to begin

a 40-week preflight preparation. This lengthy period, longest in the Mercury

project, derived from the various flight program changes that required corre-

sponding configuration changes. No. 9 had been configured initially for a

ballistic instrumented flight, then for a ballistic primate flight, next for a three-

orbit instrumented mission, and finally for a three-orbit chimpanzee flight? s

Another factor contributing to the long preparatory period was that the
data obtained from the MA-4 mission demanded a number of modifications.

For the environmental control system, a locking devicc was added to thc oxy-

gen emergency rate handle, while thc inverters, one of which had failed during

MA_, were put through a severe vibration-test program. Since some unbond-

ing had occurred on the heatshield of the MA-4 spacecraft, x-rays twice were

made of the ablative layer to determine the soundness of the glue line. For

the explosive side egress hatch, as yet untried on an orbital mission, thermo-

couples were added and a limit switch was installed to signal any premature

hatch firing, an experience that cost the loss of a flight-tested spacecraft in MR-4.

And the horizon scanner sensor system was modified to avoid the erroneous

signals {rhilsmitted during the orbit of the "mechanical man." aD

Thus the spacecraft mounted on At!as No. 93-D for MA-5 differed con-

siderably from that used on the September orbital flight. This was anothcr

reason Haney had said that "the men in charge of Project Mercury" wanted

another qualifying round before a manned mission. Besides modifications

already described, No. 9 had a landing bag installed and a large viewing window.

Although the window had been used on MR-4 and had proved useful to Astro-

naut Grissom, it had not been subjected to thc much greater reentry heat the

MA-5 capsule would encounter. Aside from these new components, No. 9

had about the same equipmcnt as carricd in MA 4--tape recorders for gather-
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ing data and exercising the communications network, cameras, and radiation

film packs. Of course, "Enos," the chimpanzee eventually selected from the

colony in training, would need no simulator to do his breathing or perspiring.

He had his own metal-plastic pressure couch, which was connected to the suit

circuit of the environmental control system. 4°

The spacecraft operated in a fashion similar to the first orbital Mercury

vehicle. Once again, as during MA-4, the hydrogen peroxide fuel supplies for
the automatic and manual control systems were linked to provide a common

reservoir. The automatic stabilization and control and rate stabilization con-

trol systems would be operated separately, so that the performance of each could

be evaluated. The automatic system was programmed to exercise capsule atti-

tude control until one minute after the .05-g light signal; then the rate system

would take over for reentry, providing a constant-roll rate of about 7.5 degrees

per second as well as damping motions in the yaw and pitch axes. The rate

system would switch off at main parachute deployment. 41

Recovery aids and operations, too, were about the same as for MA-4, includ-

ing radar chaff, solar bombs, a flashing light, and dye marker. The probable

launch abort recovery areas were spaced and designated as before, although

there were more contingency recovery areas beca.use the mission was longer.

For each of the three planned orbits about five contingency locations were

selected. During the second orbit, for example, the emergency landing areas
included the Atlantic Ocean near the west coast of Africa, the Indian Ocean

near the east coast of Africa, the Indian Ocean near the west coast of Australia,
and the Pacific Ocean either 440 miles southeast of Hawaii or 165 miles south-

west of San Diego. The primary recovery zone shifted following the comple-
tion of each full orbitY

Space Task Group officials expected delivery of the MA-5 launch vehicle,

Atlas No. 93-D, about mid-August 1961, but it was decided by STG and the

Air Force to delay shipment until the flight of MA-4. Then, when faulty

transistors had delayed the MA-4 launch, intensive quality assurance inspec-
tions of the transistors had to be initiated. The electronic gear of the rocket was

also modified, its 100-watt telemetry system was replaced by a 3-watt transistor-

ized unit, and the autopilot circuitry was altered to alleviate the high vibrations

experienced during the first orbital Mercury' flight. These changes dragged

the delivery date back to October 9, 1961. In Washington, George Low warned
Seamans that the time needed to secure several components necessary for these

modifications might affect the delivery date of Atlas No. 109-D, the booster
scheduled to launch the first astronaut into orbit. No. 93-D was the third

"thick skin" Atlas booster, employing a heavier gauge of metal in its forward
tankY

According to plans, which now were to approximate those for the manned

orbital mission as nearly as possible, MA-5 would rise from complex 14 at Capc

Canaveral on a heading 72.51 degrees east of north. Orbital insertion of thc
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spacecraft should occur about 480 miles from the Cape at an altitude of 100

miles and at a speed of about 25,695 feet per second. Retrofire to initiate entry

into the atmosphere was planned for 4 hours, 32 minutes, and 26 seconds after

launch. Twenty-one minutes and 49 seconds later the spacecraft should hit

the water in the Atlantic. Estimated temperatures during reentry should be

about 3000 degrees F on the heatshield, 2000 degrees on the antenna housing,

1080 degrees on the cylindrical section, and 1260 degrees on the conical section.

The STG operation planners estimated that the spent Atlas sustainer engine

would reenter the atmosphere after 9y3 orbits, a considerable change from their
estimates for the descent of the MA-4 rocket. 44

TRAINING PRIMATES AND MEN

For the all-important task of checking out the environmental control system

on a long-duration flight, a chimpanzee was chosen to "stand in" for man. As

in the preparation for Ham's suborbital mission on MR-2, two colonies of chimps

traveled to the Cape about three weeks before the flight date. Again the mili-

tary handlers from Holloman Air Force Base separated the colonies to prevent

cross-infection. Training involved restraining the animals in a pressurized flight

couch, with biosensors attached to their bodies at various points. And psycho-

motor training that had been started in New Mexico was continued at the Cape

so that the animals' proficiency would not deteriorate. 45

On October 29, 1961, three chimps and 12 medical specialists moved into

their Cape quarters to join two other simians and eight persons already in flight

preparation status. The name given to "Enos," the animal selected as the flight

test subject, in Greek or Hebrew means "man," and the training and flight

performance recorded by this chimpanzee proved the sobriquet to be well chosen.

Captain Jerry Fineg, chief veterinarian for the mission, described Enos as "quite

a cool guy and not the performing type at all." This "immigrant" from the

French Cameroons had none of the tendencies of his circus-trained counterparts.

Enos' backup "pilots," listed in order of their flight readiness ability, were

"Duane," named for Duane Mitch, a veterinarian; "Jim," named for Major

James Cook, of the same profession; "Rocky," named for a well-known pugilist
(Graziano) because of his cauliflowered ear and pugnacious spirit; and "Ham,"

the astrochimp veteran. The ratings were made by Fineg and another Air

Force officer Marvin Grunzke. Fineg later learned that when these same chimps

had gone through their earlier launch and reentry training on the centrifuge at

the University of Southern California, they had been rated in the same orderY

The psychomotor equipment used by Enos on the MA-5 mission was more

complicated than that operated by Ham during the Mercury-Redstone 2 sub-

orbital flight. Housed in the cover of his pressurized couch, Enos' package was

rigged to present a four-problem cycle. The first would last for about 12 minutes,

and the second followed six minutes of rest. The routine would proceed until the
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cycle was completed, then the four problems would be repeated until the mission

ended. Problem one would offer right- and left-hand levers that Enos could use

to turn off lights, avoiding a mild shock in the left foot (the same as for Ham).

The second problem planned was a delayed-response experiment. Twenty sec-

onds after a green light would appear on the panel, Enos would have to press a
lever to receive a drink of water. Although there would be no penalty for his

failure to respond, if the chimpanzee should pull the lever too early the problem

would simply recycle and he would receive nothing. The third, a fixed-ratio

problem, would involve pulling a lever exactly 50 times to receive a banana pellet.

This would also be voluntary and without penalty. Chimpanzee intelligence

would be tested in the fourth. Three symbols--circles, triangles, and squares--

would appear in various two-of-a-kind combinations, with the task being to pull

a lever under the odd symbol to avoid a mild shock. Lack of response during

rest periods would give the indication that the animal was well oriented to his

spacecraft environment) z

Planning for this second trial of the Mercury worldwide tracking network

was elaborate. Supporting the MA 5 mission were 18 stations, plus the Goddard

Space Flight Center and the Mercury Control Center. Goddard and the Control

Center furnished computer support and management of the overall operation,

respectively.

Station Type

Mercury Control Center ...................... Launch
Cape Canaveral (AMR) ..................... Launch
Grand Bahama Island (AMR) ............... Downrange tracking
Grand Turk ................................ Downrange tracking
Bermuda ................................... Computer
Atlantic Ocean Ship ......................... Remote tracking
Canary Islands .............................. Remote tracking
Kano, Nigeria .............................. Remote tracking
Zanzibar, Africa ............................ Remote tracking
Indian Ocean Ship .......................... Remote tracking
Muchea, Australia .......................... Command
Woomera, Australia ......................... Remote tracking
Canton Island .............................. Remote tracking
Kauai, Hawaii .............................. Command
Point Arguello, California .................... Command
Guaymas, Mexico ........................... Command
White Sands, New Mexico .................... Remote tracking
Corpus Christi, Texas ........................ Remote tracking
Egiin Air Force Base, Florida .................. Remote tracking
Goddard Space Flight Center, Maryland ........ Computing and

communications

With the exception of White Sands, all stations would receive "real time" telemetry

data, consisting of magnetic tape recordings, Sanborn recorder displays, meter

displays, and clock displays. The overall operation of this network was a vast

cooperative undertaking of the Department of Defense, NASA, and industry. 4_
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Nov. 29, 1961

Enos in his couch

prior to launch.
Enos returns to the Cape

[ollowing his space flight.

Seventy-three key people assigned to the various stations received their final

mission briefing on October 23. Once again the tracking teams included several

Mercury astronauts. Shepard was assigned to Bermuda, Schirra to Australia,

Slayton to Guaymas, and Cooper to Point Arguello, while at the Cape, Carpenter

had a station in the blockhouse, Grissom was the capsule communicator in the

Mercury Control Center, and Glenn served as backup capsule communicator in
the center. '_

CHIMPANZEE INTO ORBIT

By mid-October, reported George Low to NASA Headquarters, problems

with capsule No. 9 and booster No. 93 D had forced STG to delay the launch
from November 7 to November 14. On November 11, however, after the

preflight checkout crew found a hydrogen peroxide leak in the fuel line of the

capsule manual control system, the earliest possible launch date slipped to

November 29? 0 Although NASA did not comment officially on the effect of
the delay, chances for a manned orbital mission in 1961 now were dim? _

On November 28, 1961, an 11 ½-hour launch preparation count began for

MA 5. The count stopped at T minus 390 minutes, to be resumed the next day.

Some 11 hours before the launch, Enos, the 39-pound chimpanzee, underwent

his final physical examination, stood still as his medical sensors were taped on,

allowed himself to be secured in the specially constructed primate couch, and

rode in the transfer van to the gantry. About 5 hours before launch the couch
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wasinsertedin thespacecraft.ThereafterEnos'conditionwasmonitoredby
linesconnectedto hiscouchin theMercurycapsuleandbyradiotelemetry.He
wasrelaxedduringcountdown.His temperaturerangedfrom 97.8 to 98.4
degrees,normalfor thesuitinlettemperatureof about65degrees;hisrespiration
averaged14;andhispulseratewas94. TheonlytimeEnosdisplayedagitation
waswhenhewasrousedby theopeningof thehatchduringa countdownhold
causedbya telemetry link failure at T minus 30 minutes. The gantry was hauled

back to the spacecraft, the hatch was opened, and an off-and-on switch was

correctly positioned. This hold lasted 85 minutes. Some members in the control

center joked that Enos had turned the switch off because he had talked to Ham

and did not want to go. _"

In the Mercury Control Center the flight control monitors had manned their

stations and were busily checking out their consoles. Tecwyn Roberts, serving

as flight dynamics officer, noted the intermittent problems cropping up in the

data-gathering and translating computers. A faulty transistor in the direct data

receiver caused one hold, and when the replacement was also faulty, several more

minutes were lost in repairing the computer. Morton Schler, the capsule environ-

ment monitor, reported that the environmental control system was working

smoothly. The Freon flow rate, he reported, leveled at a comfortable 20 pounds

per hour in the preIaunch period. From the oxygen partiaI-pressure transducer

some erratic readings proved erroneous; Mercury Control teletyped the tracking

stations to discount these readings as the spacecraft passed over. 53

Holds during the countdown amounted to almost 2 hours and 38 minutes.

Shortly after the hatch was bolted at T minus 90 minutes, the technicians dis-

covered that they had failed to install some hatch cover heat insulation material.

They took a little more than an hour to correct this oversight. Then, at T minus

30 minutes, the discovery of an improperly positioned switch necessitated the

85-minute hatch-opening hold. And finally, at T minus I5 minutes, a 4-minute

hold was called to correct a data-link problem between Mercury Control and the

General Electric ground command guidance equipment.

Walter Williams, the mission director, listened as the various difficulties arose

and became somewhat agitated at the chain of events. Although his usual position

during such times was at a console in the mission control center, he left the building

and quickly drove the distance to pad 14 to personally express his expectations

that things would proceed in a more orderly manner. As a member of Convair

later said, "Williams was a master in imparting a need for orderly urgency."

Despite these holds, weather conditions remained favorable. Only a few thin

cirrus clouds hung in the sky, visibility was I0 miles, and the surface wind velocity

was at a moderate 11 miles per hour from the northwest. In the landing area
the weather was even better. _'

The Goddard computers received the liftoff signal 13 seconds before the

booster actually rose from the pad, an error apparently caused by feedback between

two recorders. Nor was this the last incorrect signal. The Goddard computers
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registered sustainer engine cutoff twice before that event happened, once shortly

after liftoff and again two minutes after launch. In each case the Mercury Control

Center had to switch to override the signal until the panel indicator cleared? _

Liftoff came at 10:08 a.m. The powered phase of the flight went well, although

there were minor discrepancies. Between liftoff and staging, the horizon-scanner

signal was lost briefly. All spacecraft systems nevertheless appeared to be work-

ing normally, with the guidance system of the Atlas keeping the booster on an

almost perfect insertion trajectory. Guidance system noise was only about half
that recorded during MA-4, and vehicular vibration also was much lower. Four

and a half minutes after launch, Christopher C. Kraft, Jr., unhesitatingly made

the go-for-orbit decision. At sustainer engine cutoff, the velocity, flight angle, and

altitude were nearly perfect. The Atlas hurled the spacecraft into an orbit with

a perigee of about 99 miles and an apogee of 147 miles, .5 and 5.4 miles low,
respectively. 5_

Spacecraft and booster separation occurred precisely as planned, while the

turnaround maneuver took less than 30 seconds. The capsuIe's position excur-

sions were very slight, which contrasted sharply with the erratic turnaround of

MA 4. The spacecraft quickly dropped into its 34-degree orbit mode and began

streaking over the oceans and continents. Of the 61.5 pounds of control fuel

aboard, turnaround and damping had consumed 6 pounds, as opposed to 9.5

for MA 4. From that point and on through the first orbit the thrusters used
only 1.5 pounds to maintain a correct position, with the automatic stabilization

and control system functioning perfectly.

The environmental control system and the tracking and communications
network performed in a satisfactory fashion. On this mission, for the first time,

the primary and secondary oxygen bottles were pressurized at 7500 pounds per

square inch (the design specification) rather than at 3000, as on previous flights.

A functioning water separator also was used for the first time. Each tracking

station's range on the ultra-high-frequency band lasted for about six minutes; on

high frequency, overlap communications between stations were similar to that

experienced during MA 4. The Goddard computers received valid telemetry data
from all stations except Woomera, but there were instances when communica-

tions were momentarily lost at particular stations. Just before retrofire, for exam-

pie, Point Arguello, the site giving the firing command, lost contact with the Cape.

In each instance, as Walter Williams would point out at the postflight press

conference, communications were reestablished whenever that particular station
was needed? 7

Enos, the orbiting chimpanzee, fared well. He withstood a peak of 6.8 g

during booster-engine acceleration and 7.6 g with the rush of the sustainer engine.
He had been performing his lever-pulling duties for some two minutes before thc

Atlas roared and rose from the pad. During his two orbits he made 29 pulls
(divided among four sessions) on the continuous-avoidance and discrete-avoidance

levers, receiving only one shock in each category. On his second problem, which
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required at least a 20-second delayed response to receive a drink of water, his

average delay was about 33.8 seconds. For these labors he was rewarded with a

total of 47 measures of water, or about a pint during the three-hour mission. For

the fixed-ratio task, problem three, Enos pumped his lever and received 13

banana pellets during his four opportunities. On the first session of problem Four,
Enos was correct for 18 out of 28 symbol presentations (64.2 percent), thus

receiving 10 shocks as a result of his miscues. On the second session of problem

four, however, the center lever malfunctioned, causing shocks even if he pulled
the correct lever. He received 36 and 43 successive shocks on the third and fourth

sessions, respectively, because a manmade device had failed. The shocked and

frustrated chimpanzee nevertheless kept pulling the levers. As he was also trained

to do, Enos remained at rest during the six-minute intervals between problems? s

Near the end of the first orbit, the tracking monitors noted that the capsule

clock was about 18 seconds too fast and as it passed over the Cape a corrective

command was dispatched to and accepted by the clock. At that time the Mercury

Control Center display panels indicated that all spacecraft systems were in good

order. Suddenly the Atlantic tracking ship reported that inverter temperatures

were rising. The Canary Island trackers confirmed the environmental control

system malfunction. Since abnormal heating had occurred on earlier flights

and the inverters had continued working or had switched to standby, there

was no alarm among members at Mercury Control. Then, across the world from

the Cape, Muchea, Australia, detected high thruster signals and capsule motion

excursions, although other data indicated that the 34-degree orbit mode was

being maintained. The Woomera, Australia, tracking station failed to confirm

this report, and it was discountedP D

By the time the MA-5 capsule reached the vicinity of the Canton Island

station, the operations team realized that the attitude control system was allowing

the vehicle to go out of its proper orbital mode. A metal chip in a fuel supply

line (the postflight inspection would reveal) had cut off the propellant flow to one
of the clockwise roll thrusters. This inactive thruster allowed the spacecraft to

drift minus 30 degrees from its normal attitude, at which point the automatic

stabilization and control system brought the spacecraft to zero in a normal roll-

turn maneuver. Then the spacecraft swung briefly back into the nominal 34-

degree orbital attitude, and the sequence started again. The spacecraft repeated

this process of drift and correction nine times before retrofire and once more

between retrofire and the receipt of the .05-g light telemetry signal. The still-active

thrusters used about 9.5 pounds of control fuel working to keep the capsule

properly aligned. Each loss of orbit mode cost a little over a pound of fuel

compared with a first-orbit expenditure of only 1.5 pounds. G°
The cooling equipment in the environmental control system also began

to give trouble during the second orbit. Between the Canary Islands and Kano,

the suit circuit temperature rose rapidly from 65 to 80 degrees, indicating a freez-

ing condition in the heat exchanger. As water in the felt evaporator pad of the
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exchanger turned to ice, Enos' body temperature climbed to 99, then to 100

degrees. The medical observers began to worry, especially about the chimp's

ability to handle his psychomotor test problems. Then, at I00.5 degrees, his body

temperature appeared to stabilize, suggesting that the em'ironmental system

was ceasing to overheat. Their fears relieved, the physicians felt that the mission

could continue. Ahhough the cooling system had seemed to correct itself, Kraft,

the flight director, later remarked that a deicing unit should be added to warm

the troublesome unit, which had also cau_d a freeze-up on MA 4. c' Although

the medical monitors were willing to allow the mission to proceed through its

scheduled third pass around the world, the operations team believed that the

problem of the spacecraft's erratic attitude was too grave to live with. The engi-

neers felt that there simply was not enough attitude fuel left to complete the

circuit and then go through the reentry phase, in which, even under normal circum-

stances, fuel usage would be high.

After the attitude aberrations were first noted, Kraft had alerted the tracking

unit in Hawaii for a possible clock change to initiate retrofire during the second

orbit. Then he decided to continue the flight toward California and notified

Gordon Cooper at Point Arguello that that station might have to initiate a

ground command for retrofire. Meanwhile, the capsule continued to drift and

swing in and out of the orbital mode, demonstrating that the attitude control

system, unlike the environmental control system, would not solve its own problems.

Twelve seconds before the retrofire point was reached for the normal second-

orbit primary recovery point, Kraft decided to bring Enos back to Earth. Arnold

Aldrich, MSC's chief flight controller at Point Arguello, correctly executed the
command._-_

With the exception of the one repeated variation in attitude position, caused

by the dead roll thruster, reentry went according to plan. The destroyers Stormes

and Compton and a P5M airplane began preparing for spacecraft retrieval in

Station 8, the predicted impact point. Three hours and 13 minutes after launch

and about nine minutes from water impact, the P5M spotted the descending

spacecraft at an altitude of about 5000 feet and radioed the Stormes and the Comp-

ton, 30 miles away. All spacecraft recovery aids except the sarah beacon func-

tioned properly. During the spacecraft's descent, the airplane circled and

reported landing events, then remained in the area until the Stormes arrived,

an hour and 15 minutes after the landing, and hauled Enos and his spacecraft

aboard. Shortly thereafter the hatch was explosively released from outside the

capsule by a pull on its lanyard, causing the chimp's "picture" window to crack, c_

Aboard the Stormes and later at Cape Canaveral, Manned Spacecraft Center

and McDonnell engineers gave the capsule the usual close scrutiny and happily

found that it had held up well. Except for a slight discoloration caused by aero-

dynamic heating, the exterior showed no buckling or warping. The interior

was in good shape, too, although the inspectors did find a small amount of salt

water. Activation of the explosive hatch caused minor damage in the form
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of the cracked window, several bolts pulled from the skin, and a slight buckle.

Thermodynamic effects on the ablation heatshield had produced several radial

and circular cracks, none of which had been severe enough to threaten the

capsule's structural integrity. The center plug of the heatshield was missing (it

had only worked loose on MA-4), but close inspection of the opening showed that

the plug had evidently been in place during reentry. Condition of the impact

bag, which had survived its first orbital test, was fairly good, although several

straps were broken and others were severely bent. Again the plastic bulkhead was

pierced, probably by the heatshield, and the honeycomb material was crushed in

several places. There was no damage to the tubing or wiring in this area. G4

At the Cape postflight press conference the leaders of Project Mercury revealed

no regrets over missing a third orbit. They seemed to regard the reprogram-

ruing operation, conducted in the middle of the mission, as a satisfying technical

accomplishment. In view of the decisiveness with which the various potentially
critical difficulties had been overcome or circumvented, MA-5 had to be termed

an excellent operation, one that had achieved most of its objectives and that
would become a milestone on the road into the unknown.

Enos had been weightless for 181 minutes and had performed his psycho-

motor duties with aplomb. Operations director Williams felt that an astro-

naut riding in the MA-5 spacecraft could have made the necessary corrections

in flight to complete the three-orbit mission normally. On the spacecraft atti-

tude control problem, for example, a man could simply have switched from

automatic to manual mode, he said. At the same time, Williams was pleased

that the automatic systems had worked well for over two hours. Equally sig-

nificant, the vast network of NASA, military, and industry personnel had per-

formed like veterans during the emergency. The spacecraft had reentered and

landed without handing the Navy any unexpected recovery problems.

Now n MAN IN ORBIT?

The press corps at the usual postflight press conference listened courteously

to this technical postmortem, but their main concern was whether another test
mission would be flown before a manned orbital flight. Williams and Gilruth

cautiously replied that first the MA-5 data would have to be thoroughly evalu-

ated. Then the reporters wanted to know who had been selected to make

Mercury's first manned orbital flight. Gilruth was ready for that one; he an-

nounced the team members for the next two missions. John H. Glenn was

the selected prime pilot for the first mission, with M. Scott Carpenter as his

backup. Donald K. Slayton and Waiter M. Schirra were pilot and backup,

respectively, for the second mission. _ This announcement represented a con-

siderable change from the tighter news policy regarding crew selection that had

prevailed in suborbital days.

Meanwhile Enos had his moment. After the urbane anthropoid came
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aboard the Stormes, he ate two oranges and two apples, his first fresh food since

he had gone on a low-residue pellet diet. The destroyer dropped Enos at the

Kindley Air Force Base hospital in Bermuda, where Jerry Fineg took over. The

chimp was walked in the corridors and appeared to be in good shape. His body

temperature was 97.6 degrees; his respiratory rate was 16; and his pulse was 100.

Apparently reentry, reaching a peak of 7.8 g, had not hurt him. His composure

at his "press conference" surprised the correspondents. One reporter remarked

that Enos, unlike Ham, did not become "unhinged" with the popping of the

flash bulbs. On December l, Enos reached the Cape for another round of

physicals, and a week later he departed for his home station at Holloman, and
well-deserved retirement2 _

Enos' fame was short-lived. Public attention now turned to the supposedly

imminent American manned orbital flight, although there still was no assur-

ance that a spacecraft would next carry a man. Speculation mounted when

Atlas 109-D was hauled into the Cape on the night of November 30. News-

men immediately gathered around B. G. MacNabb, the Convair preparation

chief, to ask when the checkout wouId start. "Tomorrow," he replied. When

arked if there would bca crash effort in order to make the flight in 1961, Wil-

"We're a Little Behind the Russians and
A Little Ahead of the Americans"

A humorous view o[ the implica-

tions o[ the "monkey flights" to

the space race was offered by

cartoonist John Fischetti of the
Newspaper Enterprise Association.
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liams said that three shifts were working a 168-hour week (all the hours possi-

ble), and that no special pressure would be applied. None of these statements

dampened speculation by the pre_,_ early in December. Signs, rumors, and

portents cropped up daily. One correspondent, for example, noted that John

Glenn had moved into special quarters at the Cape, adding that NASA had

requested Atlantic Missile Range support beginning on December 20 and con-

tinuing to year's end Y

If NASA had ever been involved in a drive to put an American in orbit in

the year of the Vostoks, that effort halted on December 7, the 20th anniversary

of the Pearl Harbor attack. Almost casually Gilruth and Williams announced

that the flight was now scheduled for early 1962. The decision, said MSC offi-

cials, had been influenced by "minor problems dealing with the cooling system

and positioning devices in the Mercury capsule." The official press release did

state that NASA considered the spacecraft, its systems, and the tracking network

qualified for manned flight. It had been apparent to many NASA officials for
some time that the manned orbital launch might have to be postponed until

1962. George Low, at NASA Headquarters, had recognized the probability

soon after mid-October, when he wrote, "The pad conversion time between

MA-5 and MA-6 is exceedingly short if MA 6 is to remain on schedule." On
schedule meant December 19.

Hugh L. Dryden summed up his philosophy regarding adherence to sched-

ules for manned flight when he said, "You like to have a man go with every-

thing just as near perfect as possible. This business is risky. You can't avoid

this, but you can take all the precautions you know about. ''c_

Although there was regret that this country did not get a man into orbit

before the Soviets, or at least in the same year, 1961 had recorded substantial

progress toward making the United States a spacefaring nation. In contrast

with the atmosphere of uneasiness marking the end of 1960, the Manned Space-

craft Center engineers now knew that they were on the brink on fulfilling Project

Mercury's basic objectives. The rehearsals were over.
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Mercury Mission Accomplished

ROSPECTS looked bright to the managers of Project Mercury at the begin-
ning of 1962. In store was Mercury-Atlas 6, scheduled as a manned orbital

flight and viewed by some as a salvage operation for America's space prestige.

If one of its citizens, Marine pilot John Glenn, journeyed successfully through

space on a multi-orbit global mission, the United States would at least begin

matching the pace set by the Soviet Union. Although a 3-orbit trek would by
no means equal the 17-orbit, day-long voyage of Gherman S. Titov, the immi-

nence of the mission had helped to allay national uneasiness somewhat. The
notion that the manned orbital launch should be made in 1961 to coincide with

Russian feats in the history books subsided with the end of the old year; 1962

was now here. Whatever regrets the American people had harbored over the

numerous delays in Project Mercury, they seemed reconciled to schedule slippages

if safety demanded them.

But the new year was barely three days old when the news media learned

that the announced launch date of January 16 had been postponed until January

23, at the earliest, because of technical problems in the booster fuel tanks. With

each succeeding delay, and there would be several more, journalists and Con-

gressmen became a little more critical and fidgety. Once again, as on several

previous occasions, the pre_ spoke of the "space gap," and doubts were raised

by some writers that the Mercury undertaking would ever succeed. A senior

member of the House Committee on Science and Astronautics, Republican James

G. Fulton of PennsyIvania, apparently subscribed to this feeling when he re-

marked, after viewing a January 27 MA-6 launch attempt, that the Mercury

spacecraft and Atlas booster could be described as "a Rube Goldberg device on

top of a plumber's nightmare." President Kennedy disclosed at a news con-

ference on February 14 that he too shared the general disappointment voiced

about delays in the program, but he added that the decision to go or not to go

should be left to the "group who are making the judgment." Moreover, he

reaffirmed his faith in the NASA Mercury team: "I'm going to follow their

judgment, even though we've had bad luck. ''_
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Statements issued by the Manned Spacecraft Center's operations team after

each postponement of the MA-6 mission were terse and technical, and their

frankness in reporting the reasons for these delays prompted some favorable news

comment. The Wall Street ]ournal commended NASA for its open information

policy, and pointed out that anything but "Candor at Canaveral" could only

hurt the "national image." In response to their persistent and sometimes annoy-

ing questions, reporters were quietly told that this mission had been in the

planning processes for almost three years and that a few more days' or weeks'

delay was of little consequence if confidence in its success could be raised another

notch. This acceptance of the situation by the Cape launch crew and operations

team stemmed from the program's composite flight test experience. John Glenn,

:knowing all of this, enjoined the press representatives covering the event not to
2

worry :

This mission has been in preparation for a long time. I can't get particularly
shook up about a couple of days' delay. As a matter of fact, I'm so happy to
have been chosen to be the pilot for this mission that I'm not about to get
panicky over these delays. I learned very early in the fllght-test business
that you have to control your emotions--you don't let these things throw you
or affect your ability to perform the mission.

The Mercury team alone knew what had to be right to make it go.

Back in October 1959, the MA-6 flight, possibly carrying a chimpanzee in

spacecraft No. 18, had been scheduled for launch in January 1961. But the

fortunes or misfortunes of manufacture and the ensuing flight test program forced

many schedule slippages, redesignation of flight order, and capsule configuration

changes to meet altered test objectives. According to an April 1960 chart, the

first manned orbital attempt (originally MA-7) was slated for a May 1961

launch. Six months later the planners moved the target date for this mission

to July, and after a similar interval they foresaw October as the likely launch

date. NASA Headquarters' approval of the proposal to add one-day missions

to the Mercury flight series required further schedule alterations. Several space-

craft had to be modified for the flights of longer duration. Spacecraft No. 13

was allocated to the MA-6 mission, replacing No. 18, which now was entered

into the modification cycle. In spite of all this shuffling, as late as October 1961

the program managers held hopefully to an anticipated manned orbital liftoff

within 1961. MA-6, instead of MA-7, the managers indicated, would car D'

the first astronaut into orbit, providing the MA-5 chimpanzee flight succeeded
in November?

A host of manufacturing changes had delayed the progress of spacecraft No. 13

as it traveled through the McDonnell production and checkout line. Number

13, beginning to take form in May 1960, also met with the usual fabrication

problems its predecessors had faced during assembly. On October 10, for ex-

ample, McDonnell reported to the Space Task Group that a shortage of

environmental control system components had completely halted work on the cap-
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sule's interior. At the end of January 1961, however, the company had started

a three-month test shakedown of the vehicle. Shortly after the completion of

this work the failure of the MA-3 mission on April 25 had forced a rearrange-

ment of spacecraft allocations, and McDonnell had been told by the NASA

planners to redesign No. 13 for the initial manned orbital mission. The factory

finished and delivered the spacecraft to the Cape on August 27. Four months

later, after a thorough checkout by the Manned Spacecraft Center's (formerly

Space Task Group) Cape team, on January 2, 1962, it was mated to its launch
vehicle, Atlas 109-D.'

These had been some of the trials that made planning and scheduling difficult

occupations, especially in a program that had been so often under national

scrutiny. Therefore, the successive MA-6 launching delays logged in the early

days of 1962 simply were noted and accepted, and the planners met to decide

when they could be ready to try again.

PREPARrr,rO A MAN TO ORBIT

Of course, hardware was only part of the problem of readying MA-6. What

about the second half of the "spacecraft-man" combination? Would the man

be just a passenger-observer or a participating system? By mid-September 1961,

Robert B. Voas, the astronauts' training officer, had drawn up a number of basic

specifications concerning the pilot's duties in MA-6 in answer to questions of this

sort. If some part of the automatic attitude control system should fail, for ex-

amp/e, the pilot would need to control spacecraft attitude using the manual

system. Or if displayed information on the spacecraft's attitude position should

malfunction, the pilot would have to take over and rely on his visual abilities for

position reckoning by external references. Voas had studied high-altitude photo-

graphs of the MA-4 flight and he knew that on the sunlit side of Earth the

horizon should quickly provide an excellent capsule attitude reference, but the

nightside might present problems unless there was bright moonlight. Possibly

known stars could serve as attitude reference points, he theorized. Voas also

felt that a comparison of window and periscope reference was needed2

To measure man's potential as a spatial navigator, Voas wanted the astronaut
to look for the smallest detectable landmark, to estimate the effects of weather

conditions on visibility, and to judge precisely the occultation of the stars by

Earth's atmosphere. Theoretically, from the vantage point of the orbital flight

trajectory an astronaut should see about a 900-mile arc of the horizon. He
should be able to determine how much of this was effective horizon in terms of

his ability to recognize a landmark with the unaided eye. One important facet

of any lSter space exploration, Voas said, would be man's visual acuity in esti-

mating spatial depth and distance; tracking an artificial object in a nearly identical

orbit during a Mercury circumnavigation would partially test this ability. The

spent Atlas tankage trailing the capsule should offer an excellent opportunity
in this respect.
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Ever since the Soviet reports of Gherman Titov's sensations of dizziness and

nausea caused by his head and body movements, some aeromedical specialists had

worried that perhaps the prolonged absence of gravitational stress did adversely

affect a space passenger or pilot. Voas, considering this subject, contended that

it was impossible to say whether Titov had had a purely personal aversion to

weightlessness or whether men in general would have similar troubles under

zero g. Neither Alan Shepard nor Virgil Grissom had experienced vertigo dur-
ing the two Mercury suborbital flights. Voas felt that if disorientation and

nausea were in fact products of longer durations of weightlessness, as some phy-

sicians and physiologists believed, the symptoms could be remedied through

preflight training, proper flight procedures, or, if necessary, by drugs.

Voas acquainted the astronauts with the probable effects of weightlessness on

their sensory organs. The otoliths, the ear's ,angular accelerometers, should not

be affected, he said. Muscle and skin sensory functions should be affected only

slightly, but those muscles sensing the amount of gravity would lose their acuity

completely. By and large, the general diminution of sensory perception accom-

panying space flight should be overcome by the astronaut's eyes and his memory.

To test his theories, Voas prescribed an experiment to be conducted on the dark

side of Earth. The pilot would touch certain panel dials with his eyes open and

then with his eyes closed, after moving his head quickly to the right, left, and

forward. Gordon Cooper expressed qualms felt by several people over Voas'

"blind flying" test when he remarked, "You shouldn't be reaching over on this

panel with your eyes shut."

Other tasks planned by Voas included taking pictures through the window and

periscope with a hand-held camera, describing the cloud cover on the day side,

and looking for lightning in squall lines as requested by the United States Weather

Bureau. On the night side the pilot should repeat those tasks and observe the

aurora and luminescence of Earth's clouds. Finally, he should scan the star fields,

the Milky Way, and note the size and appearance of the Moon as well as describe
a moonset. _

The September study by Voas included the initial efforts of the Space Task

Group to foster a scientific inroad into the manned space flight program. After

distributing his paper among the astronauts and receiving favorable comment

from several, Voas then sought the assistance of NASA Headquarters to obtain

a broader base for possible astronaut activities in space from the various scientific

disciplines that were available. Homer E. Newell and Nancy G. Roman of that

organization reacted by directing the formation of an ad hoc committee for

astronomical tasks for the Mercury pilots, assigning Jocelyn R. Gill as the com-

mittee chairman. This group was an offshoot of the formal Astronomy Sub-

committee, a part of NASA's Space Sciences Steering Committee/

As a beginning Gill and Voas attended a meeting of the Astronomy Subcom-

mittee held at the Grumman Aircraft Engineering Corporation, Bethpage, New
York, on October 30-31, 1961. Voas reviewed the abilities of the astronauts
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to assume some additional tasks, such as observations of astronomical phenomena.

He also cautioned that any integration of scientific equipment inside the space-

craft would have to be severely restricted in weight. The Astronomy Subcom-

mittee discussed the possibilities and then suggested 10 tasks that an astronaut

might accomplish. A few of these were: obsen,e the night airglow as to its

intensity and structure, look for comets before sunset and after dawn, note the

frequency of meteor flashes, look for the aurora and describe its intensity, sketch

the zodiacal light relative to the star background, and observe the size and position

relative to the star background of the gegenschein. _

Besides generally acquainting the Mercury astronauts with the spatial environ-

ment, their possible reactions, and what they might accomplish in the way of

operations and scientific observations, Voas also had pressed forward with a plan

for a specific training program to prepare the crewmen to operate and manage the

spacecraft systems on orbital missions. He first compiled a list of proposed training

activities, and then he called a meeting at Langley on September 26 to discuss

his report. The STG officers present adopted the training proposal, which became
a formal working paper on October 13. With slight sub_quent amendments,

this working paper, No. 206, spelled out the astronaut training and preparation

procedures that would be followed for the rest of the Mercury program:"

The first stated prerequisite for the astronaut, as formulated by Raymond G.

Zedekar of STG, was a thorough familiarity with the spacecraft and all its systems.

He must know every mission detail, including every flight and ground rule; he

would be expected to demonstrate peak performance in ever), task during the

flight; and his skills must include making failure diagnoses and taking the proper
corrective action.

Preparing the pilot for his role during an orbital mission, the astronaut

training personnel obviously could draw heavily on Shepard's and Grissom's

suborbital experiences. The nine separate checkouts of the spacecraft after it

arrived at the Cape, they felt, would provide excellent familiarization and systems

training for the prime pilot and his alternate, who would be assigned to take turns
in the capsule's contour couch. Then, if any modifications to the hardware or

change in methods should become necessary, either man would be fully prepared

to give valuable advice as well as to learn how the component change or new

procedure would affect the mission. But by all accounts, as particularly ascribed

to by the Mercury suborbital pilots, the best training sesssions for practicing both

normal and abnormal flight conditions in the Mercury program were those held

in the procedures trainer. There all phases of a mission--prelaunch, countdown,

launch, orbit, reentry, recovery, and emergency--could be simulated. The train-

ing planners decided that at least 30 hours of practice would be scheduled in this

McDonnelI-made trainer. On some occasions the simulation called for hooking

the trainer in with the Mercur T Control Center and the Bermuda tracking site,

an exercise that also would help the flight controllers check, promulgate, or

practice their communications and control procedures.
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Voas and his colleagues scheduled numerous other training activities that

would supposedly hone the astronauts to a fine edge. One such plan called for

the pilot or his designated stand-in to attend the spacecraft scheduling meetings,

operational planning sessions, and booster, spacecraft, and mission reviews. After

the spacecraft had been mated with the booster, the astronaut would have a key

role in the capsule systems test, sequential and abort exercises, and the simulated

flight that accompanied each countdown launch simulation. With the astronaut

sitting in the spacecraft, all countdown checks would be run up to the point of

hatch installation. Voas' training document stipulated that even the exercise of

slipping the pilot into his capsule should be practiced until the insertion crew had

it down perfectly. Besides all this work at the Cape, preflight trips were planned

to the Morehead Planetarium in North Carolina, so that the astronaut and his

backup pilot could fix star patterns in their minds as an aid to their orbital celestial

observations. To obtain a familiarity with angular motion, they would attend

sessions in the Pensacola Naval Air Station's "rotating room" and on the human

disorientation device. Egress training, the value of which Grissom vouched for

after his harrowing recovery, was scheduled on the open water in the Atlantic.

Finally, there were Morse code instruction, map study, and briefings by the

Weather Bureau support team on observation procedures. '°

All these varied tasks had to be scheduled in logical progression to bring about

a status of "flight readiness." The original training directive specified that an in-

tensive training program for an upcoming flight should begin with a comprehensive

study of all capsule instrumentation about 81 days before the launch was scheduled.

Nine days later, after the astronaut and his alternate had memorized everything

they could about the capsule instrument panel, they would start spending at least

three hours per week in the procedures trainer, making brief excursions to Langley

for sessions on the air-lubricated, free-axis (ALFA) trainer. In the procedures

trainer they would go through specific mission profiles. These included a normal

one-orbit mission, lasting about 90 minutes, with the astronaut in casual clothes;

five-hour sessions simulating three orbits, with the astronaut wearing a pressure

suit on some occasions; and 30-minute abort simulations, including such hazards

as the failure of the retropackage to jettison, failure of the spacecraft's main bat-

teries shortly after orbital insertion, and many other malfunctions covering every

conceivable contingency that the training officers could devise? 1

By December 1961, after Glenn and Carpenter had been publicly named for

the Mercury-Atlas 6 mission, training plans were expanded to include their medical

evaluations. For the altitude chamber simulated flight conducted about 45 to 60

days before the anticipated launch, Glenn was examined, fitted with biosensors,

suited, pressure-checked, and then loaded into the transfer van and medically

observed during the trip to the altitude test chamber. After he seated himself

in the couch, his biosensor data were checked, his electrocardiogram leads were

monitored, and the newly fabricated blood pressure equipment was exercised.

Also there was a checkout of the spacecraft's environmental control system. 1-"
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Jocelyn Gill also began planning the scientific aspects that Glenn might attend

to while he was in orbit, when she called the first meeting of the ad hoc committee

in Washington on December 1, 1961. William K. Douglas, Voas, and John J.

Van Bockel attended from the Manned Spacecraft Center. The main purpose of

this gathering was to adjust the suggestions emanating from the earlier meeting of

the Astronomy Subcommittee into a workable order to provide the astronauts with

as much background as possible of what they might expect to see in space. The

first piece of equipment for scientific purposes aboard the spacecraft discussed was

a small filter planned for use in studying the irregularities of the night-sky illumina-

tion and aurorae. For later missions an ultraviolet camera was suggested for pos-
sible use in photographing the stellar spectra. 13

Some eight days later Glenn, Carpenter, and Schirra accompanied Voas and

Douglas to a second meeting called by Gill. Point by point the requested astro-

nomical observations were explained to the three astronauts. Because of their

evident interest, Gill was of the opinion that such briefings, perhaps with even more

detailed information, should be provided at intervals as well as just before flight
time? 4

During the month before the MA-6 mission, Glenn underwent at the launch
site a realistic test termed "Pad Rehearsal No. 1 ." This exercise started with bio-

sensor and suiting-up preparations at the hangar, transportation to the pad, and

insertion of the astronaut into the spacecraft. Both the blockhouse and the Mer-

cury Control Center were tied into and participated in this exercise. Several days

later this operation was carried out again, and this time the gantry was pulled away
to make conditions more realistic. Then about three days before the scheduled

flight, after he had already begun his low-residue diet, Glenn went through a

simulated mission encompa._ing the.entire flight plan.

Other preflight medical activities included a complete physical examination

two days before the anticipated launch. The MercuD" physicians issued Glenn

a number of medications for his survival pack, including morphine for pain,

mephentermine sulfate for shock, benzylamine hydrochloride for motion sickness,

and racemic amphetamine sulfate (a common pep pill) for a stimulant. Radia-

tion-measuring film packs were tucked inside the spacecraft. 1'_

Glenn and Carpenter had completed most of their preflight training program
b,v the end of January, but the continuing delay of the MA-6 launch forced them

to go on with their crowded routine. Glenn spent 25 hours and 25 minutes in the

spacecraft during the hangar and altitude test chamber checks and uncounted

hours on the pad after the launch rocket and spacecraft were mated. On the pro-

cedures trainer between December 13, 1961, and February 17, 1962, he logged 59

hours and 45 minutes (far beyond the 30 required by the training directive) and

worked through 70 simulated missions in the process, reacting to some 189 simu-

lated system failures. Glenn and Carpenter, along with Donald Slayton and

Walter Schirra, already picked for MA-7, participated in a two-day (December

11 and 13, 1961) recovery exercise on the Back River near Langley Air Force
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Base, Virginia, easily making both top and side hatch exits. Later Glenn and

Carpenter, wearing life vests, carried out a survival equipment exercise off the

beach at Cape Canaveral. 16

Not only the pilots but many others were training for the MA-6 mission. On

Januar 3' 15, 16, and 17, 1962, recovery team swimmers practiced jumping fi'om

helicopters and placing the new auxiliary flotation collar around a boilerplate cap-

sule. The flight controllers who were to deploy to the remote tracking sites got

their final briefing on January 3 and left for their respective stations, where they

engaged in seven rather extensive network exercises. Mercury Control, Goddard,
and the Bermuda site conducted tests to check the Control Center-Bermuda abort

command sequence. On January 25, Eugene F. Kranz reported to Christopher

C. Kraft, the flight director, that the network team was at its peak condition. He

feared that motivation and performance might decline if the flight continued to be

delayed. _r

Although this was to be the first manned orbital flight in Project Mercury, ear-

lier flights set many precedents in the planning process for such items as recovery re-

quirements, mission rules, and test objectives, and consequently the mission plan-

ning for MA-6 was almost routine. The launch azimuth heading was to be the

same that Enos had followed into orbit riding MA-5; the recovery forces, now

thoroughly seasoned, although somewhat larger than for MA-5, were stationed

to cover essentially the same landing areas; ignition procedures and range rules

for the launch were about the same as on previous Mercury-Atlas missions. TM

BUILDUP FOR THE SPACE OFFENSIVE

Again NASA invited the world's news media to send representatives to cover

one of its launches. On December 5, 1961, Headquarters informed newspaper

and magazine editors that NASA was planning to accommodate up to 400 ac-

credited reporters. No exact flight date was mentioned, but the press was told

that the launch would occur "either late this ),ear or early the next." 19 All hopes

for a 1961 shot were dashed two days later when NASA Headquarters announced

the postponement of MA-6 until early 1962.

Work to assist the news media in covering the event had been proceeding at the

Manned Spacecraft Center for some time. Several months before the MA-6

launch, its Public Affairs Office, then under the direction of Lieutenant Colonel

John A. "Shorty" Powers, began preparing a "Public Information Operating

Plan," giving the estimated dates on which particular phases of the mission plan

would be carried out. Powers evaluated each segment of the plan and recom-

mended to the press various training and hardware preparation activities that the

reporters might be interested in covering, as well as arranging for the reporters to

cover flight-day activities. News release handouts were prepared covering almost

every conceivable phase of the flight, from what the pilot would have for breakfast

to an intricate discussion of how a spacecraft attitude control system should work.
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About five days before the anticipated launch date, Powers and his troupe estab-

lished a news center at Cocoa Beach, Florida. Some of his men were assigned

to pass out fact sheets, some were to record pictorial events surrounding the flight

for use by the news media, some were to seek answers to the myriad technical

queries posed by newsmen, and some were assigned to prepare advisories concern-

ing mission progress status.

Correspondents accredited by NASA, man}' clad in colorful beach raiment, de-

scended on the area. They avidly consumed the space agency's prepared informa-

tion, interviewed key figures of the NASA-DOD-industry operations team, sunned

on the beach, and pressed for more news and anecdotes after the evening meal.

Some critics likened the atmosphere to that of a circus, but literally hundreds of

thousands of words about every conceivable phase of the manned space program

poured out for the edification of the tax-paying masses. "° Surely in history no
program that still essentially was in its research and development stage had ever

been so open to the public through the eyes of the Fourth Estate.

The first "gathering on the beach" to view the MA-6 launch occurred on a

cloudy Saturday morning, January 27, 1962, after bad weather had forced the

launch to slip day-to-day from January' 23, when the firing was first intended.

The countdown ticked on but the overcast remained solid, and a general feeling

swept through the crowd of faithful "bird watchers" that this still was not the

day. Finally, at T minus 20 minutes Walter C. Williams, the mission director,

canceled the shot. The overcast was so heavy that the necessary camera coverage

of the early trajectory events would be impossible. "It was one of those days,"

said Williams later, "when nothing was wrong but nothing was iust right either.

I welcomed that overcast." _ John Glenn had been in his spacecraft, Friendship

7, named in a contest by his own family, a little over five hours. The re.schedul-

ing of the launch for February 1, four days ahead, necessitated emptying and

purging the Atlas of its propellants.

On January 30 the ground support crew once more began fueling Atlas 109-D.

During preflight checkout, a mechanic discovered, by a routine opening of a drain

plug, that there wa_s fuel in the cavity between the structural bulkhead and an

insulation bulkhead separating the fuel and oxidizer tanks. The launch vehicle

team estimated that, since the insulation had to be removed, a maximum of 10

work days would be needed to correct the problem and to check out the systems.

This delay would slip the launch date, and slipping the launch date caused prob-

lems for the recovery force. Some 24 ships, more than 60 aircraft, and a

number of specialized units, manned by a combined total of 18,000 personnel

around the world, had to consider whether they could remain at their stations

for a new date that might very well slip again. When all the tallies from the

widespread units were before the recover}, force commander, Rear Admiral John

L. Chew, February 13 seemed the earliest possible next try at MA-6. 2-"

On January 31, amidst an audible groan from more than 600 news-media

m
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Presssite2, CapeCanaveral,in the earlymorninghourso] January27, 1962.
Friendship 7 is silhouetted against gray clouds that would postpone the mission.

representatives who had managed to become accredited, the new launch date

two weeks ahead was announced. Two weeks more at the Cape was too much

for most of the benumbed newsmen; the exodus from the Florida peninsula

began immediately. Only the spacecraft and launch vehicle technicians were

left to minister, as Walter Williams termed it, to the "sick bird." Glenn took

severaI days off to spend some time with his family at home in Arlington, Virginia.
On one occasion he crossed the Potomac River to the White House for a brief

visit with President Kennedy, who asked him many semitechnical questions about

plans and systems for the orbital flight? 3

On February 9, as NASA personnel began to move back to the Cape, the

weather was still foul. Evidently the newsmen felt there was little chance

for a launching on the scheduled date; by the 13th only 200 had checked in at

the motels in nearby Cocoa Beach. They received some grist for the journalistic

mill at a press briefing arranged by NASA's Paul P. Haney and "Shorty" Powers.

Robert L. Foster from McDonnell answered some questions about the space-

craft and Major Charles L. Gandy and Lieutenant Colonel Kenneth E. Grine of

the Air Force answered others on the launch vehicle work and the general

state of readiness for the flight? *
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The turbulent February weather in Florida improved little in succeeding days,

and the space pilot continued to train. On the 15th, for example, Glenn, learning

upon awakening that the weather still held up the launch, slept until 9:30 a.m',

had breakfast, spent two hours on the procedures trainer, and that afternoon

studied the flight plan and technical documentation.

On February 19 the sky brightened; so did the spirits of the operations crew,

who immediately began the 610-minute split countdown. During the afternoon

the Department of Defense recovery force weather observers in the Atlantic re-

ported to Williams that they had favorable weather conditions. At the Cape,

however, the Weather Bureau personnel observed a frontal system moving across

central Florida which, they surmised, could cause broken cloudiness over the

Cape area on Tuesday morning (February 20). Williams, hoping for the best,

decided to continue and ordered the launch crew to pick up the second half of

the countdown at 11:30 p.m. on the evening of the 19th. 25

Meanwhile Glenn restudied the detailed mission sequence, first reviewing the

countdown progress and then looking over his flight plan and checking the equip-

ment list. That afternoon he attended another "final" mission review meeting,

called by Williams. Glenn believed an astronaut should study his spacecraft's

systems until the last possible minute before a flight. Shortly before he went to

bed that night he read a section in the flight controller's handbook on the automatic

stabilization and control system} °

AN AMERICAN IN ORBIT

Glenn was awakened once again at 2 :20 a.m. on February 20. After shower-

ing, he sat down to a breakfast of steak, scrambled eggs, toast, orange juice, and

coffee, At 3:05 the astronauts' flight surgeon, William Douglas, gave him a

brief physical examination.

Douglas, Glenn, and his suit technician, Joe W. Schmitt, were only three of a

multitude hard at work on the cloudy February morning. In the Mercury

Control Center procedures log, the flight control team noted at 3:40 that they

were "up and at it." The team immediately conducted a radar check, and

although ionospheric conditions made the results poor the controllers believed the

situation would improve soon. So they went on to check booster telemetry and

the Control Center's voice intercom system, both of which were in good order.

Shortly thereafter they found a fauhy communication link that was supposed

to be obtaining information about the capsule's oxygen system, but within minutes

they had corrected the problemY

At 4:27 a.m. Christopher Kraft, sitting before his flight director's console,

received word that the global tracking network had been checked out and was

ready. In Hangar S, Douglas placed the biosensors on Glenn, and Joe Schmitt

began helping the astronaut don his 20-pound pressure suit. At 5:01 the

Mercury Control Center learned that the astronaut was in the van and on his
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way to the launch pad. The van moved slowly and arrived at 5 : 17, 20 minutes

behind schedule. But the delay was of little consequence, for at 5 : 25 (T minus

120 minutes) troubIe had cropped up in the booster's guidance system. Since

this came during the built-in 90-minute hold part of the countdown for the

astronaut insertion activity, the delay was not likely to halt the readying pro-

cedures for very long. The installation of a spare unit and an additional

45 minutes required for its checkout, however, made a total of 135 minutes lost? s

Because of overcast weather and the guidance problem in the Atlas, Glenn

relaxed comfortably in the van until 5:58, when the sky began to clear. The

capsule and booster validation checks were progressing normally as he emerged

from the van, saluted the onlookers, and boarded the gantry elevator. At 6:03,

the operations team noted in its procedures log, the astronaut "put a foot into the

spacecraft." Once inside Friendship 7, Glenn noticed that the respiration sen-

sor--a thermistor attached to the astronaut's microphone in the air stream of

his breath--had shifted from where it had been fixed during the simulated flight.

Stanley C. White pointed out to Williams that a correction could only be made

by opening the suit, a very tricky operation atop the gantry. So the two officials

decided to disregard the slipped thermistor, even though faulty data would result.

White advised the range to ignore all respiratory transmissions. _

At last the technicians began to bolt the hatch onto the spacecraft, but at 7 : 10,

with the countdown proceeding and most of the 70 bolts secured, a broken bolt

was discovered. Although Grissom had flown in MR_ with a broken hatch bolt,

Williams, taking no chances this time, ordered removal and repair. Taking the

hatch off and rebolting would require about 40 minutc_, so the operations team

took this opportunity to run still another check of the guidance system on Atlas

109-D. Glenn evidently maintained his composure during this hold, with his

pulse ranging between 60 and 80 beats per minute. When a little more than

half of the bolts had been secured, he peered through the periscope and remarked

to Scott Carpenter and Alan Shepard in the Control Center, "Looks like the

weather is breaking up." _o

Minutes later the hatch installation was completed and the cabin purge was

started. A check of the cabin oxygen leakage rate indicated 500 cubic centi-

meters per minute, well within design specifications. At 8:05, T minus 60 min-

utes, the countdown continued, but after 15 minutes a hold was called to add about

10 gallons of propellant to the booster's tanks. Glenn had been busily going over

his capsule systems checklist. As the holds continued, he occupied his time and

relieved the pressure at various points on his cramped body by pulling on the

bungee-cord exercising device in front of his head in the capsule. The countdown

resumed while the liquid oxygen was being pumped aboard the Atlas, but at T

minus 22 minutes, 8 : 58, a fuel pump outlet valve stuck, causing still another hold? _

At that point in the countdown, Glenn, the blockhouse and Control Center

crews, and workers scurrying around and climbing on the gantry were joined by

some 100 million people watching television sets in about 40 million homes
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throughout the United States. Countless others huddled around radios in their
homes or places of business and about 50,000 "bird watchers" stood on the beaches

near Cape Canaveral, squinting toward the erect rocket gleaming in the distance.
Some of the more hearty and sun-tanned spectators had been at the Cape since mid-
January and had organized trailer towns, complete with "mayors." Mission an-
nouncer Powers, popularly known as "the voice of Mercury Control," who had

been at his post in the Control Center since 5 o'clock that morning, went on the
air to advise the waiting public of the status of the countdown and the cause for
the present hold.

With the stuck valve cleared, the count picked up at 9:25, but another sus-
penseful moment came at 6½ minutes before launch time, when the Bermuda
tracking station experienced an electrical power failure. Although the breakdown
was brief, it took several more minutes to steady the Bermuda computer.

At 9 :47, after two hours and 17 minutes of holds and three hours and 44 min-
utes after Glenn entered his "office," Friendship 7 was launched on its orbital jour-

ney. The Atlas, supported by its tail of fire, lifted off its pad, and Powers made
the announcement that this country had waited three long years to hear: "Glenn

reports all spacecraft systems go! Mercury Control is go!" As Atlas 109-D
lunged spaceward, Glenn's pulse rate climbed to 110, as expected. The Atlas and
its control systems telemetered signals that they were functioning perfectly. 32

Half a minute after liftoff the General Electric-Burroughs guidance system
locked onto a radio transponder in the booster to guide the vehicle until it was
through the orbital insertion "window." The vibration at liftoff hardly bothered
Glenn, but a hundred seconds later at max-q he reported, "It's a little bumpy

about here." After the rocket plunged through the max-q region, the flight
smoothed out; then two minutes and 14 seconds after launch, the outboard booster

engines cut off and dropped away. Glenn saw a wisp of smoke and fleetingly
thought the escape tower had jettisoned early, but that event occurred exactly on
time, 20 seconds later? 3

When the tower separated, the vehicle combination pitched over still further,
giving GIenn his first view of the horizon, which he described as "a beautiful sight,
looking eastward across the Atlantic." Vibration increased as the fuel supply
spewed out the sustainer engine nozzle, then abruptly stopped when the sustainer
shut down. The sustainer had accelerated the capsule to a velocity only seven
feet per second below nominal and had put the Atlas into an orbital trajectory only
.05 of a degree low. Joyously the operations team noted in the log, "9 : 52- - -We
are through the gates." Glenn received word that he could make at least seven
orbits with the orbital conditions MA-6 had achieved. To Goddard's computers
in Maryland the orbital insertion conditions appeared good enough for almost 100
orbits? 4

Although the posigrade rockets kicked the capsule loose from the booster at the
correct instant, the five-second rate-damping operation started two and a half
seconds late. This brief lapse caused a substantial initial roll error just as the
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capsule began its turnaround. The attitude control system managed the deviation

vei3_ well, but it was some 38 seconds before Friendship 7 dropped into its proper

orbital attitude. Turnaround spent 5.4 pounds of fuel from a total supply of 60.4

pounds (36 for automatic and 24.4 for manual control). Despite his slow auto-

matic positioning maneuver, Glenn made his control checks with such ease that it

seemed, he said, as if he were sitting in the procedures trainer. As Voas had asked

him to do, the astronaut peered through the window at the tumbling Atlas tank-

age. It had come into view exactly as Ben F. McCreary of MSC had predicted it

would. He could see the spent vehicle turning end over end, and he called out

estimates of distances between the separating vehicles: "One hundred yards, two

hundred yards." At one point Glenn's estimate matched the telemetry signal

exactly. He visually tracked the sustainer intermittently for about eight minutes} _

Glenn, noticing the onset of weightlessness, settled into orbital free flight with

an inertial velocity of 17,544 miles per hour and repot:ted that zero g was wholly

pleasant. Although he could move well and see much through his trapezoidal
window, he wanted to see even more. "I guess I'd like a glass capsule," he later

quipped. Weightlessness also helped him as he used the hand-held camera.

When his attention was drawn to a panel switch or readout, he simply left the

"weightless" camera suspended and reached for the switch. Dutifully carrying

out all of the head and body movements requested by Voas, he experienced none

of the sensations reported by Gherman Titov. While any Glenn-Titov compari-

son might be ruled invalid since Titov reportedly became nauseated on his sixth

orbit and Glenn flew only three orbits, MA-6 at least was to demonstrate to the

American medical community that there were no dkseernible adverse physiological

effects from over four hours of weightlessness2 G

The first orbit of Friendship 7 began ticking off like clockwork with the Canary

Islands reporting all capsule systems in perfect working order. Looking at the
African coastline, and later the interior over Kano, Nigeria, Glenn told the tracking

station team that he could .see a dust storm. Kano flight communicators replied

that the winds had been quite heavy for the past week? 7

Glenn, completing his spacecraft systems checks over the Canaries, had com-

mented that he wa_s getting a little behind in his schedule but that all systems still

were "go." Then, over Kano, he had commenced his own first major yaw adjust-

ment, involving a complete turnaround of the capsule until he was facing his flight

path. Glenn noted that the attitude indicators disagreed with what he could see

were true spacecraft attitudes. Despite the incorrect panel readouts, he was

pleased to be facing the direction his spacecraft was going? s
Over the Indian Ocean on his first orbit, Glenn became the first American to

witness the sunset from above I00 miles. Awed but not poetically inclined, the

astronaut described the moment of twilight simply as "beautiful." Space sky

was very black, he said, with a thin band of blue along the horizon. He could
see the cloud strata below, but the clouds in turn prevented his seeing a mortar

flare fired by the Indian Ocean tracking ship. Glenn described the remarkable
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sunset: the sun went down fast but not quite as quickly as he had expected; for

five or six minutes there was a slow but continuous reduction in light intensity;

and brilliant orange and blue layers spread out 45 to 60 degrees on either side of

the sun, tapering gradually toward the horizon.

On the nightside of Earth, nearing the Australian coastline, Glenn made

his planned star, weather, and landmark observations. He failed to see the dim

light phenomenon of the heavens called the zodiacal light; he thought his eyes had

not had sufficient time to adapt to the darkness. Within voice radio range of

the Muchea, Australia, tracking station, Glenn and Gordon Cooper began a

long space-to-Earth conversation. The astronaut reported that he felt fine, that

he had no problems, and that he could see a very bright light and what appeared

to be the outline of a city. Cooper answered that he probably saw the lights of

Perth and Rockingham. Glenn also said that he could see stars as he looked

down toward the "real" horizon- as distinguished from the haze layer he esti-

mated to be about seven or eight degrees above the horizon on the nightside--and

clouds reflecting the moonlight. "That sure was a short day," he excitedly told

Cooper. "That was about the shortest day I've ever run into." _9

Moving onward above the Pacific over Canton Island, Glenn experienced

an even shorter 45-minute night and prepared his periscope for viewing his first

sunrise in orbit. As the day dawned over the island, he saw literally thousands

of "little specks, brilliant specks, floating around outside the capsule." Glenn's

first impression was that the spacecraft was tumbling or that he was looking into

a star field, but a quick hard look out of the _:apsule window corrected this momen-
tary illusion. He definitely thought the luminescent "fireflies," as he dubbed the

specks, were streaming past his spacecraft from ahead. They seemed to flow

leisurely but not to be originating from any part of the capsule. As Friendship 7

sped over the Pacific expanse into brighter sunlight, the "fireflies" disappeared. '°

The global circuit was proceeding without any major problems, and Glenn

still was enjoying his extended encounter with zero g, He ran into some bother-

some interference on his broadband HF radio when he tried to talk with the

Hawaiian site at Kauai. An aircraft from the Pacific Missile Range tried un-

successfully to locate the noise source. Other than the mystery of the "fireflies"

and the intermittent HF interference, the minion was going fine, with the capsule

attitude control system performing perfectly.

Then the tracking station at Guaymas, Mexico, informed the control center

in Florida that a yaw reaction jet was giving Glenn an attitude control problem

that, as he later recalled, "was to stick with me for the rest of the flight." This

was disheartening news for those in the operations team, who remembered that

a sticking fuel valve discovered during the second orbital pass of the chimpanzee

Enos had caused the early termination of MA-5. If Glenn could overcome this

control problem he would furnish confirmation for Williams' and others' con-

tention that man was an essential element in the loop. If the psychologists'
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failure task analyses were correct, the flexibility of man should now demonstrate
the way to augment the reliability of the machine.

Glenn first noticed the control trouble when the automatic stabilization and

control system allowed the spacecraft to drift about a degree and a half per
second to the right, much like an automobile with its front wheels well out of

alignment. This drift initiated a signal in the system that called for a one-pound
yaw-left thrust, but there was no rate response. Glenn immediately switched
to his manual-proportional control mode and eased Friendship 7 back to orbital
attitude. Then, switching from mode to mode, he sought to determine how to
maintain the correct attitude position with the least cost in fuel. He reported

:that fly-by-wire seemed most effective and economical. Mercury Control Center
recommended that he stay with this control system. After about 20 minutes the

malfunctioning thruster mysteriously began working again, and with the excep-
tion of a few weak responses it seemed to be working well by the time Glenn was
over Texas. After only about a minute of automated flight, however, the op-
posing yaw-right thruster ceased to function. When similar trials and waiting
did not restore the yaw-right jet, Glenn realized that he would have to live with
the problem and become a full-time pilot responsible for his own well-being. 41

To the operations team at the Cape and to the crews at the tracking sites,
Glenn appeared to be coping with his attitude control problem well, even though
he had to omit many of his observational assignments. But a still more serious
problem bothered the Cape monitors as Friendship 7 moved over them. An
engineer at the telemetry control console, William Saunders, noted that "segment
51," an instrument providing data on the spacecraft landing system, was present-
ing a strange reading. According to the signal, the spacecraft heatshield and the
compressed landing bag were no longer locked in position. If this was really

the case, the all-important heatshield was being held on the capsule only by the

straps of the retropackage. Almost immediately the Mercury Control Center

ordered all tracking sites to monitor the instrumentation segment closely and, in

their conversations with the pilot, to mention that the landing-bag deploy switch
should be in the "off" position. Although Glenn was not immediately aware of

his potential danger, he became suspicious when site after site consecutively

asked him to make sure that the deploy switch was off. Meanwhile the opera-
tions team had to decide how to get the capsule and the astronaut back through

the atmosphere with a loose heatshield. After huddling for several minutes, they

decided that after retrofire the spent retropackage should be retained to keep the
shield secure during reentry. William M. Bland, Jr., in the control center, hur-

riedly telephoned Maxime A. Faget, the chief designer of the Mercury space-

craft, in Houston, to ask if there were any special considerations they needed to

know or to watch. Faget replied that everything should be all right, providing

all the retrorockets fired. If they did not, the retropack would have to be

jettisoned, because any unburned solid propellant would ignite during reentry.
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heatshield correct? If so, would the straps on the retropack keep the heatshield in

place long enough during reentry? And even if they did, was the thermal protec-

tion designed and developed into the Mercury, spacecraft truly adequate? Would
this, America's first manned orbital flight, end in the incineration of the astronaut?

The whole Mercury team felt itself on trial and awaited its verdict.

Glenn and Friendship 7 slowed down during their long reentry' glide over the

continental United States toward the hoped-for splashdown in the Atlantic. The

Corpus Christi station told Glenn to retain the retropack until the g meter before

him read 1.5. Busily involved with his control problems, Glenn reported over the

Cape that he had been handling the capsule manually and would use the fly-by-

wire control mode as a backup. Mercury Control then gave him the .05-g mark,

and the pilot punched the override button, saying later that he seemed to be in the

fringes of the g field before he pushed. Almost immediately Glenn heard noises

that sounded like "small things brushing against the capsule." "That's a real fire-

ball outside," he radioed the Cape, with a trace of anxiety perhaps evident in his

tone. Then a strap from the retropackage swung around and fluttered over the

window, and he saw smoke as the whole apparatus was consumed. Although his

control system seemed to be holding well, his manual fuel supply was down to 15

percent, with the deceleration peak still to come. So he switched to fly-by-wire

and the automatic tank supplyJ 5

Friendship 7 came now to the most fearful and fateful point of its voyage. The

terrific frictional heat of reentry enveloped the capsule, and Glenn experienced his

worst emotional stress of the flight. "I thought the retropack had jettisoned and

saw chunks coming off and flying by" the window," he said later. He feared that

the chunks were pieces of his ablation protection, that the heatshield might be dis-

integrating, but he knew there was nothing to gain from stopping work. 4_

Shortly after passing the peak g region, the spacecraft began oscillating _o

severely that Glenn could not control the ship manually. Friendship 7 swung far

past the "tolerable" 10 degrees on both sides of the zero-degree point. "I felt like

a falling leaf," Glenn would recall. So he cut in the auxiliary damping system,

which helped to stabilize the large yaw and roll rates to a more comfortable level.

Fuel in the automatic tanks_ however, was getting low. Obviously the heatshield

had stayed in place; Glenn was still alive. But now he wondered whether his cap-
sule would remain stable down to an altitude at which the drogue parachute could

be deployed safely.

The pilot's fears proved real when both fuel supplies ran dry'. Automatic fuel

gave out at 111 seconds, and manual fuel depleted at 51 seconds, before the drogue

deployment. The oscillations rapidly resumed, and at about 35,000 feet Glenn

decided he had better try to deploy the drogue manually lest the spacecraft flip over

into an antenna-downward instead of a heatshield-downward position. But just

as he lifted his hand toward the switch, the drogue automatically shot out at 28,000

feet instead of the nominal 21,000. Suddenly the spacecraft straightened out and,

as Glenn reported, "everything was in good shape." 47
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All systems in Friendship 7 worked with precision for the remainder of the

flight. At about 1%000 feet the periscope opened again for the pilot's use.
Glenn, instead, glanced out the window, but it was coated with so much smoke

and film that he could see very little. The spacecraft stabilized in its descent; the
antenna section jettisoned; and Glenn, with immense relief, watched the main
chute stream out, reef, and blossom. The Florida control center reminded Glenn

to deploy the landing bag. He flipped the switch, saw the green light confirmation,
and felt a comforting "clunk" as the shield and impact bag dropped into position
four feet below the capsule. Glenn watched the ocean coming up to meet him and
braced as the gap closed. Jolted by an impact that was more reassuring than
stunning, he bobbed in the water, checked his watertight integrity, and relayed his
elation that a successful MA-6 mission seemed assured?"

Friendship 7 had splashed into the Atlantic about 40 miles short of the pre-
dicted area, as retrofire calculations had not taken into account the spacecraft's
weight loss in consumables. The Noa, a destroyer code-named Steelhead,

had spotted the spacecraft during its descent. From a distance of about six
miles the destroyer radioed Glenn that it could reach him shortly. Seventeen min-
utes later, the Noa cruised alongside; a sailor smartly cleared the spacecraft an-
tenna; and Boatswain's Mate David Bell deftly attached a davit line for pickup.

During the hoist upward the spacecraft bumped solidly against the side of the
destroyer. Once Friendship 7 was lowered to the mattress pallet, Glenn began
removing paneling, intending to leave the capsule through the upper hatch. But it
was too hot, and the operation was too slow for the already long day. So he told
the ship's crew to stand clear, carefully removed the hatch detonator, and hit the
plunger with the back of his hand. The plunger recoiled, cutting Glenn's knuckles
slightly through his glove and giving him the only injury he received during the

whole mission. A loud report indicated that the hatch was off. Eager hands
pulled out the smiling astronaut, whose first words were "It was hot in there."

Lieutenant Commander Robert Mulin of the Navy and Captain Gene Mclver
of the Army, physicians assigned to the Mercury recovery team, described Glenn
as being hot, sweating profusely, and fatigued. He was lucid but not loquacious,
thirsty but not hungry. After drinking a glass of w_ter and showering, he became
more talkative. Asked if he felt any "stomach uneasiness" either during the
flight or while he lolled the 17 minutes in the floating spacecraft waiting for
pickup, Glenn admitted only to some "stomach awareness," beginning after he

was down on the water. But there was no nausea, and the examining physicians
assured themselves that Glenn's condition was caused by heat, humidity, and

some dehydration. He had lost five pounds, five ounces from his preflight weight
of 171 pounds, seven ounces. He had consumed the equivalent of only 94 cubic
centimeters of water, in the form of applesauce puree, during the flight, while
his urine output was 800 cubic centimeters. He al_ had perspired profusely
while awaiting pickup.

Glenn's temperature an hour after landing was 99.2 degrees, or only a degree
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higher than his preflight reading, and by midnight he recorded a normal tem-

perature. His blood pressure registered only a fraction higher than the preflight

readings. The condition of his heart and lungs was normal before and after the
mission, and there was nothing unusual about his skin except the superficial

abrasions on the knuckles, caused by opening the hatch. By the time President

Kennedy called his personal congratulations by radio telephone to Glenn aboard

the Noa, the "wonderful trip--almost unbelievable" was over, Glenn was safe and
sound, and 100 million American television viewers had happily ceased their

vigil.

After recording on tape a "self-debriefing" aboard the Noa, Glenn was trans-

ferred to the carrier Randolph, where his chest was x-rayed, an electrocardiogram

was made, and the initial phase of the technical debriefing was started. From

there the astronaut was transported to Grand Turk Island, where a much more

thorough physical began about 9:30 p.m., under the direction of Carmault B.
Jackson, assistant to Flight Surgeon Douglas. February 20, 1962, proved to be

"a long day at the office" for Glenn. After exhaustive tests and observations

the attending physicians could find no adverse effects from Glenn's threefold

circumnavigation in space. Technical debriefings continued for two days on the

island and then moved to the Cape for another day's session.

The postflight analysis of Glenn's use of the three-axis handcontroller during

reentry showed that about half of the thrust pulses he initiated opposed the direc-

tion of spacecraft motion, as they were supposed to. But the other half of the

handcontroller movements either reinforced oscillating motions or had no net

damping effect. The issue of "pilot-induced error" was picked up by some

newsmen and reported as a controversy rather than a problem.

Now that the primary, objectives of Project Mercury had been achieved at

last in grand style, the drive for perfection in performance, so indispensable to

manned space flight, stil[ did not slow downJ _

T_ H_Ro

The American reaction to this country's first manned orbital flight was a

mixture of relief, pride, and exaltation. From the Rose Garden at the White

House, President Kennedy echoed the sentiments of the Nation: _°

I know that I express the great happiness and thanksgiving of all of us
that Colonel Glenn has completed his trip, and I know that this is particularly
felt by Mrs. Glenn and his two children.

I also want to say a word for all of those who participated with Colonel
Glenn at Canaveral. They faced many disappointments and delays--the
burdens upon them were great--but they kept their heads and they made a
judgment, and I think their judgment has been vindicated.

We have a long way to go in this space race, But this is the new ocean,
and I believe the United States must sall on it and be in a position second to
none,
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Not only Americans but friendly foreigners hastened to add their praises for

Glenn and Project Mercury. India's news media gave the flight top billing over

an important national election. Most of the South American press viewed the

space gap as already closed or being closed, while a sense of relief that a more

favorable balance of power existed was evident in the African newspapers. West-

ern Europeans were pleased with the openness of the undertaking, with the fact,

frequently mentioned, that the United States had not used this momentous event

to intimidate either opponent or neutral, and that the astronaut had kept his

inflight remarks strictly apolitical. Numerous expressions of hope were voiced,

as Khrushchev suggested and Kennedy repeated that Russians and Americans

could enter into some sort of cooperative space program?'
The men of NASA, the Defense Department, and the aerospace industry

viewed the feat more prosaically. They realized something of its impact on

mankind, but most of their pride stemmed from the smooth-working demonstra-

tion of their space hardware and the recovery" forces in action. And their in-

terest quickly returned to the tasks of full exploitation of men and machines for

Mercury,.

Those who in the past had been the targets of technical kibitzing, domestic

skepticism, and political pressure now were lauded by the American press for

having "stuck by their guns." Periodicals praised Hugh L. Dryden, Robert R.

Gilruth, Williams, Faget, Kraft, George M. Low, and Hartley A. Soul6, the

"leaders of this technical team who did their work on civil service pay and sold

no serial rights to national magazines .... ,, _2

The MA-6 honors and celebrations consumed several days. Glenn, his

family, Vice-President Johnson, and the Mercury entourage passed in review on

February 26 before an estimated 250,000 people lining rainy streets in Wash-

ington, after which the astronaut gave a 20-minute informal report to a joint

session of Congress. New York City proclaimed March 1 " John Glenn Day,"

and Mayor Robert Wagner presented medals to Glenn and Gilruth. The next

day there was an informal reception in honor of the orbiting American at United

Nations Headquarters. Glenn then journeyed to his home town, New Concord

(population 2300), Ohio, where about 75,000 greeted him on March 3.

While everyone else feted Glenn, Mercury and contractor engineers at the

Cape subjected his spaceship to a minute examination. Except for the usual

discoloration, the interior and exterior of the capsule were in excellent condition.

In several places where there were separations between the shingles, deposits of

aluminum alloy had accumulated from the disintegration of the retrorocket

package during reentry. A brownish film of undetermined origin covered the ex-
terior surface of the window. Heatshield slices and cores showed about the same

minor char depth found after the MA-4 and MA-5 missions; the center plug

was sticking out about half an inch. There was also a wedge-shaped darker

area on the shield, striated by several radial marks about four inches long, which

the inspectors theorized was caused by the slipping retropack. The investigation
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team also found that the rotary switch that was to be actuated by the heatshield

deployment had a loose stem, causing the electrical contact to break when the
stem was moved up and down. This, they believed, accounted for the false

deploy signal that worried everyone so much during the flight. Although there

were several tears in the landing bag, caused either by impact or retrieval handling,

for the first time no cables or straps in the landing system were broken. And

while the lower pressure bulkhead again was slightly damaged, the equipment

there escaped harm? 3

After this thorough postflight analysis, Glenn's spacecraft, McDonnell cap-

sule No. 13, went on a global tour, popularly known as the "fourth orbit of Friend-

ship 7." Literally millions of people stood patiently in line to look inside the

spacecraft as it was exhibited in 17 countries and Hawaii. By August 1962
Friendship 7 had reached the "Century 21 Exposition" at Seattle. There, thou-

sands more viewed the craft that had carried man on an orbital journey through

space. Finally, on the first anniversary of its voyage, Friendship 7 came officially

to rest near the Wright Brothers' original airplane and Lindbergh's Spirit o[ St.
Louis in the Smithsonian Institution. _4

PROGRAM GROWTH

The dramatic series of events surrounding the MA-6 mission tended to obscure

what was happening elsewhere in the national space program. While Project

Mercury finally was fulfilling its prime objective, NASA picked the launch vehicle
for its Apollo program. Headquarters announced on January 9, 1962, that a

"Super Saturn" (also known as "Advanced Saturn" and "Saturn C-5") would be

the Moon program rocket. The Saturn was then described as being as tall as a

27-story building generating 7.5 million pounds of thrust in its first stage, which

would make it about 20 times more powerful than the Atlas. On January 25, the

Marshall Space Flight Center received orders from NASA Headquarters to develop

this booster that could support manned circumlunar flights and manned lunar

landings. The Saturn was to place 120 tons in low-Earth orbit or send 45 tons of

spacecraft toward the Moon. At the same time, the public got its first view ot

drawings of the Apollo and Gemini spacecraft? _

When the House Committee on Science and Astronautics opened its annual

budget hearings on February 27, 1962, among the first witnesses to testify were

John Glenn, Alan Shepard, and Virgil Gri._som. Representative George P. Miller

of California, chairman of the committee, introduced the three _s "men who have

been closest to the angels and still remain on Earth." All committee members

expre_ed their satisfaction with the management of Project Mercury, and they

reminded NASA that the agency was the committee's protege. Every tax dollar

required to make Project Mercury and the rest of the cMlian space program a suc-

cess so far had resulted from the committee's study, approval, and authorization. 5"
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Aftermath

Above, President Kennedy rides with

Glenn and Gen. Leighton I. Davis at

Cocoa Beach. At right, Glenn talks

to a joint session o[ the Congress in

Washington. Below right, Glenn,

his wife, and Vice-President Lyndon

B. Johnson are welcomed by 4 mil-

lion in New York. Finally, in Wash-

ington (below), Friendship 7 is pre-
sented to the Smithsonian Institution.

Shown here are Senator Clinton P.

Anderson, Glenn, and NASA Dep-

uty Administrator Hugh L. Dryden.



AstronautsGrissom,Shepard,andGlenntestifybeforeHouseCommitteeon
ScienceandAstronauticsonFebruary28,1962. Standingbehindthemare
(left to right) Representatives Ken Hechler, Alphonzo Bell, and Perkins Bass,

and Paul Dembling, Director, NASA O_ce of Legislative Affairs.

After the astronants had made brief statements and answered some questions

posed by the committee members, Administrator James E. Webb outlined the

NASA budget request for fiscal year 1963. The total NASA request was for

$3,787,276,000, of which $2.26 billion was earmarked for developing Gemini and

Apollo and for further exploration with Mercury in manned space flight. Robert

Giiruth testified about the _/[ercury portion " _of NASA s undertaking. By August

1962, when Congress passed the authorization bill, the NASA appropriation had

been pruned to $3,644,115,000. This reduction included $90 million from re-

search, development, and operational requests, and about $52.8 million asked for

construction of new facilities. But the total NASA money bill, coupled with almost

$1 billion that the Department of Defense received for_ts Space projects, meant

that the Nation was going to spend almost $5 billion annually on its space efforts?'

The second phase of the Space Age seemed about to commence.
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Constantcommunicationo/status
in[ormation[romoneparto[STG
to another,/tomSTGto NASA
Hq. and otherelementso[ the
Government,and betweenSTG
anditscontractorsoccupiedmuch
o[ thetimeo[ operatingandstaff
personnel.At right is a typical
preflightbriefing,thisonetaking
placeattheAirForceBallisticMis-
sileDivision[orpersonnelo/BMD,
SSD,and AerospaceCorp.; in-
volvedin thisparticulardiscussion
are,le[t to right,ChristopherC.Kra[t o[STG,ByronG.McNabbo[ GeneralDy-
namics/Astronautics,andBernhardA. Hohmanno[ AerospaceCorp. Andin the
tenseatmosphereo[MercuryControlduringaflight,communicationwasatapremium.
Below,in the[font rowo[ theVIPviewingroomat ,,l'lercury Control, George Low o[

NASA Hq. leans [orward to make notes [or the report that he [orwarded to the NASA

Administrator immediately alter every Mercury mission; next to him D. Brainerd

Holmes, NASA Deputy Associate Administrator [or Manned Space Flight, and Robert

R. GiIruth, Director o[ STG, listen to the flight narration and watch the display board.
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Meanwhile the Manned Spacecraft Center had been undergoing rapid changes,
even though it was still located at the Langley Research Center pending the move
to Houston. On January 15, 1962, the Mercury Project Office was established,

reporting directly to Gilruth, together with the Gemini and Apollo management
offices. Kenneth S. Kleinknecht, a former leader in NASA's X-15 project and

technical assistant on Gilruth's staff since January 11, 1960, was picked to manage
the completion of Mercury's program. Under its charter, the Mercury Project
Office was "responsible for the technical direction of the McDonnell Aircraft Cor-

poration and other industrial contractors assigned work on the Mercury Project." 5s

Project Office staffing and division of duties had been completed by the end of
January. Kleinknecht chose William Bland, who had been associated with nu-

merous engineering phases of the manned satellite enterprise since its inception, as
his deputy. The internal labor divisions of the Office were: Project Engineering
Office, Project Engineering Field Office (Cape), Engineering Operations Office,
and Engineering and Data Measurements Office. At the outset, 42 people worked
in the Project Office primarily on scheduling, procurement, and technical monitor-
ing tasks. The similar management organizations set up for the Gemini and

ApoiIo programs had James A. Chamberlin (manager of Mercury until the incep-
tion of Project Gemini) and Charles W. Frick as their managers, respectively29

Moving MSC from tidewater Virginia to the Gulf Coast of Texas could have

had adverse effects on its staffing. Quite a number of the empIoyees had long
years of service with NACA and its successor NASA, and had established deep
personal roots at Langley and around Hampton, Virginia. Now they would
be uprooted and transplanted some 1500 miles away in Texas. Many would face
inconvenience and monetary and personal losses resulting from the transfer.
Stuart H. Clarke, chief of the Personnel Office of MSC, polled the staff to deter-
mine how many favored the move. Of 1152 employees, only 84 indicated that
they would not go. 6° Gilruth and Williams decided that while people, records,
and equipment were being transferred, the operational and Mercury Project Office
activities shouId remain at Langley to prevent the disruption of Project Mercury's
flight planning. This meant that management in Mercury would be directed from
Langley at least through Mercury-Atlas 72'

THE SLAYTON CASE

Donald K. Slayton and Waiter M. Schirra, pilot and backup, respectively, for
Mercury-Atlas 7, had been in training side by side with Glenn and Carpenter since
the team announcements were made after the MA-5 flight. On March 15,
1962, NASA announced that Slayton, because of an "erratic heart rate," had been
replaced by Carpenter as the pilot for MA-7. The suddenness of this announce-

ment surprised almost everyone, especially journalists who had begun turning out
"human interest" copy about Slayton. The obvious question was: How could an
astronaut, supposedly a perfect physical specimen, develop, of all things, a heart
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condition? The truth was that Slayton had been under close medical surveillance

for over two years, and he and his feIIow astronauts each knew how precarious a

thing is perfect health.

The astronauts' physician, William Douglas, recognized that Slayton had a

condition medically termed ,as idiopathic atrial fibrillation--occasional irregularity

of a muscle at the top of the heart, caused by unknown factors--when the astro-

nauts first rode the centrifuge in August 1959 at Johnsville. Douglas noted Slay-

ton was performing his tasks in magnificent fashion, but he still thought it best to

consult with the chief of cardiology service at the Philadelphia Navy Hospital.

The consultant assured Slayton and Douglas that the condition was of no conse-

quence and should not influence Slayton's eventual choice as a flight astronaut.

The astronaut's physician did not accept this appraisal as a final diagnostic de-
cision. He and Slayton visited the Air Force's School of Aviation Medicine in

San Antonio, Texas, where a member of the internal medicine staff voiced the

same opinion. Sometime later Douglas learned that this individual wrote to

Administrator James E. Webb, making a recommendation that Slayton should

not be assigned a flight.

After sojourns at various medical centers, Douglas informed Mercury Director

Gilruth of Slayton's condition during the fall of 1959. Gilruth, in turn, briefed

NASA Headquarters in Washington. Douglas also relayed the information to the

Air Force Surgeon General's office and was advised to take no action. For some

time thereafter the "Slayton file" lay dormant. The astronaut was selected as a

pilot in November 1961 and began training for his flight.

Shortly after the beginning of the new year, NASA Administrator Webb,

remembering the dissenting vote he had received from an Air Force physician,

and, mindful of the fact that Slayton was an Air Force officer on loan, directed

a complete reevaluation of the case. In response Douglas called together Stanley

White, William S. Augerson, and James P. Henry, physicians assigned to the Mer-

cury program, to study the matter in detail. Their considered recommendation

was that Slayton should continue as the pilot for MA-7. From MSC, Douglas

journeyed to Washington to brief Brigadier General Charles H. Roadman and

Colonel George M. Knauf, Chief and Deputy Chief of the Office of Space Medi-

cine in NASA Headquarters. These doctors also recommended that Slayton re-

main on space flight status. The reopening of the case was brought to the

attention of the Air Force Surgeon General, who convened a board of eight flight

surgeons to review the matter. The MSC physician appeared before that body,

presenting it with every facet of the medical file. Slayton also appeared. The

board judged Slayton to be "fully qualified as an Air Force pilot and as an
astronaut."

Administrator Webb referred the case to a group of three nationally eminent

cardiologists--Proctor Harvey, professor of cardiology, Georgetown University;

Thomas Mattingly, heart specialist, Washington Hospital Center; and Eugene

Braunwall, National Institutes of Health. Their consensus was that they were
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unable to state conclusively whether Slayton's physiological performance would be

jeopardized by his heart condition. Because of this unknown, they felt that if
NASA had an available astronaut who did not "fibrillate," then he should be

used rather than Slayton. Braunwall added that if there was sufficient time he

would like to subject Slayton to some physiological tests2 -_
Asked several years later if he had known about his heart condition when

he was chosen for Project Mercury, Slayton replied: G3

No, I didn't, but in the examinations prior to the August 1959 centrifuge
program at AMAL the medics discovered that my heart skipped a beat now
and then. I went ahead with the centrifuge runs and began to watch myself
very closely, noticing that quite often after supper my pulse would be irregular.
I would get out and run a mile and everything was normal again. I was
terribly concerned over what in my diet might be causing it, but every hypothe-
sis turned up wrong. Concern in STG and even NASA Headquarters got
so great in 1960 that I was sent to all kinds of exhaustive examinations under
the best heart specialists in the country--in Philadelphia, San Antonio, and
New York City. I was examined by different groups of heart specialists who
could find nothing wrong. Even Paul Dudley White, Ike's personal physician,
gave me a clean bill of health but rendered an operational rather than a diag-
nostic decision, recommending that the unknown factor in my heart murmur
not be added to all the other unknowns for manned space flight.

The Slayton decision was irrevocable, even though Gilruth and William

Douglas disagreed with the high-level medical verdict. Slayton, they felt, had

withstood greater stresses in the training program than he would have experienced

had he been rocketed into orbit. On the other hand, Administrator Webb,

because of the unknown elements, concurred with the cardiologists that it was

neither safe nor politic to subject an individual who had a heart condition, how-

ever slight, to the stresses of orbital flight when there were other flight-trained
astronauts available.

Shortly after the replacement, Douglas, having completed a three-year tour
of detached duty with NASA, returned to his career service, the Air Force. Some

newsmen were quick to conclude that this action suggested bitterness. They had

not known that Dougb.s had been invited to the medical hearings but had known

that Douglas had been outspoken in his opposition to Slayton's removal from

flight status. Stanley White denied the charge in a news conference, maintain-

ing that Doughs' return to the Air Force had been arranged for "better than six

months." _ Of the original team of astronauts, Slayton had been considered

the professional test pilot par excellence, largely because of his overwhelming ex-
perience and flight time. He soon became the coordinator of astronaut activities.

He never abandoned hope that he still might make a space flight. As late as

December 1964, more than a year and a half after Project Mercury had com-

pleted its last flight and when Project Gemini was nearing its first manned flight,

the unlucky astronaut remarked, "I've never been grounded and I'm not now.

I still hope to get my chance to go beyond the atmosphere."
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MA-7 PREPARATIONS

One would have expected, in keeping with the "backup" concept, that

Schirra, the MA-7 alternate pilot, now would step in as prime astronaut. But

in view of the numerous delays and consequent lengthy training preparations

for MA-6, Williams, as the operations team leader, recommended to Gilruth that

Carpenter, Glenn's backup pilot, was most primed for the upcoming mission.

Carpenter had logged 79I_ hours of preflight checkout and training time in

Glenn's Friendship 7, more than twice the 31 _2 hours he would spend in his own

Aurora 7 for the same purposes, c_

Although Glenn's mission had been highly successful, the Mercury operations

team was still in the learning process. Experience with a component in the

Mercury capsule or a flight procedure during the MA-6 orbital flight served to

guide MA-7 mission planning. Glenn had shown that man definitely could be

more than just a passenger, so the MSC planners adjusted the MA-7 flight plan

to allow more pilot control of the mission. Combined yaw-roll maneuvers were

scheduled to permit observation of the sunrise, as well as maneuvers to determine

the use of day and night horizons, landmarks, and stars as navigation references.

One of the more interesting planned innovations for Carpenter's voyage involved

a period of inverted flight (head toward Earth) to determine the effect of Earth-

up and sky-down on pilot orientation. Flight planners recognized the need

for perceptual reorientation in space flight as well as for the motor skills that had

been demonstrated so well by Glenn. The next Mercur? T mission ought to be as

much of a scientific experiment as possible, not only to corroborate MA-6 but

also to explore new possibilities with the manned Mercury spacecraft, cG

Since Glenn had been able to respond to many of the scientific astronomical

observation requests, Homer Newell, who had been Director of NASA's Office

of Space Sciences since November 1, 1961, decided that the direction of the scien-

tific portion of the manned space flight program should now become the responsi-

bility of a formal committee. Jocelyn Gill again was chosen to serve as chairman

of a group called the Ad Hoc Committee on Scientific Tasks and Training for

Man-in-Space. Two days after receiving the mandate, Dr. Gill called a meeting

of members, consisting of representatives from the various scientific disciplines,

on March 16, 1962, to outline objectives, review past activities in this respect,

present a preliminary analysis of the scientific debriefing of Glenn, and outline

tasks and goals for the next meeting. One of the aims of the new committee was

to devise a curriculum that would provide the astronauts with the best informa-

tional sources available about the spatial phenomena they might see. In addition

to this, they proceeded to suggest several experiments to the Manned Spacecraft
Center. _7

So without jeopardizing either pilot safety or mission success, the MA-7

flight would be designed to yield as much scientific, as opposed to engineering,

information as possible. Kleinknecht, head of the MSC Mercury Project Office,
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named Lewis R. Fisher chairman of the Mercury Scientific Experiments Panel,

as a parallel to the NASA Headquarters unit, to manage and arrange for the

experiments being suggested. Fisher and his associates were cl-.arged with re-

viewing all proposed experiments from an engineering feasibility standpoint in

terms of their scientific value, relative priority, and suitability for orbital flighty

The Fisher panel first met at Cape Canaveral on April 24, 1962, and decided

to emphasize five suggested experiments: releasing a multi-colored balloon that

would remain tethered to the capsule, observing the behavior of liquid in a
weightless state inside a closed glass bottle, using a special light meter to determine

the visibility of a ground flare, making weather photographs with hand-held

cameras, and studying the airglow layer--for which Carpenter would receive spe-

cial training. The tethered balloon was a 30-inch mylar inflatable sphere, which
was folded, packaged, and housed with its gas expansion bottle in the antenna

canister. The whole balloon package weighed two pounds. Divided into five

sections of different colors--uncolored aluminum, yellow, orange, white, and a

phosphorescent coating that appeared white by day and blue by night--the bal-

loon was to be cast off near perigee after the first orbital pass to float freely at the

end of a 100-foot nylon line. The purposes of the balloon experiment were to

study the effects of spac e on the reflection properties of colored surfaces through

visual observation and photographic studies and to obtain aerodynamic drag

measurements by use of a strain gauge? 9

Some experimentation on the effects of reduced gravity on liquids previously
had been conducted at Holloman Air Force Base, at the Air Force School of

Aviation Medicine in San Antonio, and at the Lewis Research Center. But the

duration of these experiments, involving parabolic airplane flights and drop-tower

tests, had been necessarily short. Results of an extended study would have both

immediate and long-range implications in manned space flight operations.

Already the problem of gas or fuel vapor ullage in space vehicles and in storage

tanks was causing some difficulties, and later there would be related problems

in orbital rendezvous fuel transfer. Before fuel tanks and pumps for extended

use in space could be designed, the behavior of surface tension and capillary

action of liquids in the weightless state had to be determined. For this experi-

ment the Lewis Center provided a small glass sphere containing a capillary tube

with tiny semicircular holes at the bottom of the open tube. The sphere, only

20 percent filled, contained 60 milliliters of a mixture of distilled water, green

dye, aerosol solution, and silicone. The liquid had a surface tension of 32 dynes
per centimeter on Earth.

The Massachusetts Institute of Technology requested photographs of the day-

light horizon through blue and red filters to define more precisely the Earth-

horizon limb as seen from above the atmosphere. These findings would be par-

ticularly valuable for navigation studies in the Apollo program. The Weather

Bureau wanted information on the best wavelengths for meteorological satellite

photography. John A. O'Keefe and Jocelyn Gill at the Goddard Space Flight
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Center and NASA Headquarters, respectively, wanted a distance measurement
of the airglow layer above the horizon, its angular width, and a description of its
characteristics, and for this experiment Carpenter was provided with a photom-
eter and trained to use it. Paul D. Lowman, also of Goddard, requested special
photography of the North American and Mrican land masses. Lowman's interest

was based on his studies of planetary surfaces, particularly regarding meteoroid
impact features, v°

A number of technical changes based on MA-6 mission results were made for

MA-7, mostly involving deletions of certain equipment from the spacecraft to
reduce weight. Kleinknecht's office eliminated the solar bombs and radar chaff

recovery aids, which seemed unnecessary in view of the effectiveness that had
been demonstrated by the sarah beacon and dye markers. Other deletions in-
cluded the knee and chest strapson the couch, which had bothered Grissom; the
red filter in the window; the moderately heavy Earth-path indicator; and the
instrument panel camera, which had already gathered sufficient data.

Modifications made to improve spacecraft, network, and astronaut perform-
ante included a radio frequency change in the telemetry system to eradicate
transmission interference like that experienced on Glenn's flight. The two
landing-bag switches were rewired so that both had to be closed to activate
the deploy signal. To correct temporarily the control problem experienced by
Glenn, Karl F. GreU of the Mercury Project Office studied masses of data and con-

cluded that the problem lay in the fuel line filters. So the dutch-weave filters
in the fuel lines were replaced with platinum screens, and a stainless-steel fuel
line was substituted. This was intended as an "interim fix," but it became perma-
nent in the Mercury project for the later flights. Even the astronaut's attire
underwent some modifications. Pockets were added on the upper sleeves and on

the lower legs of the pressure suit for pencils, a handkerchief, and other small
accessories. And the waterwing life vest, first carried by Glenn, was installed

on the chest beneath the parabolic mirror. To add to Carpenter's comfort while
he was waiting in his capsule on the launch pad, a new and more resilient liner
was fitted in the couch, n

The three principal components of the MA-7 mission--spacecraft, launch

rocket, and astronaut--were in preparation for several months. Spacecraft No.
18 was the first of these to reach the Cape, arriving on November 15, 1961.
During its long checkout period by G. Merritt Preston's crew, this vehicle was
reworked twice to incorporate lessons learned during MA-5 and MA-6. Some
equipment and systems in the capsule had to be exchanged because what it had
carried to Florida simply did not work properly. The original periscope, for

example, failed to latch in the retracted position. Glenn's drogue parachute
mortar supposedly had fired before the pilot triggered its button; the McDonnell
engineers decided that a barostat in the recovery arming circuit should prevent
another premature action. Since there still were questions concerning the tempera-
ture at different places on the capsule while it was in orbit, a device known as a
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"low-level commutator" was added, and temperature pickups were strategically

located at 28 points on the spacecraft to record temperature data on a tape
recorder carried on boardY

When in March he learned that he would fly spacecraft No. 18, Scott

Carpenter named his capsule Aurora 7. He chose this name deliberately, "Be-

cause I think of Project Mercury and the open manner in which we are conducting

it for the benefit of all as a light in the sky. Aurora also means dawn--in this

case the dawn of a new age. The 7, of course, stands for the original seven

astronauts." Coincidentally, the astronaut as a boy had lived at the corner of
Aurora and Seventh Avenues in Boulder, Colorado.

The Atlas, the astronaut, and the ground support personnel entered into their

final preparatory phase in March 1962. On March 8, six days after the Air

Force accepted it at the rollout inspection at the Convair factory in San Diego,

Atlas 107-D arrived at the Cape and was erected on the pad. Since the previous
Atlas had performed well in boosting Glenn into orbit and since the MA-7 launch

requirements were to duplicate those of MA-6, few changes were necessary," for

107-D. One alteration was a slight reduction in the staging time, from 131.3 to

130.1 seconds after liftoff, to improve the launch vehicle's ability to reach the

precise center of the insertion "window." 73 Intensive training for the astronaut,

his backup, and the tracking teams on the MA-7 mission began on March 16.
Mission simulations, flight controller training, and an exercise of the Defense De-

partment recovery, forces proceeded much as the.,,, had for MA-6. The Atlantic
tracking ship, however, was not on station for MA-7 because she was at a Balti-

more shipyard, being converted into a command ship to support the longer-
duration Mercury missions."

At the time of Glenn's flight, the launch of MA-7 had been scheduled for

the second week in April, but the installation of new components, such as the

temperature survey instrumentation and the barostat in the drogue parachute

circuit, as well as other work, delayed the launching until May. Also contributing

to the postponement was an Atlantic Fleet tactical exercise that required participa-

tion by the recovery ships and aircraft for several weeks. The week beginning
May 20 looked the most feasible for sending a second American into orbit. 7_

FLIGHT OF Aurora 7

At 1 : 15 a.m., May 24, 1962, Scott Carpenter was awakened in his quarters

in Hangar S at Cape Canaveral. He ate a breakfast of filet mignon, poached

eggs, strained orange juice, toast, and coffee, prepared by his dietitian. During

the n_xt hour, starting about 2 : 15 a.m., he had a physical examination and stood

patiently in his underwear as the sensors were attached at various spots on his

lean body, and by 3 : 25 he had donned his silver suit and had it checked. Every-
thing had gone so smoothly that Carpenter had time to relax in a contour chair
while waiting to board the van.
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At 3:45, Carpenter and his retinue, including Joe Schmitt and John Glenn,

marched from the hangar and climbed aboard the vehicle for a slow ride to Pad

14, where Aurora 7 sat atop the Atlas. Again there was a pause, during which a

Weather Bureau representative presented a briefing to the astronaut-of-the-day,

predicting a dispersaI of the ground fog then hovering around the launch site.

Finally, at 4:35, Carpenter received word from Mercury Control to ascend the

gantry. Just before he boarded the elevator he stopped to swap greetings with

and to thank the flight support crewmen. After the final checks in the gantry

white room, the astronaut crawled into the capsule and got settled with only

minor difficulties, and soon the capsule crew was bolting the hatch. This time

all 70 bolts were aligned properly. TM

Meanwhile the booster countdown was racing along. Christopher Kraft re-

called that the countdown was "as near perfect as could be hoped for." The only

thing complicating the prelaunch sequence was the persistent ground fog and

broken cloudiness at dawn. Strapped in the contour couch, and finding the new

couch liner comfortable, Carpenter was busy verifying his preflight checklist. Just

11 minutes before the scheduled launch time, the operations team decided that

adequate camera coverage was not yet possible, and three consecutive 15-minute

holds were ca/led. Although Carpenter felt that he could continue in a hold status

indefinitely, he was thirsty and drank some cold tea from his squeeze bottle supply.

During the holds he talked with his wife Rene and their four children at thc Cape,

assuring them that all was well. :r

The rising sun rapidly dispelled the ground fog. Then at 7:45 a.m., after the
smoothest countdown of an American manned space mission to date, Mercury-

Arias 7, bearing Aurora 7, rose majestically off the pad while some 40 million

people watched by television. TM

Kraft, the flight director, described the powered phase of the flight as so "ex-

cellent" that the decision to "go-for-mission" was almost routine. Seventy-three

seconds from launch, the booster's radio inertial guidance system locked on and

directed the flight from staging until T plus 5 : 38 minutes. Actually this amounted

to some 28 seconds after the Atlas sustainer engine had died, but no guidance inputs

were possible after engine shutdown. Carpenter tried using the parabolic mirror

on his chest to watch the booster's programming, but he could see only a reflection

of the pitch attitude. At about 35,000 feet he noticed out his window a contrail,

and then an airplane producing another contrail. The sky began to darken; it was

not yet black, but it was no longer a light blue.

The booster performed much more quietly than Carpenter had expected from

all its awesome power. Vibration had been slight at liftoff. Booster engine cutoff

was smooth and gentle, but a few seconds later the noise accompanying maximum

aerodynamic stress began to build up. A wisp of smoke that appeared out the

window gave Carpenter the impression that the escape tower had jettisoned, but

a glance showed that it was still there. Shortly thereafter, when the tower did

separate from the capsule, Carpenter "felt a bigger jolt than at staging." He
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watched the tower cartwheel lazily toward the horizon, smoke trailing from its
three rocket nozzles. 79

Sustainer engine cutoff came only as a gentle drop in acceleration. Two bangs

were cues that the clamp-ring explosive bolts had fired and that the posigrade
rockets had propelled the spacecraft clear of the booster. Now Aurora 7 was on

its own and in space. Becoming immediately aware that he was weightless, Car-

penter elatedly reported that zero g was pleasant. Just as the capsule and booster

separated, the astronaut had noticed that the capillary tube in his liquid-test appa-

ratus seemed to fill. Then he averted his gaze; it was time to turn the spacecraft
around to its normal backward flying orbital attitude. Since Glenn had left this

maneuver to the automatic control system and the cost in fuel had been high,

Carpenter used fly-by-wire. The spacecraft came smartly around at an expense
of only 1.6 pounds of fuel, compared with over 5 pounds used on Glenn's MA-6
maneuver? °

As the capsule swung around from antenna-canister-forward to heatshield-

forward, Carpenter was impressed by the fact that he felt absolutely no angular
motion; his instruments provided the only evidence that the turnaround maneuver

was being executed. Like Glenn, he was amazed that he felt no sensation of speed,

although he knew he was traveling at orbital velocity (actually 17,549 miles per

hour). Soon he had his first awe-inspiring view of the horizon--"an arresting

sight," as he described it. Quickly checking his control systems, he found every-

thing in order. Unknown to him, however, the horizon scanner optically sensing

his spacecraft's pitch attitude was off by about 20 degrees. It was some time
before he deduced this system was in error.

As Glenn had done, Carpenter peered out the window to track the spent Atlas
sustainer engine. The tankage appeared to fall downward, as the engineers had

predicted, and was tumbling away slowly. A trail of ice crystals two or three

times longer than the launch vehicle streamed from its nozzle. Over the Canary

Islands, Carpenter still could see the sustainer tagging along below the space-

craft. Meanwhile the astronaut continued to check the capsule systems and report
his findings to the tracking sites. Over Kano, in mid-Nigeria, he said that he was

getting behind in his flight plan because of difficulty in loading his camera with the

special film to photograph the Earth-horizon limb. Before he moved beyond

radio range of Kano, however, he managed to snap a few photographs. Although

it was now almost dusk on his first "45-minute day," Carpenter was becoming in-
creasingly warm and began adjusting his suit-temperature knob. sl

Over the Indian Ocean on his first pass, Carpenter glanced down for a view

through the periscope, which he found to be quite ineffective on the dark side of

Earth. Concluding that the periscope seemed to be useless at night, he returned

to the window for visual references. Even when the gyros were caged and he was
not exactly sure of his attitude position, he felt absolutely no sensation of disorienta-

tion; it was a simple matter in the daylight to roll the spacecraft over and watch for

a landmark to pop into view. Carpenter mentioned many recognizable land-
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marks, such as Lake Chad, Africa, the rain forests of that continent, and Madagas-

car. But he was a little surprised to find out that most of Earth when seen

from orbit is covered by clouds the greater part of the time. s2

While over the Indian Ocean, Carpenter discovered that his celestial observa-

tions were hampered by glare from light seepage around the satellite clock inside

the capsule. The light from the rim of the clock, which should presumably have
been screened, made it hard for him to adjust his eyes to night vision. To Slayton

at the Muchea station, Carpenter reported that he could see no more stars from his

vantage point in space than he could have seen on Earth. Also he said that the

stars were not particularly useful in gaining heading information? 3

Like his orbital predecessor, Carpenter failed to see the star-shell flares fired

in an observation experiment. This time the flares shot up from the Great Vic-
toria Desert near Woomera, Australia, rather than from the Indian Ocean ship.

According to the plan, four flares of one-million candlepower were to be launched

for Carpenter's benefit on his first orbit, and three more each on his second and

third passes. On the first try, the flares, each having a burning time of 1½ min-

utes, were ignited at 60-second intervals. At this time most of the Woomera area

was covered by clouds that hid the illumination of the flares; the astronaut con-

sequently saw nothing and the experiment was discontinued on the succeeding two

passes, as weather conditions did not improve, s'

Out over the Pacific on its first circuit, Aurora 7 performed nicely. The Can-

ton Island station received the telemetered body temperature reading of 102 degrees

and asked Carpenter if he was uncomfortable at that temperature. "No, I don't

believe that's correct," Carpenter replied. "I can't imagine I'm that hot. I'm

quite comfortable, but sweating some." The medical monitors accepted Carpen-
ter's self-assessment and concluded that the feverish temperature reading resulted

from an error in the equipment. For the rest of the journey, however, the elevated

temperatures persisted, causing the various communicators to ask frequently about

Carpenter's physical status. 8_

The food Carpenter carried on his voyage was different from Glenn's which

was of the squeeze-tube, baby-food variety. For Carpenter the Pillsbury Company

had prepared three kinds of snacks, composed of chocolate, figs, and dates with

high-protein cereals; and the Nestl_ Company had provided some "bonbons," com-

posed of orange peel with almonds, high-protein cereals with almonds, and cereals

with raisins. These foods were processed into particles about three-fourths of an

inch square. Coated with an edible glaze, each piece was packaged separately

and stored in an opaque plastic bag. As he passed over Canton he reported that

he had eaten one bite of the inflight food, which was crumbling badly. Weight-

less crumbs drifting around in the cabin were not only bothersome but also poten-

tially dangerous to his breathing. Though he had been able to eat one piece, his

gloved hands made it awkward to get the food to his mouth around the helmet

microphonesY Once in his mouth, however, the food was tasty enough and easy

enough to eat.
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During the second orbit, as he had on the first, Carpenter made frequent

capsule maneuvers with the fly-by-wire and manual-proportional modes of atti-
tude controt. He slewed his ship around to make photographs; he pitched the

capsule down 80 degrees in case the ground flares were fired over Woomera; he

yawed around to observe and photograph the airglow phenomenon; and he rolled

the capsule until Earth was "up" for the inverted flight experiment. Carpenter

even stood the capsule on its antenna canister and found that the view was

exhilarating. Although the manual control system worked well, the MA-7 pilot

had some difficulty caging the attitutude gyros to zero before inverting the space-

craft. On two occasions he had to recycle the caging operation after the gyros

tumbled beyond their responsive limits.

Working under his crowded experiment schedule and the heavy manual

maneuver program, on six occasions Carpenter accidentally actuated the sensi-

tive-to-the-touch, high-thrust attitude control jets, which brought about "double

authority control," or the redundant operation of both the automatic and the

manual systems. So by the end of the first two orbits Carpenter's control fuel

supply had dipped to about 42 percent in the manual tanks and 45 percent in

the automatic tanks. During his second orbit, ground capsule communicators at

various tracking sites repeatedly reminded him to conserve his fuel.

Although his fuel usage was high during the second circumnavigation, Car-

penter still managed to continue the experiments. Just as he passed over the

Cape, for example, an hour and 38 minutes from launch, Carpenter depIoyed
the multicolored balloon. For a few seconds he saw the confetti spray, signaling

deployment. Then, as the line lazily played out, he realized that the balloon had

not inflated properly; only two of the five colors--orange and dull aluminum--

were _dsible, the orange clearly the more brilliant. Two small, earlike appendages
about six to eight inches each, described as "sausages," emerged on the sides of

the partially inflated sphere. The movement of the half-inflated balloon was

erratic and unpredictable, but Carpenter managed to obtain a few drag resistance
measurements. A little more than a half hour after the balloon was launched,

Carpenter began some spacecraft maneuvers and the tether line twined to some

extent about the capsule's antenna canister. Carpenter wanted to get rid of the

balloon and attempted to release it going into the third orbit over the Cape, but

the parfialIy successful experimental device stayed doggedly near the spacecraftY

As Carpenter entered the last orbit, both his automatic and manual control

fuel tanks were less than half full. So Aurora 7 began a long period of drifting

flight. Short recess periods to conserve fuel had occurred earlier in the flight, but

now Carpenter and his ship were to drift in orbit almost around the world.

Although his rapidly depleting fuel supply had made the drift a necessity, this
vehicle control relaxation maneuver, if successful, would be a valuable engineer-

ing experiment. The results would be most useful in planning the rest and

sleep periods for an astronaut on a longer Mercury mission. Carpenter enjoyed

his floating orbit, observing that it was a simple matter to start a roll rate of per-
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hapsonedegreepersecondandlet thecapsuleslowlyrevolveaslongasdesired.
Aurora 7 drifted gracefully through space for more than an hour, or almost until
retrofire time.

While in his drifting flight, Carpenter used the Moon to check his capsule's

attitude. John Glenn had reported some difficulty in obtaining and holding an

absolute zero-degree heading. Carpenter, noting that the Moon appeared almost
in the center of his window, oriented the spacecraft so that it held the Moon on

the exact center mark and maintained the position with ease28

During the third orbital pass, Carpenter caught on film the phenomenon of
the flattened Sun at sunset. John O'Keefe and his fellow scientists at Goddard

had taught Carpenter that the color layers at sunset might provide information

on light transfusion characteristics of the upper atmosphere. Carpenter furnished
a vivid description of the sunset to the capsule communicator on the Indian Ocean

ship:

The sunsets are most spectacular. The earth is black after the sun has
set .... The first band close to the earth is red, the next is yellow, the next
is blue, the next is green, and the next is sort of a--sort of a purple. It's
almost like a very brilliant rainbow. These layers extend from at least 90
degrees either side of the sun at sunset. This bright horizon band extended
at least 90 degrees north and south of the position at sunset.

He took some 19 pictures of the flattened Sun. _

As Carpenter drifted over oceans and land masses, he observed and reported
on the haze layer, or airglow phenomenon, about which Glenn had mal_Teled.

Carpenter's brief moments of airglow study during the second orbit failed to

match the expectations he had derived from Glenn's reports and the Goddard

scientists' predictions on the phenomenon. Having more leisure on his third

circuit, Carpenter described the airglow layer in detail to Slayton at the Muchea
tracking site :

• . . the haze layer is very bright. I would say about 8 to 10 degrees
above tile real horizon. And I would say that the haze layer is about twice as
high above the horizon as the bright blue band at sunset is; it's twice as thick.
A star--stars are occluded as we pass through this haze layer. I have a good
set of stars to watch going through at this time. I'll try to get some photom-
eter readings .... It is not twice as thick• It's thinner, but it is located at
a distance about twice as far away as the top of the band at sunset. It's very
narrow, and as bright as the horizon of the earth itself.

The single star, not stars, that Carpenter tracked was Phecda Ursae Majoris, in

the Big Dipper or Great Bear constellation, with a magnitude of 2.520

With each sunrise, Carpenter also saw the "fireflies," or "Glenn effect," as

the Russians were calling it. To him the particles looked more like snowflakes

than fireflies, and they did not seem to be truly luminous, as Glenn had said. The

particles varied in _ze, brightness, and color. Some were gray, some were white,

and one in particular, said Carpenter, looked like a helical shaving from a lathe.
Although the)' seemed to travel at different speeds, they did not move out and
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away from the spacecraft as the confetti had in the balloon experiment.
At dawn on the third pass Carpenter reached for a device known as a densi-

tometer, that measured light intensity. Accidentally his gloved hand bumped
against the capsule hatch, and suddenly a cloud of particles flew past the window.
He yawed right to investigate, noting that the particles traveled across the front
of the window from right to left. Another tap of the hand on the hatch sent off
a second shower; a tap on the wall produced another. Since the exterior of the

spacecraft evidently was covered with frost, Glenn's "fireflies" became Carpenter's
"frostflies." 9_

Until Aurora 7 reached the communication range of the Hawaiian station on

the third pass, Christopher Kraft, directing the flight from the Flofda control
center, considered this mission the most successful to date; everything had gone
perfectly except for some overexpenditure of hydrogen peroxide fuel. Carpenter
had exercised his manual controls with ease in a number of spacecraft maneuvers
and had made numerous and valuable observations in the interest of space science.

Even though the control fuel usage had been excessive in the first two orbits, by
the time he drifted near Hawaii on the third pass Carpenter had successfully main-

tained more than 40 percent of his fuel in both the automatic and the manual
tanks. According to the mission rules, this ought to be quite enough hydrogen
peroxide, reckoned Kraft, to thrust the capsule into the retrofire attitude, hold it,
and then to reenter the atmosphere using either the automatic or the manual

control system. 92
The tracking site at Hawaii instructed Carpenter to start his preretrofire count-

down and to shift from manual control to the automatic stabilization and control

system. He explained to the ground station over which he was passing at five miles
per second that he had gotten somewhat behind on the preretro checkoff list while
verifying his hypothesis about the snowflake-like particles outside his window.
Then as Carpenter began aligning the spacecraft and shifting control to the auto-
matic mode, he suddenly found himself to be in trouble. The automatic stabiliza-
tion system would not hold the 34-degree pitch and zero-degree yaw attitude. As
he tried to determine what was wrong, he fell behind in his check of other items.
When he hurriedly switched to the fly-by-wire control mode, he forgot to switch off

the manual system. For about 10 minutes fuel from both systems was being used
redundantly? _

Finally, Carpenter felt that he had managed to. align the spacecraft for the
retrofire sequence. The Hawaiian communicator urged him to complete as much
of the checklist as possible before he passed out of that site's communications range.
Now Alan Shepard's voice from the Arguello, California, station came in loud and
clear, asking whether the Aurora 7 pilot had bypassed the automatic retroattitude
switch. Carpenter quickly acted on this timely reminder. Then the countdown
for retrofire began. Because the automatic system was misbehaving, Carpenter
was to push the button to ignite the solid-fuel retrorockets strapped to the heat-
shield. About three seconds after Shepard's call of "Mark! Fire One," the first
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rocket ignited and blew. Then the second and the third followed in reassuring
succession. Carpenter saw wisps of smoke inside his cabin as the rockets braked
him out of orbit. 9_

Carpenter's attitude error was more than he estimated when he reported his
attitude nearly correct. Actually Aurora 7 was canted at retrofire about 25

degrees to the right, and thus the reverse thrust vector was not in line with the flight

path vector. This misalignment alone would have caused the spacecraft to over-

shoot the planned impact point b v about 175 miles. But the retrorockets began

firing three seconds late, adding another 15 miles or so to the trajectory error.
Later analyses also revealed a thrust decrement in the retrorockets that was about

three percent below nominal, contributing 60 more miles to the overshoot. If

Carpenter had not bypassed the automatic retroattitude switch and manually

ignited the retrorockets he could have overshot his pickup point in the Atlantic by
an even greater distance. _

Unlike Glenn, Carpenter had no illusion that he was being driven back to

Hawaii at retrofire. Instead he had the feeling that Aurora 7 had simply stopped

and that if he looked toward Earth he would see it coming straight up. One

glance out the window, however, and the "impre._sion was washed away." _' The

completion of retrofire produced no changes the pilot could feel until his reentry
began in earnest about 10 minutes later.

After the retrorockets had fired, Carpenter realized that the manual control

system was still on. Quickly he turned off the fly-by-wire system, intending to

check the manual controls. Although the manual fuel gauge read six percent left,

there was, in fact, no fuel and consequently no manual control. So Carpenter

switched back to fly-by-wire. At that time the automatic system supply read 15
percent, but the astronaut wondered how much really remained. Could it be only

about 10 percent? With this gnawing doubt and realizing that it was still 10

minutes before .05-g time, Carpenter kept hands strictly off for most of his drifting
glide. Whatever fuel there was left must be saved for the critical tumble. This

I0-minute interval seemed like eternity to the pilot. The attitude indicators ap-

peared to be useless, and there was little fuel to control attitude anyway. The only

thing he trusted for reference was the view out of the window; using fly-by-wire

sparingly he tried to keep the horizon in view. Although concerned about the fuel

conservation problem, Carpenter gained some momentars, relief from the fascinat-

ing vistas below : "I can make out ve_', very small---farm land, pasture land below.

I see individual fields, rivers, lakes, roads, I think. I'll get back to reentry
attitude." _;

Finally, Aurora 7 reached the .05-g acceleration point about 500 miles off the

coast of Florida. As he began to feel his weight once again, Carpenter noted

that the automatic fuel needle still read 15 percent. Within seconds the capsule

began to oscillate badly. A quick switch to the auxiliary damping mode steadied

the spacecraft. Grissom, the Cape comnmnicator, reminded him to close his

faceplate. "_8
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Aurora 7 was now in the midst of its blazing return to Earth. Carpenter heard

the hissing sounds reported by Glenn, the cues that his ship was running into aero-

dynamic resistance. Immediately the capsule began to roll slowly, as programmed,

to minimize the landing point dispersion. Carpenter looked out the window

for the bright orange glow, the "fireball," as Glenn had described it, but there was

only a moderate increase in light intensity. Rather than an orange glow, Car-

penter saw a light-green glow apparently surrounding the cylindrical section. Was

this radiant portion of the spacecraft ablating? Was the trim angle correct? The

evenness of the oscillations argued to Carpenter that the trim angle was good. All

the way through this zone Carpenter kept talking. Gradually it became difficult

to squeeze the words out; the heaviest deceleration load was coming. The peak

g period lasted longer than he had expected, and it took forceful breath control to

utter anythingY _
The automatic fuel tank on Aurora 7 was,emptied between 80,000 and 70,000

feet. As the plasma sheath of ionized air enveloped his spacecraft, communication

efforts with Carpenter became useless, but the telemetered signals received by the

radar stations at the Cape and on San Salvador predicted a successful reent_'.

The oscillations were increasing as the capsule approached the 50,000-foot level.

Aurora 7 was swinging beyond the 10-degree "tolerable" limits. Carpenter

strained upward to arm the drogue at 45,000 feet, but he forced himself to ride out
stilt more severe oscillations before he fired the drogue parachute mortar at 25,000

feet. The chute pulsed out and vibrated like thin, quivering sheets of metal. At

15,000 feet Carpenter armed the main parachute switch, and at 9500 feet he de-

ployed the chute manually. The fabric quivered, but the giant umbrella

streamed, reefed, and unfurled as it should. The rate of descent was 30 feet per

second, the exact design specification. The spacecraft landing bag deploy was on

automatic. Carpenter listened for the "clunk," heard the heatshieid fall into

position, and waited to hit the water. Aurora 7 seemed to be ready for the land-

ing, and the recovery forces knew within a few miles the location of the spacecraft

as radar tracking after retrofire had given and confirmed the landing point, a°°

Splashdown was noisy but less of a jolt than the spaceman had expected. The

capsule, however, did not right itself within a minute as it was supposed to do.

Carpenter, noticing some drops of water on his tape recorder, wondered if Aurora
7 was about to meet the fate of Liberty Bell 7, and then sighed in relief when he

could find no evidence of a leak. He waited a little longer for the spacecraft to

straighten up, but it continued to list to his left. Grissom's last transmission from

Mercury Control had told Carpenter that it would take the parare_ue men about
an hour to reach him, and the astronaut realized that he had evidently oveishot

the planned landing zone. When he failed to raise a response on his radio, he

decided to get out of the cramped capsule. Then he saw that the capsule was

floating rather deeply, which meant that it might be dangerous to remove the
hatch. Sweating profusely in the 101-degree temperature of the cabin, he pulled

off his helmet and began the job of egress as it had been originally planned. Car-
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penter wormed his way upward through the throat of the spacecraft, a hard, hot

job made bearable by his leaving the suit circuit hose attached and not unrolling

the neck dam. He struggled with the camera, packaged life raft, survival kit, and

kinky hose before he finally got his head outside.

Half out of the top hatch, Carpenter rested on his elbows momentarily, re-

leased the suit hose but failed to deploy the neck dam and lock the hose inlet,

and surveyed the sea. Lazy swells, some as high as six feet, did not look too

forbidding. So he carefully laid his hand camera on top of the recovery com-

partment, _ueezed out of the top, and carefully lowered himself into the water,
tipping the listing spacecraft slightly in the process. Holding onto the capsule,

he was able to easily inflate the life raft--upside down. By this time, feeling

some water in his boots, he secured the hose inlet to the suit. He then held on

to the spacecraft's side and managed to flip the raft upright. After crawling
onto the yellow raft, he retrieved the camera, unrolled the suit neck dam, and pre-

pared to wait for as long as it took the recovery searchers to find him. The recovery

beacon was operating and the green dye pervaded the sea all around him. I°1

The status of Carpenter and Aurora 7 was unknown to the public. Every-

one following the flight by radio or television knew that the spacecraft must be

down. But was the pilot safe? What the public did not know was that one

P2V airplane had received the spacecraft's beacon signal from a distance of only

50 miles, while another plane had picked up the signal from 250 miles. Aurora

7's position was well known to the recovery forces in the area. About eight

minutes before the spacecraft landed, an SA-16 seaplane of the Air Force Air

Rescue Service had taken off from Roosevelt Roads, Puerto Rico, for the radar-

predicted landing point. Three ships--a Coast Guard cutter at St. Thomas

Island, a merchantman 31 miles from the plotted point, and the destroyer Farragut

about 75 miles away to the southwest--were in the vicinity of the impact point.

But it would certainly take longer than an hour for any recovery unit to reach

the site. Since Carpenter's raft had no radio, the drama was heightened. What

exactly had happened to Carpenter after his landing was known only to the

astronaut and perhaps to a few sea gulls and sea bass2 °2

Carpenter settled down on his raft and waited patiently for his rescuers. He

mused over some seaweed floating nearby and "a black fish that was just as

friendly as he could be--right down by the raft." In time, 36 minutes after

splashdown, he saw two aircraft, a P2V and, unexpectedly, a Piper Apache. The

astronaut watched the planes circle, saw that the Apache pilot was photographing

the area, and knew that he had been found. Twenty minutes later several SC-54

aircraft arrived, and one dropped two frogmen, but Carpenter, watching other

planes, did not see them bail out) °3

Airman First Class John F. Heitsch, dropping from the SC-54 transport about

an hour and seven minutes after Carpenter had first hit the water, missed the

life raft by a considerable distance. Releasing his chute harness, he dove under
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the waves and swam the distance to the side of Carpenter's raft. "Hey !" called

the frogman to the spaceman. Carpenter turned and with complete surprise
asked, "How did you get here?" Shortly thereafter a second pararescue man,
Sergeant Ray McCIure, swam alongside and clutched the astronaut's raft. The
two frog-men quickly inflated two other rafts and locked them to the spacecraft.
McClure and Heitsch later described the astronaut as smiling, happy, and not at

all tired. The pilot broke out his survival rations and offered some to the two
Air Force swimmers, who declined the space food but drank some space water. TM

The three men, stiII without radio contact, perched on the three rafts and

watched the planes circling above. One plane dropped the spacecraft flotation
collar, which hit the water with a Ioud bang, breaking one of its compressed-air
bottles. The swimmers retrieved and attached the flotation collar with only its

top loop inflated and then crawled back onto their rafts. Shortly a parachute
with a box at the end came floating lazily down some distance from the space-
craft. The men on the rafts supposed this was the needed radio, and one of
the frogmen swam a considerable distance to get it. He returned with the con-
tainer, opened it, and found that there was no radio inside, only a battery. Later

Carpenter laughingly declined to repeat the swimmer's heated remarks? °5
The Air Force SA-16 seaplane from Roosevelt Roads arrived at the scene

about an hour and a half after the spacecraft landed in the Atlantic. To the

SA-16 pilot the sea seemed calm enough to set his craft down upon and pick up
the astronaut, but the Mercury Control Center directed the seaplane not to land.
As later depicted by the news media and thoroughly discussed in Congress, this
delay grew out of traditional rivalry between the Air Force and the Navy. Briga-
dier General Thomas J. Dubose, a former commander of the Air Rescue Service,
wrote to Florida's United States Senator Spessard L. Holland, charging that

Carpenter floated in the raft an hour and 20 minutes longer than was necessary.
D. Brainerd Holmes, a NASA official, testified at the hearings that Admiral John
L. Chew, commander of the Project Mercury recovery forces, feared the seaplane
might break apart if it landed on the choppy waters. Because of this, according
to Holmes, the decision had been made to proceed with helicopter and ship pickup

as originally planned, a°_

After three hours of sitting on the sea in his raft, Carpenter was picked up by
an HSS-2 helicopter, but either the rotorcraft settled as a swell arose or the
winch operator accidentally lowered away, and the astronaut was dunked. Up
went his arm and the hand holding the camera to keep the precious film dry.
With nothing else amiss, Carpenter was hoisted aboard the helicopter, a drenched
but happy astronaut. Richard A. Rink, a physician aboard, described Carpenter
as exhilarated. The astronaut draped one leg out of the helicopter and, by
cutting a hole in his sock, drained most of the water from his pressure suit. He
then stood up and proceeded to pace around, sometimes settling in a seat, and
intermittently talking about his flight. Carpenter arrived aboard the carrier
Intrepid some four hours and 15 minutes after his return to Earth. The medical
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examinations began immediately but were interrupted when the astronaut was

called to the phone to receive what was by now President Kennedy's traditional

congratulatory call. The President expressed his relief that Carpenter was safe

and well, while Carpenter gave his "apologies for not having aimed a little better

on reentry." From the Intrepid the astronaut was flown to Grand Turk Island,

where, as Howard A. Minners, an Air Force physician assigned to Mercury,

described it, Carpenter wanted to stay up late and talk. I°'

Aurora 7, picked up by the destroyer Pierce, was returned to Cape Canaveral

the next day. When retrieved, the spacecraft was listing about 45 degrees com-

pared to the normal 15 to 20 degrees, and it contained about 65 gallons of sea

water, which would hamper the inspection and postflight analyses. Carpenter

recalled two occasions on which the spacecraft had shipped small amounts of

water, but he was unable to explain the larger amount found by the pickup crew.

The exterior of the spacecraft showed the usual bluish and orange tinges on the

shingles, several of which were slightly dented and scratched as after previous

missions. Since there was no evidence of inflight damage, these slight scars pre-

sumably were the result of postflight handling. The spacecraft heatshield and

main pressure bulkhead were in good condition except for a missing shield center

plug, which had definitely been in place during reentry. Some of the honey-

comb was crushed, resulting in minor deformation of the small tubing in that
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area. Heitsch and McClure, the pararescue men, had reported the landing bag

in good condition, but when it was hauled out of the water most of the straps were

broken, probably by wave action. All in all, Aurora 7 was in good shape and

had performed well for Project Mercury's second manned orbital flight. 1°_

The postflight celebrations and honors followed the precedents and patterns
established by Glenn's flight. Administrator Webb presented to Carpenter and

Williams NASA Distinguished Service Medals in a ceremony at the Cape. Car-

penter also learned of Soviet Premier Nikita Khrushchev's cabled congratulations.
Then the astronaut's hometown, Boulder, Colorado, gave him a hero's welcome.

After being awarded a degree by the University of Colorado, where he had lacked
a credit in a heat-transfer course, the astronaut facetiously commented that the

blazing MA-7 reentry surely qualified him as a master in the field of thermody-

namics. Memorial Day found the pilot in Denver, where a crowd of 300,000

people cheered and honored him. The next day he returned to work at Langley,
where exhaustive technical debriefings were held to glean all the knowledge pos-
sible from MA-7.1°°

In these postflight sessions the astronaut insisted that he knew what he wanted
to do at all times, but that every task took a little longer than the time allotted

by the flight plan. Some of the equipment, he said, was not easy to handle,

particularly the special films that he had to load into a camera. As a conse-

quence he had been unable to get all the pictures the Weather Bureau had re-

quested for its satellite photography program. Moreover, the flight plan that had

been available during training was only a tentative one, and the final plan had

been completed only a short while before he suited up for the launch. Carpenter

felt that the completed plan should be in the astronaut's hands at least two months

before a scheduled flight and that the flight agenda should allow more time

for the pilot to observe, evaluate, and record. When asked about fuel consump-

tion by the high thrusters, Carpenter replied that the 24-pounders were unneces-

sary for the orbital phase of a flight.
The astronaut recommended that some method be devised for closing off the

high thrusters while the automatic control system was in operation. He granted

that on the fly-by-wire, low-thruster operation, the spacecraft changed its attitude

slowly, as was shown by the needle movement, and that the pilot would have to

wait momentarily to pick up the desired attitude change rate. For tracking

tasks, however, the manual-proportional mode served well; attitude changes could

be made with only a gentle touch of the handcontroller. Talking with news-

men after the flight, Carpenter assumed full responsibility for his high fuel con-

sumption. He pointed out, however, that what he had learned would be valuable

for longer Mercury missions, n°

As mid-year 1962 approached, Project Mercury faced yet another crossroad.

Had enough been learned during the two three-orbit flights to justify going on to

longer missions? Joe W. Dodson, a Manned Spacecraft Center engineer, speaking

before the Exchange Club of Hampton, Virginia, indicated that the MSC designers
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and planners and the operations team were well pleased with the lessons derived
from Glenn, from Carpenter, and from their spacecraft. They were pleased
especially at how well the combination of man and machine had worked.

Shortly thereafter, the press began to speculate that NASA might try a one-day
orbital flight before 1963. Administrator Webb, however, sought to scotch any
premature guesswork until Gilruth and his MSC team could made a firm decision.
He stated that there might well be another three-orbit mission, but added that
consideration was being given to a flight of as many as six orbits with recover 3"

in the Pacific. Robert C. Seamans, Jr., NASA's "general manager," told congres-
sional leaders that if a decision had to be made on the day on which he was speaking,
it would probably be for another flight such as Glenn and Carpenter had made.
But many members of Congress wanted to drop a third triple-orbit mission in favor
of a flight that would come closer to or even surpass Gherman Titov's 17-orbit
experience.

On June 27, 1962, NASA Headquprters ended the speculation by announcing
that Walter Schirra would pilot the next mission for as many as six orbits, possibly

by the coming September, with L. Gordon Cooper as alternate pilot. TM The
original Mercury objectives had been met and passed; now it was time to proceed
to new objectives--longer missions, different in quality as well as quantity of
orbits. Project Mercury had twice accomplished the mission for which it was
designed, but in so doing its end had become the means for further ends.

r
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Climax of Project Mercury

ALTER M. Schirra, a naval aviator who had won the Distinguished
Flying Cross for his combat missions over Korea, received his most

important assignment to date on July 27, 1962. It was the flight plan for Mer-

cury-Atlas 8, a six-orbit flight that was to qualify the spacecraft and man's endur-

ance for an extended spatial mission. A new plan, revised slightly for yaw-refer-

ence experiments using the periscope, was delivered on August 8. This was almost

60 days before the mission, allowing the period for training that Scott Carpenter

had recommended. Carpenter had received his MA-7 document late, and major
revisions had been inserted almost until launch day. Although Schirra's flight

plan was altered in September, it did escape a thorough last-minute rewrite.

MA-8 was to be an engineering flight, in contrast with the exploratory nature

of Glenn's flight in MA-6 and the developmental and scientific nature of MA-7.

Schirra was expected to concern himself largely with the management and opera-

tion of the spacecraft's systems to conserve hydrogen peroxide attitude control fuel

and electrical power. The MSC planners had examined the minute-by-minute

details from launch to recovery in the interest of spacecraft endurance and had pro-

grammed only a few experiments that would require fuel or electrical power.

The pilot was to try to observe a ground xenon light of 140-milllon candlepower at
Durban, South Africa, and four flares of 1-million candlepower each that would

be launched near Woomera, Australia. The only other experiment requiring

astronaut participation included some weather and terrestrial photography as the

pilot sighted targets of opportunity. Besides these experiments, several passive

test devices were superimposed on the spacecraft's exterior. Eight ablation panels,

consisting of several types of material, were fused onto the afterbody's beryllium

shingles, and a white paint patch was brushed on the capsule's side for still more

evaluations of spatial thermal effects on various materials?

Early in August, Schirra trained energetically for a targeted September launch;

spacecraft No. 16 was almost ready for a simulated flight in Hangar S; and Atlas
No. 113-D had arrived at the Cape. Then on August 11, the Soviet Union, with-
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out prior announcement, launched Vostok III. NASA leaders, who had endured

much needling on the space gap since Gherman S. Titov's 17-orbit flight, a little

more than a year earlier, grimly read the pre_s reports. The five-ton Vostok space-

craft, with Major Andrian G. Nikolayev aboard, was in an orbit with a 156-mile

apogee and a 113-mile perigee, inclined (as usual for Vostoks) at 65 degrees.

The "gap" seemed to become a "gulf" the following day, when Vostok IV,

carrying Lieutenant Colonel Pavel R. Popovich, shot into an orbit with an apogee

of 157 miles and a perigee of 112 miles. Soon after the second launch, Nikolayev

reported that he had sighted Popovich's spacecraft. Western tracking stations

variously reported that the two craft were as close as 3 and as far as 300 miles apart.

Intercepted communications between Nikolayev (code-named Falcon) and Popo-

rich (Golden Eagle) caused serious speculation that the Vostoks might try to

rendezvous, but apparently no such attempt was made.

On August 15, Nikolayev landed after 64 orbits and more than 95 hours in

space. Popovich touched down six minutes later, after 48 orbits and more than

70 hours' flight.-" The U.S. decision to accelerate the space program called for by

President Kennedy in May 1961 seemed more than validated to most critical

observers. Meanwhile engineers who were designing what became the Gemini

vehicle for rendezvous with an orbiting Agena rocket studied the possibility of

adding a space-maneuvering capability to Mercury. On August 24, Kenneth S.

Kleinknecht, the Project Office chief, reported that such an innovation would

require at least 400 pounds of additional spacecraft hardware and fuel. Upon

hearing this, Christopher C. Kraft, Jr., the Mercur 3' flight director, dourly observed

that this added weight might dangerously degrade the capsule's chances of reaching

orbit, but Robert R. Gilruth asked Kleinknecht to continue his studies. A few days

later the Mercury Project Office and the Flight Crew Operations Division handed

the MSC director a joint proposal for maneuvering an orbiting Mercury spacecraft

close to a passive Echo-type satellite. But because of time, weight, and safety

considerations, Gilruth and his management lieutenants rejected the proposal,

abandoned the idea of a maneuverable Mercury spacecraft for the time being, and

turned back to the more prosaic but essential business of preparing for the modest

doubled-distance, six-orbit flight slated for Walter Schirra?

LONGER LEGS FOR MERCURY

Specific planning for MA--8 had begun back in February during the technical

debriefing of John Glenn following the MA-6 mission. While attending the

Grand Turk Island meetings, Kleinknecht and Donald K. Slayton had agreed that

a flight of six or seven orbits seemed to be a logical intermediate step from the
three-tSass flight _f Glenn toward an ultimate 18-orbit goal then under study.

When Kleinknecht returned to his office (then at Langley) he put his staff to work

in conjunction with John F. Yardley's group of McDonnell engineers on the

changes necessary to accomplish a seven-orbit Mercury flight.'
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The staff's problem was to appraise the spacecraft components' lifetime in terms

of the ability of each system to perform two or three times longer than the operating

limits originally built into them. Flight rules so far had specified an almost con-

tinuous operation of the automatic stabilization and control system, which caused

a heavy drain on the spacecraft's electrical power supply. Also critical were

oxygen reserves, reaction control fuel supplies, and increased recovery require-

ments. The tracking and communications network, built for three-orbit coverage,

would require extensive modification if the tracking criteria applied to three orbits

should apply to six or seven.

The three-orbit Mercury spacecraft, with all its electrically powered systems in

action, consumed about 7080 watt-hours of battery power from a total of about

13,500 watt-hours available. Thus a seven-orbit mission, obeying previous flight

rules, would consume about 11,190 watt-hours, leaving a reserve supply of only 6.7

percent. Mercury Project Office engineers insisted there should be at least a 10

percent postlanding reserve as a safety factor and suggested at least two conserva-

tion methods to attain and surpass this amount. One was drawn from an earlier

recommendation presented by McDonnell designers and planners; they had out-

lined possibilities for an 18-orbit mission, proposing that some of the systems be

turned off during a substantial portion of the flight. In addition to this, the MSC

engineers recommended switching telemetry transmitter and radar beacon opera-

tions to ground command. These measures, they felt, would raise the reserve

power levels to about 15 percent.

After studying the spacecraft's environmental control system, the project engi-

neers at MSC concluded that about 4.4 pounds of oxygen would be consumed

during a seven-orbit flight, taking pilot usage and cabin leakage rates into consid-

eration. By prevailing mission rules, this would leave an insufficient supply to

meet possible contingencies of abnormal recovery. A supply of 8.6 pounds would

meet the requirement, but the system carried only two 4-pound capacity bottles.
So, either the rules had to be relaxed or the system had to be modified. The MSC

study group recommended the modification possibility, adding that a strenuous

program to reduce cabin leakage rates to 600 cubic centimeters per minute should

be started. Formerly up to 1000 cubic centimeters had been within design specifi-

cations. To cover the increase in carbon dioxide production from the longer fl_ght,

the project office planners pointed out that the canister carried in the three-orbit

spacecraft could be filled with lithium hydroxide to its 5.4 pound capacity. This

amount represented an increase from the 4.6 pounds that had been carried on the

three-pass flights and should be sufficient extension of the COs removal capability.

At the same time that these efforts were being made to provide the spacecraft

systems with all the power they needed and the astronaut with enough breathable

oxygen, some NASA and McDonnell engineers were wrestling with more ad-

vanced problems of tripling, quadrupling, and even raising by factors of six and

eight the capabilities of the Mercury spacecraft to orbit Earth. But at this stage,

planning for the day-long, 18-orbit mission depended heavily on some positive proof
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from MA-8 that man and machines could tolerate, over a longer period and with

larger margins for pilot safety and mission success, the vacuous, weightless, hot-cold

extremes of space.

The most critical problem in preparations for the extended mission was pro-

viding enough hydrogen peroxide fuel to power the capsule's reaction controI

system. A seven-orbit mission operating in the fully automatic control mode

would consume about 28 pounds of fuel, providing the systems were functioning

normallf. The Mercury Project Office suggested alternating a combination of

automatic and manual modes to provide safer fuel reserves at the end of the flight.

Such a procedure would expend 23 pounds of automatic and 18 pounds of manual

fuel, leaving reserves of 12 and 15 pounds, respectively. Then, in case of mal-
function in one of the control modes, the astronaut would be assured of an ade-

quate fuel supply in the other mode.

Recovery procedures changed considerably for the proposed seven-orbit

mission. The fourth, fifth, sixth, and seventh sinusoidal curves of the orbital

ground trace passed over geographical points that almost intersected, while the
fifth and sixth orbits did intersect in the northern Pacific about 275 miles northeast

of Midway Island. This pattern shifted to the Pacific Ocean the optimum

recovery area that had been in the Atlantic for MA-4 through MA-7. Klein-

knecht's staff pointed out that a once-an-orbit primary recovery capability could

be maintained with only a slight increase in the recovery forces. The primary

landing area during the seventh orbit could be covered easily by Navy vessels

moving to the zone from their base at Pearl Harbor, but some of the aircraft staging

bases for past contingency landing areas would have to be relocated.

Then Sigurd A. Sjoberg, Robert F. Thompson, and other mission and recovery

planners discovered a slight flaw in the seven-orbit flight profile. A hard mission

rule required a contingency recovery capability within 18 hours after landing.

This requirement could be easily met for a six-orbit mission, but adding a seventh

orbit required additional recovery forces to satisfy that mission rule. So NASA

decided to make MA-8 a six-orblt flight?

During August 1962 the MA-8 mission planners continued to wrestle with

many other operational considerations. But within the month they were able to

issue the mission rules, data acquisition plan, a slight revision to the flight plan,

recovery requirements and procedures, and the mission directive, only to find on

some occasions that closer study of engineering preparations revealed new con-

straints, requiring minor changes to most of their guidebooks."

PREPARATIONS FOR MA-8

While the long-duration mission studies were in progress and the mission rules

and directives were being prepared and issued, other personnel of the NASA-

military-industry complex were readying the spacecraft, booster, and recovery

forces. The astronaut and alternate pilot were in intensive training.
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The Manned Spacecraft Center allocated spacecraft Nos. 16 and 19 for the

six-orbit mission, with No. 16 as the preferred vehicle. No. 16 had arrived

at Cape Canaveral in January 1962, while No. 19 had followed two months later.

Rework to incorporate a six-orbit capability was done at the Cape by the MSC

Preflight Operations Division with the help of McDonnell technicians. The

work and testing began slowly but were well underway in April. In that month

temperature surveys at the critical points on the capsule were completed, the

environmental control system passed its altitude-chamber tests, and the reaction

control system was exercised satisfactorily. Minor troubles cropped up, as usual.

Emergency oxygen rate valves stuck. Water coolant flowed too freely. The

cabin's oxygen leakage rate was too high. Each difficulty slowly was overcome,

but it became evident that a hoped-for August launching" might slip at least a
month .7

The Mercury Project Office had pronounced 5.4 pounds of lithium hydroxide

sufficient for oxygen purification for the MA-8 mission, but the MSC Life Sys-

tems Division personnel checking this theory found the absorbers unsatisfactory.

Canisters containing 4.6 pounds of the mixture had been used in the three-orbit

spacecraft and tests showed that this amount of the chemical functioned to keep

the air breathable for 34.5 hours before carbon-dioxide levels rose too high. Then

canisters supposedly containing 5.4 pounds of absorbent were tested, with both fixed

and variable inputs of heat, water vapor, and carbon dioxide, and with a human

subject breathing the oxygen. To the amazement of the testers, the lifetimes

of these canisters averaged only slightly higher than those that were partly filled.
Then it occurred to somebody in the division to weigh the canisters. Each

proved to have been packed about half a pound short. Finally the completely

filled canisters were tested for as long as 71 hours before breaking down, demon-

strating that the original design met the development demands, after all. Well-

filled absorbers would qualify for a day-long mission as well as for six orbits."

As the work continued at the Cape on spacecraft No. 16, Scott Carpenter

made his fuel-thirsty, three-orbit flight on May 24. During Aurora 7's postflight

analysis MSC engineers, including G. Merritt Preston's checkout crew, took new

and closer looks at the attitude and reaction control systems. They decided that

attitude thrusters slightly different in design would have to be installed in the

MA-8 spacecraft. While Preston's men were implementing this decision, they

also managed to get No. 16's cabin oxygen leakage rate down to a highly satis-

factory 460 cubic centimeters per minute, although in the weeks ahead this rat.e

would rise slightly?
Other results from MA-7, as recorded from telemetry data, as reported by

Carpenter, and as revealed by examination of flight-tested Aurora 7, had intensified

the flurry of activity all along the line to prepare No. 16 for its flight. Carpenter

had many suggestions regarding spacecraft configuration. The heavy periscope,

he said, was useless on Earth's nightside; the window alone could be used to

find the spacecraft's attitude. The determined workers for spacecraft weight re-

465



THIS NEW OCEAN

duction were delighted to hear this assessment. But the MA-7 postflight inspec-

tion team reported that Carpenter's landing error had been caused by a fault},

yaw attitude, largely because Carpenter had performed a final control systems

check just prior to retrofire and had used the window mainly as his chief yaw

reference. Could the window and the pilot be trusted? the Mercury team

wondered. Would the periscope have assisted in correcting the attitude and the

resultant overshoot? The only way to find out the answers was to fly the periscope

again. 1°

So for MA-8 the periscope became, in a sense, an experimental instrument.

Using both the periscope and the window for spacecraft attitude reference,

Schirra would check the position of his capsule carefully on Earth's day and

night sides. Then he would check his visual judgment to gauge attitude, compar-

ing his ability against the scope and instrument readings.

Having decided to retain the periscope, the mission planners and Cape

preparations team for MA-8 butted into fresh difficulties. The experiment.

schedule had called for an ultraviolet airglow spectrograph to be put in the peri-

scope's well. This spectrograph had been developed through the intensive work

of Albert Boggess, III, at the Goddard Space Flight Center upon the request of the

NASA Headquarters Ad Hoc Committee on Scientific Tasks and Training for

Man-in-Space. Nov," the decision to carry the periscope forced the withdrawal of

the experiment, creating some disappointment among NASA's scientifically inter-

ested personnel. Even the implementation of this decision turned out to be some-

what of a problem. Preston's men tried to use the periscope from the alternate

spacecraft (No. 19) but found it to be defective. By the end of August they

managed to install a standard periscope, "cannibalized" from spacecraft No. 15.11

Carpenter, the second astronaut to land with empty fuel tanks in the manned

orbital program, also suggestedthat a control-mode selector switch be integrated

with the control system to seal off the high thrusters until they were needed for

fast reaction maneuvers. The Project Office approved, and this fuel-saving

switch was installed in the MA-8 spacecraftY

Aside from these and other minor modifications spacecraft No. 16 was a

duplicate of Aurora 7. Many of the technical changes were aimed at weight

reduction, fuel conservation, and adding extra supplies for a longer mission.
Deletions included the astronaut-observer camera, one of two redundant com-

mand receiver-decoders, and the high-frequency voice transceiver. To increase

pilot comfort and save weight, the preflight preparations crew extracted the lower

leg section of the couch and substituted toe, heel, and knee restraints. During

the orbital phase of the mission, the knee restraints could be loosened. An

extra 15 pounds of coolant water and an improved fastening technique for the

heatshield center plug completed the list of additions2 3

While the engineers were working, Astronaut Schirra proceeded through the

most efficient flight training program yet undertaken. Except for added yaw-

recognition displays, he used the same procedures trainers that his predecessors
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had used; having a definite flight plan, he could practice on his own specific mis-

sion profile. He was able to work through his simulated retrofire and reentry

tasks in the Langley procedures trainer before the device was dismantled for ship-
ment to Houston. And for personal physical conditioning, he often went swim-

ming and water skiing24

Late in July, Preston reported that the work schedule for spacecraft No. 16

was aimed at a September 18 launch date. When the flight preparation crews

added a sixth day to their work week to compensate for various delays, the MSC

managers remained optimistic2 _

Some worry among the mission planners had been injected in July when

Project Dominic, an Atomic Energy Commi_ion (AEC) high-atmosphere nuclear

test over the Pacific, had created a new zone of radiation, lower than the Van

Alien belts. In the face of this possible threat to an orbiting man, AEC, NASA,

and McDonnell carefully studied a number of satellite and probe launchings in

August designed to explore the belt, After the solar batteries of several satellites

failed--including Ariel I, the world's first international satellite project, which

developed operational difficulties probably attributable to Dominic--the investi-

gators reported that the new radiation circled Earth at the geomagnetic equator
and was about 400 miles wide and 4000 miles deep. Sounding rockets by

telemetry data indicated rapid and continuing decay of radioactivity in the cor-

ridors of the next Mercury mission. By the end of August the radiation hazards

seemed negligible. The MSC engineers, distrusting the reports that all danger

had disappeared, installed a radiation dosimeter on the spacecraft hatch, pro-

vided the pilot with a hand-held model, and attached four more to Schirra's

pressure suit? _ The hand-held model could provide real-time indications during

the flight.

Besides some labor-management difficulties that momentarily hampered the

activities of the aerospace industry at this time, the booster for MA-8 contributed

its share of troubles. Atlas 113-D was to have been delivered to Cape Canaveral

toward the end of July, but it failed its initial composite test at the San Diego

factory. Finally it was shipped on August 8. Then the Air Force, revealing

that its Atlas program had suffered four recent turbopump failures, advised the

Manned Spacecraft Center that No. 113-D would be put through a flight-readi-

ness static firing. Since the MA-8 launch vehicle would be the first one in the

Mercury program not having the two-second post-ignition hold-down time, the

Air Force felt the static firing to be an important requirement.

A one-week _lippage was now added. But before the test could be made, the

Air Force and Convair inspectors found a fuel leak in a seam weld on the booster.

Calculating the time required for work to be done, on September 6 the Mercury-

Atlas launch operations committee rescheduled the mechanical and electrical

matings of spacecraft and booster and three planned simulated flights. These

tests would continue through September 24, making October 3 the most likely

day for the MA-8 launch.
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Atlas 113-D actually differed little from its predecessors in the manned flight

program. It incorporated a dozen or so technical changes from the 107-D con-
figuration that had propelled Carpenter into orbit. The fuel tank insulation
had been removed as a solution to some of the difficulties that had beset John

Glenn's booster (Carpenter's launch vehicle had retained the insulation). More

important, baffled fuel injectors (which had been found in static firing tests to
virtually eliminate the possibility of combustion instability) and the accompanying
hypergolic ignition (in which fuel and oxidizer ignite on contact) were added to
113-D. These innovations, therefore, eliminated the two-second hold-down at

ignition, saved fuel, made for smoother initial combustion, and provided a safer
liftoff? r

The tracking network for MA-8 was augmented by five airborne relay sta-
tions, in the form of five Air Force C-130s, to cover areas that otherwise would
have been out of communications range of the ground sites. The C-130s, each

equipped with ultra-high-frequency and very-high-frequency equipment for voice
relay, were based at Patrick Air Force Base, Florida; Ramey Air Force Base,
Puerto Rico; and Midway Island? s The mixed recovery force, deployed by the

Department of Defense, included 19 ships in the Atlantic and nine in the Pacific.
Aircraft numbering 134 of various types covered primary and secondary space-
craft landing areas. In all, about 17,000 men, including over 100 aeromedical
monitors and specialists, made up the global MA-8 recovery forces.

Recovery commanders in the Pacific directed a training course in spacecraft
and astronaut retrieval for appropriate teams, using boilerplate capsules, flotation

collars, and other gear provided by MSC. Major General Leighton I. Davis and
Walter C. Williams made an inspection tour to the Pacific to evaluate the train-
ing program and the overall recovery readiness picture. Later Kraft, reading
their findings, reported that preparations and materials seemed "reasonably well"
developed. But he was disappointed that NASA had been unable to enlist the
support of another Navy radar ship equipped with FPS-16 equipment for C-
band operation and thus had to rely on two S-band ships instead. Kraft felt
that S-band radar, called "Verlort" for its 700-mile "very long range tracking"

ability, was less reliable than the C-band. 1_
If recovery was to go smoothly, interservice misunderstandings like the one

that had developed during Carpenter's rescue would have to be avoided. Gen-
eral Davis, the DOD military representative for Mercury support operations, had
reported to Secretary of Defense Robert S. McNamara that the delay at Mercury
Control in the decision to pick up Carpenter had stemmed partially from a lack
of direct communication wkh the astronaut. To overcome this breakdown, the

recovery room in the Control Center was modified to permit almost instantaneous
communication between tracking stations and recovery forces; and Schirra's space-

craft was equipped with a long extension line, which would permit him to main-
tain voice contact even in the life raft. The extended period of suspense that

climaxed Carpenter's mission should never happen again in Project Mercury? °
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At this juncture, President Kennedy set out on a tour of the space centers of the

South to inspect and show his interest not only in the preparations for MA-8 but
also in the vast array of technological talents being mobilized for the accelerated

space program, including the first lunar voyage. Kennedy flew down to Cape

Canaveral to see the Merritt Island Launch Area that was being built for the huge

Saturn V rockets. Then he went on to Houston to see the site for the management

and control center on the Texas coastal prairie. Before a sweltering crowd half-

filling the 72,000-seat Rice University stadium, the President spoke on September

12, 1962, in earnest defense of his proclaimed program for manned exploration of

the Moon. "No man can fully grasp how far and how fast we have come," said

Kennedy. "The exploration of space will go ahead, whether we join it or

not .... It is one of the great adventures of all time, and no nation which expects
to be the leader of other nations can expect to stay behind in the race for

space .... We intend to be first .... to become the world's leading space-

faring nation." The youthful President then addressed one of his memorable

statements to those who had asked, "Why send a man to the Moon?"

We set sail on this new sea because there is new knowledge to be gained and
new rights to be won, and they must be won and used for the progress of all
people. For space science, like nuclear science and all technolo_,, has no
conscience of its own. Whether it will become a force for good or ill depends
on us, and only if the United States occupies a position of preeminence can
we hel l) decide whether this new ocean will be a sea of peace or a new, terrify-
ing theater of war .... Space can be explored and mastered without feeding
the fires of war, without repeating the mistake that man has made in extending
his writ around this globe of ours. "1

If President Kennedy's remarks in Houston, later at the McDonnell factory

in St. Louis, and elsewhere, proved an accurate reflection of most Americans'

sentiments about the space program, his words persuaded few of the vocal eco-

nomic, political, and scientific conservatives who were watching costs soar along

with the engineering effort. The NASA space budget alone for this fiscal ),ear was

over $5 billion, which represented a tax of about 40 cents on each American per

week; but the Nation was prosperous, the economy seemed sound, and critics of the

"space circus" were seldom heard.

Toward the end of September, all mission preparations, the astronaut, the

spacecraft, and the launch vehicle reached a high state of readiness. The space-
craft and the booster mated well; the simulated tests before mission ticked off

without further hitches ; and October 3 thus remained a promising launch date.

Schirra, viewing the elaborate preparation effort, studying his flight plan, and

knowing that his mission involved the evaluation of the capsule's ability to ac-

complish a day-long flight, recognized the immensity of the engineering effort

behind him. In honor of these labors, he selected the name Sigma 7 for his space-

craft. "Since this was to be an engineering evaluation," he explained, the name

chosen for capsule No. 16 was that of an engineering symbol for summation, Sigma,

L
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with the number seven added to it for the seven-member Mercury astronaut

team. "Thus," he said, "was derived the name and symbol that wa.s painted on

the spacecraft, Sigma 7." -_-"

On the final lap toward launch day, Schirra began a controlled diet on Septem-

ber 21; nine days later physician Howard A. Minners placed him on his low-
residue diet. Schirra complained mildly while adjusting to the low-residue food,

but in every other respect he was primed and ready, mentally and physically.

As always when flight day neared, the Mercury operations team through the

Weather Bureau support group kept a watchful eye on existing weather disturb-
ances in both the Atlantic and Pacific areas. About 400 miles north by north-

east of Puerto Rico, tropical storm Daisy churned the waters of the Atlantic, while

three typhoons, Dinah, Emma, and Frieda, whipped Pacific waves. On October

l, Walter WiIliams told the news corps covering the flight at the Cape that except

for the weather "all elements of the MA-8 flight are in a go condition as of this

time." By 5 p.m. the following day, Williams was satisfied with the chances for

success and decided to launch as planned. -"_

Notified by Williams that he had a 7 o'clock liftoff "appointment" the next

morning, Schirra dined leisurely and retired earl),. Without any sleep-inducing

medications, the pilot drifted into slumber shortly after 8 p.m. and got about five
hours of sound rest. Minners roused Schirra at 1:40 a.m. to begin the precise

readiness routine. The astronaut showered, shaved, and met with Gilruth, Wil-

liams, Slayton, and Minners for breakfast. He ate heartily the "astronaut launch-
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ing breakfast," consisting of eggs, filet, dry toast, orange juice, and coffee, plus a

portion of a bluefish that he had speared the day before. The major preflight

physical having taken place two days earlier, Minners checked Schirra briefly, pro-

nouncing him in excellent physical condition. After Minners applied the physio-

logical sensors to the astronaut's body, Schirra signaled to Joe W. Schmitt to assist

him in donning the silvery wessure Suit. At a little past 4 o'clock, Schirra and his

attending retinue emerged from Hangar S.

As Schirra headed for the transfer van, Alvin B. Webb, a veteran space-news-

man assigned by the press pool to report actMties in that area, observed that the

astronaut seemed to be unusually relaxed and smiling, as compared to previous

astronauts on their way to the launch pad. Seconds later, Schirra, carrying his
portable air Cond_ti0ner, climbed aboard =the van for a leisurely ride toward the

flood-lit spire in the distance. As the van reached the blockhouse and gantry com-

plex, Byron G. MacNabb, representing the Convair-Atlas team, greeted Schirra

and said: "On behalf of the crew of Pad 14, I wish you a successful flight and a

happy landing." Acknowledging this salutation, 'Schirra boarded the elevator

and moved up the gantry. At 4:41 a.m. the astronaut slid inside Sigma 7. :4

THE TEXTBOOK FLIGHT

As October 3, 1962, dawned, television viewers and radio listeners in the

United States faced the day with a spectacular doubleheader in store : in the new

"world series" in space, the orbiting of a third American ; in the older World Series

on Earth, the opening baseball game between the New York Yankees and the San

Francisco Giants. Many dials switched later in the day to the traditional nine-

inning sports event, but two of the three major networks continued to compete for

the attention of Americans with minute-by-minute coverage of Sigma 7's six orbits. _

Schirra slipped into his capsule, buckled himself comfortably in the couch,

and smiled when he saw an automobile ignition key hanging from the handcon-

troller safety latch. This represented a tension breaker provided by the ground

crew. Then he began to inventory his gear inside the cabin--flight-plan bar

charts neatly placed in a slot just below the instrument panel, star charts arranged

in a rack to his side, cameras in place, and accessories stowed in his ditty bag.

When he stuck his hand in the glove compartment, he found some crinkly plastic

wrapped around a soft object that turned out to be a steak sandwich. Otherwise,

everything was as it should be, and Schirra began his prelaunch checkout testsd +

Outside the spacecraft, technicians busily bolted on the side hatch, and ever)"

bolt sank neatly in its threads. From there on, the countdown proceeded rapidly

until about 6:15 (T minus 45 minutes), when the Canary Island station reported

a malfunction in one of its radar sets. Since this equipment would be critical in

ascertaining the orbital parameters, Williams quickly called a hold in the count-

down. The Canary radar required only 15 minutes to be fixed and for the next 45

minutes the countdown ticked off with precision.
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At 7 : 15 a.m., the engines of Atlas 113-D roared and the big booster rose from
the pad to rocket Schirra and Sigma 7 on their journey through space. "I have
the lift-off," Schirra shouted into his microphone to Slayton in the Mercury Control
Center, "and she feels real nice." Ten seconds above the pad, however, No. 11 ]-
D telemetered signals showing an unexpected clockwise roll. Both primary and
secondary sensors inside the launch vehicle, monitoring such movements to deter-
mine the seriousness of the situation, registered a rifling roll only 20 percent short
of an abort condition. Then, to the relief of the capsule and booster monitors in

the control center, the threatening twist suddenly smoothed out. Schirra began
transmitting the status of his supplies and systems' operation. After a little more
than a minute, he realized that he seemed to be talking to himself. Glancing
around the cockpit, he noted that evidently the noise associated with max q had
incorrectly operated the sound-activated radio microphone, and so he pushed the
button to talk to Slayton. Surely something should be done to obviate this prob-

lem, he thought, because he needed to keep his hand on the abort handle, or
"chicken switch," rather than having to press the "talk" button manually.

Schirra listened for booster engine cutoff; it came two seconds earlier than
programmed. He saw a flash of light and smoke reflected from the booster engines
at the time the aft section parted from the sustainer. Seconds later the escape

tower jerked away from the top of Sigma 7, its rocket blast spreading a spotty film
on the window. Sustainer engine acceleration seemed slow, Schirra mused, but

since his escape tower had "really said 'sayonara,' " he could only wait and see if
the sustainer would burn long enough to accelerate him into orbit. Acceleration
seemed to drive on and on, the pilot said, and finally the sustainer engine cut off,
about 10 seconds late. Data registered on the control panels at the Cape indicated

a 15-foot-per-second overspeed that would send Schirra higher--176 miles--and
faster--17,557 miles per hour--than any other astronaut had gone or would go
during Project Mercury. _

When Sigma 7 parted from its Atlas rocket, Schirra turned on the auxiliary
damping controls to eliminate the spacecraft quivers produced by the blast of the
posigrade rockets. Although he dearly wanted to look out the spacecraft window
at the scene below, Schirra fixed his eyes on the instrument panel, flipped his
attitude control to the fly-by-wire mode, and started a leisurely four-degree-per-
second cartwheel movement to obtain his correct orbital attitude position. Turn-

around, which was deliberately slow to conserve fuel, used only three-tenths of a

pound from a total supply of almost 59 pounds of hydrogen peroxide. To Schirra
the thruster jets operated as if they had been programmed by a computer, providing
tiny single pulse spurts to obtain exactly the position he desired._S

Now he could look out the window to track the sustainer tankage. Peering at

a prescribed spot, Schirra saw the spent vehicle come into view in the upper left
corner of his "picture" window, just as his predecessors had said it should. Glenn
and Carpenter had mentioned that their tankage appeared to be silvery in color;
to Schirra, his looked almost black, "with a white belly band of frost." The spent
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launch vehicle seemed to have completed the same turnaround maneuver as the

spacecraft, because Schirra looked down its nozzle. The Sigma 7 pilot saw none

of the ice crystals or contrails streaming from the tankage reported by Carpenter.

Schirra said that the fly-by-wire system that had been redesigned to use only the

low thrusters, if desired, served well to adjust his attitude to track the spent sus-
tainer. The thrusters responded crisply and cut off without residual reactions.

Tracking the booster seemed even easier than following a target in an aircraft on an
air-to-air gunnery problem. Schirra nevertheless knew that he had neither the

attitude control and maneuvering thrust nor the computational ability to perform

a rendezvous. There were simply too many conditions to be judged if he were to

solve the orbital mechanics task so shortly after launching. Schirra later expressed

the opinion that rendezvous with another vehicle in §pace appeared to be possible,
but that he believed a pilot would have to have very precise attitude data to effect a

coupling. He confirmed what students of celestial mechanics already knew, while

providing them with a feel for the problems of perceiving relative motion. Differ-

ences in velocity of only 20 to 30 feet per second between two objects in space
could be disastrous, he said.

As Schirra neared the Canary Islands, he turned aside from tracking the booster

to check out the manual-proportional mode of spacecraft control. The pitching-

up maneuver matched well with his experience on the procedures trainer. As
Grlssom had done before him in Mercury-Redstone 4, Schirra noted that he tended

to overshoot his desired attitude position and that the manual mode of control

seemed "sloppy" compared with the semi-automatic modes. Manual-proportional
control clearly was not the best way to "park" the spacecraft in one attitude.

A far better method, he learned, was to rely on fly-by-wire with low thrusters only.
Passing over Nigeria, Schirra transferred spacecraft control to the automatic

stabilization and control system and busily monitored his panel dials. Minutes

later he had traversed the African continent without yielding more than once to

the temptation to watch the panorama passing beneath him. Moving toward
Zanzibar, Schirra began to feel warm. He decided to devote full attention to this

before somebody, as he said later in the postflight debriefing, started "jumping up

and down in the control center" and yanked him out of orbit. Frank H. Samonski,

the environmental control system monitor in the Mercury Control Center, had also

watched the temperature rise. At Mercury Control the suit heat signal, creeping
steadily upward, had indeed caused the ground controllers to think about terminat-

ing the mission after the first circuit. Samonski conferred with Charles A. Berry,
who had relieved Stanley C. White as flight surgeon in the Control Center. Berry

believed that the astronaut was in good condition. He advised trying a second

orbit to see if the suit and its occupant could settle their temperature differences.

Kraft, the flight director, listened to the two men and decided to give the go-ahead

to Schirra for a second orbit. Wrestling with communications checks and with

his suit temperature, he found himself halfway around the world before the Guay-
mas station relayed the official green light for his second orbit.
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When the temperature problem first appeared, the control knob setting was at
Position 4. Prior to the flight, Schirra had established a procedure for just this
situation. Rather than rushing to a high setting, he slowly advanced the knob by
half a mark at a time, then waited about 10 minutes to evaluate the change. Had

the valve been advanced too quickly, the heat exchanger might have frozen and
reduced its effectiveness even more. By the time Position 7 was reached, Schirra

was much cooler and felt sure that his temperature problem was nearing resolution,
but for good measure he turned to Position 8. Shortly he became a little cool, and
Samonski recommended that he return to Position 3.5. Schirra, thinking that
some kind of analysis had been performed in the Mercury Control Center, complied.

Immediately noting that the temperature was rising again, he quickly returned
the setting to 7.5 and left it alone for a while.

Rounding Muchea, Australia, on his first pass, Schirra had nosed the small end
of Sigma 7 down to watch for the first ground flare launch. He said that he saw
the flare before realizing the flash was only lightning. Shortly thereafter,

Woomera reported flare ignition; the pilot still saw lightning--but only as a big
blob of light, never llke the jagged streaks seen nearer Earth. Again, as on past
missions, the flare launching area was cloaked by clouds. Minutes later, however,
he reported seeing the outline of a city, which he guessed to be Brisbane, Australia.

With careful adjustments, Schirra peered into the periscope on his first night
trip through space, endeavoring to prove its optical advantages. Very graphically,

he finally reported, "I couldn't see schmatze through it. Schmatze translated
means nothing." He, like Carpenter, found the periscope was excess baggage
during the daytime and nearly useless at night. Reaching the morning side of
Earth near Hawaii, he recoiled when the Sun, glaring through the scope, almost
blinded him. Placing a chart over the scope, he commented that it "helps no end
to cover up that blasted periscope."

Though he did not feel rushed in his few tasks, Schirra did notice a remarkable
"speeding up of time" as distance flew by so rapidly. After crossing the Pacific,
he reported to Scott Carpenter at Guaymas, Mexico, "I'm in chimp configura-
tion," meaning that the capsule systems were all on automatic and working

beautifully. Even the temperature range had now become more comfortable,
and one more adjustment of the knob would end that problem. He then told
Carpenter that he would soon start his first daytime yaw maneuver, using the
window as a reference. Schirra said to SIayton, whiIe sailing over the Cape,
that the "reticle is working well for yaw, as well as for almost any other attitude."
Any object that could be seen on Earth could be centered on the window reticle
long enough to judge yaw misalignment. Always the most difficult of the three

axes to judge precisely, as demonstrated during MA-7, yaw alignment with the
flight path was a major control task to _be tested by the MA-8 mission. Over

areas of extreme cloudiness, there was no worry so long as rifts or thunderheads
provided breaks in the blanket of cloud cover. By the end of his first circuit,
Schirra felt he had become so adept in determining yaw attitude that he could
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estimate any yaw angle his ship happened to take away from the flight path.

The pilot for a second time carefully compared his visual ability, both with
and without the periscope, to position the capsule's attitude correctly. He felt
satisfied with the results. He conceded that by using the periscope on high mag-
nification he could obtain the yaw attitude faster than with the window, but

speed was unnecessary in most cases.
Schirra had to devote much of his time during the first orbit and a good por-

tion of the second to correcting his suit temperature settings. Perspiration salted
around his mouth as a result of suit inlet temperature reaching 82 degrees F; he
became quite thirsty, but he resisted opening the visor so the suit could have every
opportunity to settle in a more comfortable range. Despite the heat---which he
described as comparable to what he had endured mowing his lawn in Texas on
a summer's day--all other aspects of the flight were going well. Sigma 7 had
consumed 1.4 pounds of fuel on the first orbit, Schirra noted as he reported the

status of the spacecraft systems. He saw the exterior particles first reported by
Glenn and tapped the cabin wall to obtain the same shower effect Carpenter
reported. Much of his conversation with the tracking sites involved the status
of his suit circuit. He seemed to enjoy talking with the communicators during
his first orbit, but later he would complain that this became a chore, especially
when he was trying to concentrate on his work.

On Earth's nightside, Schirra reported that the Moon made an excellent yaw
reference; after completing and reporting on the yaw maneuver, Schirra told
Slayton in the Mercury Control Center that he had shifted back to the automatic
system. By now the temperature had subsided enough to permit a quick drink
of water. He took the opportunity during this respite to report that all systems

were performing very well. So far he had felt only one unwanted spurt from a
24-pound thruster when he returned to fly-by-wire for a yaw-maneuver exercise.

Becoming a little bored with automatic flight halfway around the world, Schirra

shifted to the manual-proportional system and produced a similar moment of

double authority. About two percent of the manual supply spat out in a pitch-

down motion of the spacecraft. "It was my boo-boo," he confessed.

Over Muchea, Australia, on his second pass, Schirra began a more serious and

considerably more difficult night-yaw experiment. He was to test his ability to

use celestial navigation to align the spacecraft properly. Using star-finder

charts, Schirra was supposed to orient himself by positioning Sigma 7 in relation

to known stars or planets and the Moon. Then he was to test his sense of facing

to the right or left of his flight path by watching the apparent motions of heavenly

bodies. The pilot found that the airglow layer was an excellent reference for
pitch and roll. This belt, which appeared very thick above the horizon, could

provide reference for these attitudes quite accurately. For experimentation with

the airglow layer, he positioned Sigma 7 so that it appeared to aim at the upper
layer of the belt. The panel indicators then showed a zero reference in pitch.
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Schirra conceded that night-yaw reference could be a bit of a problem. The
field of view from the window did not make it easy to identify the constellations

and find a known star. Preferring to obtain the correct yaw reference on the
daylight side, Schirra seemed to lack confidence in his ability to effect the night
maneuver. To some degree his difficulty stemmed from his star-finder charts,

which had been fixed in their relationship to Earth for a period up to about 7 : 16
a.m. on October 3. Schirra, now deep into the second orbit, knew that his
launch time had been 7: 15. The difference in time, plus his restricted field of
view, reduced the value of this night-yaw exercise; but as it turned out, telemetry
data received at the Muchea tracking station showed his error to be only four
degrees.

During the night-yaw maneuver, Schirra happened to notice one excellent

celestial pattern that he could use to align the spacecraft in the retrofire position
when it was time to reenter the atmosphere. Checking the panel indicators

against his own obseryations, he determined that the correct retrofire attitude
would place the planet Jupiter in the upper right-hand corner of the window, the
double-star constellation Grus tracking in from the/eft side of the window, and
the star Fomalhaut at the top of the window, near the center.

Across the Pacific, Sehirra again placed the controls in the automatic, or
"chimp configuration," mode. He chatted with Grissom at the Hawaiian site
about how well the spacecraft's systems were working. Grissom had made some

rather strong points concerning the manual-proportional control operation during
his suborbital flight, and the two astronauts, in a space-to-Earth conversation,
compared notes. Just as Hawaii lost his signal and California picked it up,
Schirra called that the "fireflies" were coming into view. "I have a delightful
report for one John Glenn," he told the California communicator. "I do see
fireflies." Impressed by the view out of the window, even though much of the
California coast was covered with clouds, Schirra remarked to Glenn, "It's kind
of hard to describe all this, isn't it, John?" Suddenly, through rifts in the clouds,
he could see San Clemente Island, off the coastline. Then, looking northeastward,
he saw more of the coastal area come into view, followed by the Salton Sea, an
excellent view of lower California, the ridges of Mount Whitney, and several roads
in the Mojave Desert area.

Although Schirra flew higher than either Glenn or Carpenter, he was rather
unimpressed by the height of his voyage. Psychologically he had prepared him-
self for space flight, knowing that he would be flying 10 times higher than he had
ever flown before. But once in space, the number, size, and detail of the objects
he could see with the unaided eye, such as roads and terrain changes, made him
actually feel no higher than he had climbed in an aircraft, "Same old deal,

nothing new," he remarked in debriefing, "might as well be in an airplane at
40- to 50-thousand feet altitude."

According to his flight plan, if the yaw-reference checks had been satisfactory
Sigma 7 would be phased into drifting flight during the third orbit. After giving
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Slayton a systems status report, Schirra proceeded to cage the spacecraft's gyros,

cut off its electrical power, and allow Sigma 7 to drift through space. Schirra

took this opportunity to make an old psychomotor experiment that Robert B. Voas

a year earlier had asked to be performed. Choosing three dials on the control

panel, he closed his eyes and attempted to touch the target points. In a total of

nine trials, he made only three errors, the largest being a displacement of some two

inches. The weightless state, he concluded, created no disorientation or new prob-

lems in blindly reaching for his controls.

After that test, Schirra drifted along, reporting his status again to the Canary

station and enjoying a brief period of looking out the window. He mentioned that

his outer pane was streaked with a pinkish-orange film and surmised that this had

emanated from the exhaust gases of the launch escape rocket. According to his

flight plan, he was supposed to eat and drink now; although he said, "I'm having

a ball up here drifting," eat and drink he did--peaches and ground beef mush

from squeeze tubes.

Out over the Indian Ocean, he informed the tracking ship in that vicinity that

he had switched the electrical power back on and gone into fly-by-wire control to

check systems operations after the "powered down," or free-flight, period. Ex-

citedly, the Indian Ocean ship communicator told Schirra that some of the crew

topside had actually caught sight of Sigma 7 for five minutes and through nine

degrees of tracking. Schirra, quite pleased, said, "I'll have to go by and say hello."

The pilot then reported that powering up again presented no difficulty; all systems

worked beautifully, with absolutely no responses from the high thrusters.

Smoothly transferring into the automatic stabilization and control system, he began
to look toward the heavens for familiar stars. When the Moon failed to show, he

went to the fly-by-wire, low-thruster control to bring it into sight. He identified

Cassiopeia during the process, then said, "There's our friend the Moon." Over
Muchea again by this time, he told the communicator that he had locked the

automatic system onto the disk of the Moon. Mercury Control had alerted the

ground stations to pay particular attention to fuel usage by the thrusters. Canton

Island and Kauai, Hawaii, rolled by underneath with everything working so well

that Grissom, at the Hawaiian station, gave Schirra the official good news that he

had a "go" for the full six orbits.

As Sigma 7 came near the California tracking site on its third pass, Schirra

told Glenn, "I'm going to shove off for a relaxation period," meaning he would

cut his electrical power, cage his gyros, and start drifting again. Schirra's flight

schedule now called for experimental observations and photography. He had to

struggle getting the camera out of the ditty bag, but once out it was weightless, and

Schirra easily snapped pictures from Baja California to Cuba as Sigma 7 drifted

along beautifully. Nearing the Cape, Slayton asked for a radiation reading from

the hand-held dosimeter. Schirra replied that the value was so small that it was

nearly unreadable. Then Kraft himself came on the air to compliment Schirra,

to urge him to look for the giant Echo balloon-shaped satellite on his next pass over
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Zanzibar, and to notify him that his voice would be broadcast live for two minutes

during his next flight across North America. The enthusiastic pilot then ex-

claimed that he had just drifted into an inverted position (head to Earth) and "for

some reason or another, you can tell that the bowl [spacecraft] is upside down."

He saw the whole eastern coastline of the United States, took a picture of that, and

then another of an interesting cloud formation. Still complaining that the camera

was difficult to extract, he decided not to stow it in the case for awhiIe. As for

Echo, he never saw that (or any other) man-made satellite while in orbit.

Floating through space around the world on his fourth orbit, Schirra took

pictures that struck his fancy, watched the nightfall, recognized several stars as

they appeared, and looked at lightning in the thunderstorms covering portions of
the Australian continent. As he came over the Pacific command ship, he face-

tiously reported to Shepard that his hydrogen peroxide had not evaporated and

suggested that they should make some plans, the next time around, about retrofire
countdown. Schirra then tuned on the radar ships Huntsville and Watertown for

a communications check. As Hawaii was sliding by, he told Grissom that he was

in inverted flight and that the impression was similar to "looking out a railroad

train window. You see the terrain going by you." The yaw attitude of the space-

craft was clearly discernible against this background.

As he approached, head down and looking toward California on his fourth

pass, Schirra joked with Glenn about his "real weird attitude" and transmitted
another short status report. Then at 6 hours, 8 minutes, and 4 seconds elapsed

time from launch, Schirra and Glenn began a dialogue heard by much of the west-
ern world via radio and television :

GLENN: Okay, Sigma 7. This is Cal Cap Com. You're at 6:08. Two
minutes on live TV. Go ahead, Wally.

SCHmRA: Roger, John. Just came out of a powered-down configuration
v*'hcre wc had the ASCS inverter off. It came up in good shape and will stay
on nov," for thc rest of the flight. The amps and volts arc reading prop-
erly .... I'm coming toward you inverted this time, which is an unusual way
for any of us to approach California, I'll admit.

GLENN: Roger, Wally. You got anything to say to everyone watching
you across the country on this thing? We're going out llve on this.

SCI-rmRA: That sounds like great sport. I can see why you and Scott like
it. I'm having a trick now. I'm looking at the United States and starting to
pitch up slightly with this drifting rate. And I see the moon, which I'm sure
no one in the United States can see as well as I right now.

GLENN : I think you're probably right.

SCI-ImRA: Ha-ha, I suppose an old song, "Drifting and Dreaming," would
be apropos at this point, but at this point I don't have a chance to dream. I'm
enjoying it too much.

GLENN: Things are looking real good from here, Wally.

SCHmRA: Thank you, John. I guess that what I'm doing right now is sort
of a couple of Immelmanns across the United States.
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And here ended Schirra's epistle from space. Glenn continued the conversa-
tion in relative privacy, asking whether Schirra had noticed anything surprising
about the haze layer. Schirra replied with another understatement--"It's quite

fascinating"--but later he recalled that this phenomenon had been his biggest
spatial surprise. Both Glenn and Carpenter had briefed him on the night view of
the horizon from the heavens, but "it just never did sink in to me that it was as large
in magnitude as it really was." Schirra remarked that the airglow layer covered

about a quarter of his view out the window. When first sighted, he said, "I
thought it was clouds, until stars appeared below." 29

Halfway through the fourth orbit, liquid collected over the inner surface of his
helmet faceplate, evidently from the water coolant circuit. Although Schirra was
annoyed by this problem for the next two hours, he was thankful that the suit tem-
perature remained reasonably comfortable. So long as his visor was sealed, he
had to crane his head about inside the helmet to find a clear view out of the face-

plate. He was still reluctant to disturb his suit temperature by opening his visor to
wipe it clean.

Going into his fifth orbit, Schirra told Slayton by radio relay that the flight had
been his first opportunity to relax since the previous December. His life had
suddenly become so sedentary that he gladly used the bungee cord exerciser to
tone up his muscles a bit. "Not exactly walking around," he said, "but a little

bit of stretching." Because Sigma 7 was now over the Yucatan Peninsula, com-
munications with the Cape were a little strained, causing Slayton to quiz Schirra,
"Did you say you'd like to get up and walk around?" The ground controllers
cleared the matter by switching circuits to a relay communications aircraft.

Schirra now began another check of the manual-proportional attitude controls,
recording a third brief ifistance of double authority control. Regarding this

latest spew of fuel, he complained that he "really flotched it. It's much too easy
to get into double authority, even with the tremendous logic you have working on
all these systems." His check of all the axes of movement proved that the manual-
proportional system was still in good working order. After this trial he returned
to observing and photographing targets of opportunity.

As he prepared to look for the 140-million candlepower light near Durban,
South Africa, Schirra reported "getting some lighted areas over the southern tip
of Africa .... I definitely have a city in sight." Betting that this was Port Eliza-

beth, a city a little more than 300 miles to the southwest of Durban, Schirra did not
seem surprised that Durban was being drenched with rain and its brilliant light was
not visible on this pass.

Passing into its fifth revolution of Earth, Sigma 7 still performed beautifully

in all respects. Astronaut Schirra had little to tell the ground tracking station
except to repeat how well the systems were working and how gorgeous were the
sights. With each orbit, he was now moving farther from the beaten track
nominal to a three-pass flight, and the periods of silence were longer. A lighted
area appearing much like an airport showed up in what he surmised were the

r
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Philippine Islands. "Possibly it's at Zamboanga," he guessed, a city on the south-
west coast of Mindanao. Minuteslater he talked with Alan B. Shepard aboard the

Pacific command ship, reporting with pleasure that his fuel supply stood at 81 and

80 percent in the automatic and manual tanks, respectively. His oxygen supply

was properly pressurized, and his suit temperature was at a comfortable 62 degrees.

Shepard replied, "Well, I could say that you were definitely go." Quickly he
checked in with the Huntsville and Watertown, presenting, as he put it, a "hunky

dory" report. As the pilot came over the Kauai station, Grissom fed him the

correct retrosequence time that he should use on his next, and final, pass. Checks

with Glenn at Point Arguello and with Carpenter at Guaymas showed that com-

munications should be good for checkoff and reentry during the sixth orbit.
Schirra then bade farewell to South America with a "Buenos dias, you-all," to the

Quito, Ecuador, communications relay station.

Going into the sixth orbit, Schirra almost regretfully began his preparations to

return to Earth. On his last pass over South America, heavy cloud coverage

obscured most of the hemisphere but he did catch sight of a large winding river.

He reached for the slow-scan camera and pointed it downward at the surface of the

window to capture the view, making a panoramic shot of the continent that he

thought would aid the Weather Bureau in continental cloud analyses. Then he

stowed the camera, rearranged the contents of the ditty bag and glove compart-

ment, and began going down the checklist of actions to be accomplished before

retrofire and reentry.
He shifted the control mode from the automatic system to the fly-by-wire, low-

thrusters, and found his command of the system still worked well. He looked

briefly out the window for the lights of Durban, but clouds still hid the glow of that

huge lamp from sight. He closed the faceplate, found it fogging again, and

opened it briefly to wipe the visor dean. The instrument panel showed that the

inverter temperatures were in a good range, that the battery voltage checked out

high, and that the oxygen pressure was holding its mark. Although quite com-
fortable, he decided to advance the suit-circuit knob "just a tad to increase the

cooling for reentry," to Position 8. The checkoff proceeded so methodically that

he had time to try another eyes-closed orientation test. He reached for the manual

handle and felt it in his grasp. Then he reached for the emergency handle but

brushed an adjacent radio box before touching it.

Down below, the Indian Ocean ship communicator asked if he needed any help

in completing the pre-retrosequence checklist. "Negative," he replied. All was

in readiness for the last-minute arming of the retrorocket squibs. He waited and

watched until he came in range of Shepard aboard the Pacific command ship. In

the darkness, he viewed a moonset, saw the proper star and planet pattern for his

correctly aligned attitude swing into view, and noticed that one of his fingertip lights

had burned out. Musing out loud for whoever could listen, he likened his situa-

tion once again to riding a train on celestial tracks leading back toward Earth.

Listening to the humming of the systems, he was reminded also of a ship underway
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at sea. As a pilot, Schirra curiously refused to compare his limited control of the
spacecraft with his freedom of maneuver in aircraft.

When he came into range of the Pacific command ship, he glanced at the fuel
levels: 78 percent in both the automatic and manual tanks, the meters read.

Shepard asked him how he stood on the checklist. Completed, with the exception
of arming the rocket squibs, Schirra replied. He told Shepard that his ship was
holding well in the retroattitude mode on the automatic system, that the high
thrusters were in good working order, and that he had the manual-proportional
system in a standby position. With everything set, Shepard gave the countdown

to arm the squibs on the "Mark!" Next came the retrosequence countdown.
Eight hours and 52 minutes after Sigma 7 lifted off from the Cape, the first retro-
rocket fired. When Schirra punched the button for this action, the tiny instant
of time before the firing "seemed agonizingly long." As each retrorocket fired
crisply at five-second intervals, Schirra was pleasantly amazed that the spacecraft
appeared to hold as steady as a rock. Quickly he checked this impression with a
glance out of the window; the star pattern he could see did not even appear to
quiver. After retrofire he checked the automatic fuel gauge and found the needle

hovering between 52 and 53 percent.
Then Schirra shifted gears to his favorite fly-by-wire, low-thruster mode of

control. He armed the retropack jettison switch and the spent unit spun away.
Shortly after retrofire his attitude control felt "a little bit sloppy," and he felt him-
self wobble toward reentry. Although this could have been corrected by using the
low thrusters, he intentionally cut in the high thrusters to get into position quickly.
Schirra pitched Sigma 7 up to the 14-degree reentry attitude with no difficulty and
cut in the automatic control mode to damp away undesirable motions. Then, as
the engineers had asked him to do, he turned on the fuel-g,alping rate stabilization
control system (RSCS). His return to the atmosphere was "thrilling" to the astro-

naut. He said the sky and Earth's surface really began to brighten, but, most
surprisingly, the "bear" he rode felt "as stable as an airplane."

Schirra realized that he had heard none of the hissing noises reported by Glenn

and Carpenter. Possibly, he thought, his concentration on the rate control system
caused him to miss the sounds. Having conserved his hydrogen peroxide so well
thus far, Schirra was quite perturbed with the rate system because he could see the
fuel supply being dumped like water being flushed. Resisting the temptation to
switch to a more economical mode of control because the engineers wanted to
evaluate this system once and for all, he pulled his eyes away from the gauge and
looked out the window. He could see the green glow from air friction that Car-
penter had reported. To him it looked limeade in color, almost chartreuse.
Suddenly, as a three-foot strap flopped past the window, he exclaimed, "My gosh !"
Then he remembered, "That's the same thing John saw."

Soon the barometric altimeter dial came into operation, and Schirra calmly
waited for the needle to edge toward the 40,000-foot reading. He punched the
drogue button, heard a "strong thrumming," and then felt the drogue parachute

m.
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pop open. What had felt like a smooth highway now seemed like turning off on

"a bumpy road." As long as he could, the astronaut strained to watch "the drogue

up there pounding away," but the window became virtually occluded by smoky

deposits from reentry. Schirra then turned back and flipped on the fuel jettison
switch.

At the 15,000-foot mark he ejected the main parachute and saw it stream and

blossom at 10,500 feet. This event, as Schirra quipped, "sort of put the cap on

the whole thing." As he started his descent to Earth, Schirra remarked to Shep-

ard, "I think they're gonna put me on the number 3 elevator" of the carrier

Kearsarge. Sigma 7 missed this mark by a scant 4.5 miles downrange from the

planned landing point, but the recovery force had the spacecraft well within its

sights electronically and visually. The carrier made radar contact with Sigma 7

at a slant-range of 202 miles; 90 miles uprange from the carrier, sailors of the

destroyer Renshaw reported hearing a sonic boom. Men on the deck of the

Kearsarge then saw a contrail, while a few of its crew claimed to see the drogue
and others heard two successive sonic booms and saw the main chute unfurl.

After nine hours and 13 minutes in flight, Sigma 7 settled on the water, in full view

of the ship's crew and the cameras of newsmen.

Sigma 7 hit the surface with a "plop," as Schirra described it, and "went way

down" before it surfaced and floated. He waited patiently for 45 seconds and

then broke off the main parachute and switched on the recovery aids. Inside,

the spacecraft remained dry and the temperature range was very comfortable as

Sigma 7 rode the lazy ocean swells. This condition prompted the pilot to exag-

gerate in debriefing that he "could stay in there forever, if necessary." Through

the window he could see the green dye permeating the water in a widening perim-

eter, and he knew that the whip antenna had telescoped out fully. Seeing the

antenna pole deploy while Sigma 7 was still submerged, Schirra later joked that he

thought he might spear another bluefish. All was well, and so far as this test pilot

could judge, the Mercury spacecraft "had gone to the top of the list," even over
the F8F aircraft he liked so well.

Long before Schirra's splashdown, the Kearsarge had launched helicopters
with swimmer teams, and soon three swimmers jumped into the dye beside the

floating capsule. During the 30 seconds while he was keeled over in the water,

Schirra had had some trepidation about his watertight integrity. He momentarily

wished for the pressure regulator handle that had been deleted from Sigma 7 to

save another pound of weight. As the capsule righted itself and remained ship-

shape, he noticed that communications had been better with Hawaii than they

were with the Kearsarge. The pararescue men then cut the whip antenna and
attached the flotation collar around the heatshield. Since he was comfortable,

he radioed a request to the helicopter pilot that he "would prefer to stay in and
have a small boat come alongside" and tow him to the carrier's cranes. Five men

piled into a motor whaleboat and within minutes had covered the half-mile to the

bobbing Sigma 7 and attached a tow line to it.

483



THIS NEW OCEAN

Some nine hours and 54 minutes after launch, the small space ship was hoisted
aboard the huge carrier. Five minutes later Schirra whacked the plunger to blow

the explosive hatch, incurring the same kind of superficial hand injury as Glenn

before him. He stepped out onto the deck of the Kearsarge and paused to

acknowledge the jubilant shouts and applause of the ship's crew. As he walked

down to the ship's sick bay, Schirra looked tired and hot but happy. When re-

porters called out, "How do you feel, Wally?" he replied, "Fine," with a flip of the
hand.

For the next three days, the Kearsarge was to be his home during the medical

examinations and technical debriefings. While still in his space suit and sitting

on a cot in the officers' sickroom, he received successive congratulatory telephone
calls from President Kennedy, his wife Josephine Schirra, and Vice President

Johnson .3°

Richard A. Pollard of MSC, Commander Max Trummer of the Navy, and

several other physicians began to check Schirra in every medical way possible.

When his phone calls were completed, about 45 minutes after he came on board,

the systematic examinations began. At first appearance, the spaceman showed

no evidence that he was dizzy or required walking assistance. He told the

physicians, "I feel fine. It was a textbook flight. The flight went just the way I

wanted it to." Contrary to the impression of some newsmen, the physicians did

not find Schirra overly fatigued. He talked easily and actively assisted in his

postflight physical. Only after he had been strapped on a tilt table did several

unusual symptoms begin to appear. For example, when lying supine his heartbeat

averaged 70 a minute; standing, it rose to 100. Blood pressure readings, although

not so pronounced in range, registered differently in standing, sitting, and prone

positions. His legs and feet assumed a dusky, reddish-purple color when Schirra

stood up, connoting that his veins were engorged. This condition persisted for

about six hours, and then the astronaut was permitted to retire for the night. The

next morning Schirra's heart and blood pressure readings were near normal, and

there was no evidence of pooling of blood in his legs when he stood.

Other than this minor anomaly, and the small lesion on his hand, Schirra

seemed none the worse for his lengthy weightless sojourn in space. Life-systems

specialists in NASA, at McDonnell, and at AiResearch, however, had another

question : What caused the elevated suit temperatures during the first two orbits?

Postflight inspectors dug into the matter promptly. The technical ills of the space-

craft's systems were more easily determined than the subtleties of man's physiologi-

cal system; as it turned out, the flow in the suit coolant circuit had been impeded

by the silicone lubricant on a needle valve's ha_ing dried out and flaked.

Postflight inspection of Sigma 7 found little else that seemed out of the ordi-

nary. Circular cracks on the ablation shield were moderately larger than on

Glenn's and Carpenter's spacecraft; also it appeared that the shield had banged

into the fiber-glass protective bulkhead upon impact, causing several small holes.

Once again the heatshield showed some delamination from the center, but it still
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appeared, as in past flights, that this occurred after reentry. Char depth on the
shield, about a third of an inch, was quite nominal. The shield's center plug,
which had been loose or missing after previous missions, stayed tightly in place.

All in all, the inspectors found very few problems to analyze or to correct. The
quality of the mission, of the hardware, of the software, of procedures, and of the
pilot were all superb. In terminology the engineers agreed with Schirra that MA-
8 was a "text book flight"--the best so far.

Walter Williams was especially jubilant over the MA-8 success; now he could
confidently turn his operations team to the task of the day-long mission. Schirra's
conservation of fuel and the excellent manner in which the spacecraft had per-
formed, he said, made planning for MA-9, if not routine, at least considerably
easicr._

Upon leaving the Kearsarge, Schirra received the leis of Hawaii and a tumul-
tuous aloha. Then he flew back to Houston. In a press conference at Rice
University, he reported about his spatial voyage to an American public that now
was more conversant with the terminology of space technology. Thereafter, the
hamlet of Oradell, New Jersey, greeted its most famous son, and from there

Schirra went to Washington to receive the NASA Distinguished Service Medal
from the President and, from the Chief of Naval Operations, the Navy's anchored
version of the coveted astronaut's wings. Throughout the national hurrahs,
however, the thoughts and words of participants in Project Mercury turned
toward the advent of the day-long mission, another step toward reaching the
lunar landing goal in the decade of the sixties? 2

In mid-October 1962 the frightening Cuban missile crisis raised the spectre of
nuclear holocaust. This dampened some of the postflight celebrations for Schirra.
When President Kennedy appeared on nationwide television to explain his actions
in blockading Cuba to force the Soviets to withdraw their ballistic missiles from
Fidel Castro's island, Americans perhaps for the first time became acutely aware
of the differences between medium-range (200-500-mile) "defensive" missiles
and intermediate-range (1000-1500-mile) "offensive" rocket weapons. Neither

the ICBM deterrent (defined as having an operational range of about 6000 miles)
nor the success of Kennedy's confrontation of Khrushchev over Soviet IRBMs in
Cuba could entirely relax the tension built up by this crisis. But it probably did
more than any manned space flight had to educate the public on relative thrust
capacities of rockets.

REDEVELOPMENT FOR MA-9

The flight of Sigma 7 had been so nearly idyllic that some observers, whether
from cynicism or a kind of parental possessiveness, believed Project Mercury should
be concluded on Schirra's positive note. Any further attempt at manned satel-
lite flight with this first-generation hardware might press the program's luck too
far and end sourly, if not calamitously. To cancel Mercury now would ensure

the reputation of the project. Others argued it would sacrifice the living poten-
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tial, as well as the intense desire, of the Mercury team to test man in space for

one full day? 3

Among Manned Spacecraft Center officials, there was no real decision to be

made here; Mercury had begun in earnest in 1959 with a vision of an ultimate

18-orbit mission. But by October 1959, the inexorable growth in capsule weight

and power requirements and the limitations of the network had forced the Space

Task Group to erase that vision. The 18-orbit mission for Mercury had been

revived by the summer of 1961, in conjunction with serious planning for Project

Apollo and for a "Mark II" ballistic capsule design. And when Project Gemini

was publicly named on January 3, 1962, as an interim program to fill the void

before Apollo could be developed, Mercury engineers were already driving head-

long toward the revived 18-orbit, 27-hour mission. 3.

During the period from September 1961 to January 1962, the word "capsule"
had been erased h'om Mercur) _vocabulary in favor of the word "spacecraft." It

was then that the Space Task Group (STG) became Manned Spacecraft Center

(MSC), and NASA Headquarters reorganized Abe Silverstein's Office of Space

Flight Programs into an Office of Manned Space Flight under a new director,

D. Brainerd Holmes. In the midst of all this confusion, one thing had been clear :

a Mercury spacecraft would have to fill the gaps in space, time, and knowledge

before a Project Gemini two-man capsule could be developed and qualified.

Although the physiological effects of extended exposure to weightlessness were still

of primary interest, the only local policy issue was whether to adopt another

change in nomenclature. Should the day-long sustained space flight be called

MA-9 or Manned One-Day Mission (MODM)? 3_

Throughout the spring and summer of 1962, Mercury engineers, both at

NASA centers and in St. Louis, had studied various design proposals for advanced

versions of the ballistic spacecraft. The first Gemini capsule mockup review had

been held at the tactory on March 29, about the same time that Lewis R. Fisher,

James E. Bost, William M. Bland, Jr., Robert T. Everline, and others had com-

pleted the specifications for a Mercury spacecraft for the manned one-day flight.

Not until September, however, were negotiations settled with McDonnell over

configuration changes to the four capsules set aside for this purpose (Nos. i2, 15,

17, and 20). A week before the Schirra flight, NASA Headquarters announced

a new plan to phase Mercury into Gemini more quickly, if MA-8 and MA-9

met all expectations? _

After Schirra, Atlas 113-D, and Sigma 7 excelled those expectations in nearly

every respect, the Manned Spacecraft Center forwarded its sixteenth quarterly

status report to NASA Headquarters, claiming:

This report will be the final in the series of Project MERCURY, as such,
since the MA-8 flight was the last mission of Project MERCURY. Future
reports, although they will continue with the following number (17), will be
on the status of the Manned One-Day Mission (MODM) Project (MER-
CURY Spacecraft).
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Robert Gilruth's team, nov," located in temporary quarters at 13 buildings scattered

over southeast Houston, was planning on an April 1963 launch date for MA-9,

using spacecraft No. 20. On November 9, 1962, MSC's senior staff decided to

aim for 22 rather than 18 orbits (or 34 rather than 27 hours), if all went

normally. 3r

Walter Williams, Christopher Kraft, and Kenneth Kleinknecht proceeded

to coordinate the mission planning with the Defense Department. This flight

would involve vastly expanded support, because MA-9 was to criss-cross virtually

all of Earth's surface between latitudes 33 degrees north and south of the equator.

L. Gordon Cooper was officially announced as the pilot and Alan Shepard was
named alternate in mid-November. McDonnell had estimated that this mission

alone would cost $17,879,834 to complete, but as yet the Air Force, Navy, and

Army participants had not conferred with NASA about new needs for the recovery

network and medical support. _ Clearly the MA-9 operation would not be able

to challenge the 64-orbit feat of Nikolayev in Vostok III nor the 48 orbits of Popo-

vich in the tandem Vostok IV, but MA-9 should go well beyond Titov's 17 orbits
in Vostok H.

Meanwhile NASA and the Manned Spacecraft Center took their cues from

President Kennedy and Administrator James E. Webb to mobilize greater effort

toward the longer-range goals symbolized by Project Apollo. Only 55 persons

staffed Kleinknecht's Mercury Project Office specifically to coordinate the diverse

preparations for MA-9. Of the 2500 people employed by MSC in January 1963,

only 500 were working directly on Mercury. The Gemini and Apollo teams were

rapidly taking shape. NASA had just honored a group of nine old-time engineers

from the Space Task Group as the "Mercury Spacecraft Inventors." The list of

innovators was headed by Maxime A. Faget, and included Andre J. Meyer, Jr.,
William Bland, Alan B. Kehlet, Willard S. Blanchard, Robert G. Chilton, Jerome

B. Hammack, Caldwell C. Johnson, and Jack C. Heberlig. But of that group of

designers and developers, only Bland still remained employed in the Mercury

Project Office. The rest had gone to work on Gemini and Apollo. 39

One of the more significant New Year's resolutions enacted by NASA in 1963

was the appointment of a Manned Space Science Planning Group and of a Panel

on Inflight Scientific Experiments, known informally as POISE, chaired respec-

tively by Eugene M. Shoemaker and John A. O'Keefe. These two new groups

were established to repIace the Ad Hoc Committee on Scientific Tasks and Train-

ing for Man-in-Space and to ensure closer coordination between the Manned

Spacecraft Center and the NASA Office of Space Sciences. They were only

temporary expedients, staffed by most of the same people who had served earlier

as consultants, but at least the manned space science programs for Gemini would

be born more respectably than those for Mercury. '°

At the first MSC senior staff meeting in 1963, Walter Williams warned his

colleagues that two recent failures in Atlas-F launchings by the Air Force were

inexplicable, or so far, at least, unexplained. Unless investigating committees

489



THIS NEW OCEAN

could clear up these failures soon, absolving the Atlas-D from any guilt by asso-

ciation, the MA-9 schedule might suffer. After five )'ears of developmental ex-

perience, the Atlas ICBM had approached but still not attained a reliability high

enough for comfort. The Atlas, even as modified and "gold-plated" by the "man-

rating" tests and procedures, was still basically a ballistic missile, only converted

and not designed to launch men into space. After five consecutive Mercury-Atlas

launches without a failure, it was all too easy to forget this fact? _ When the 130-

D, Cooper's "bird," was first rolled out of the factory in San Diego on January 30,

it failed to pass inspection and was returned for some rewiring.

Amid some charges from impatient newsmen that NASA had "muzzled"

Cooper, the prime pilot took time out on February 8 to hold a press conference in

Houston that refuted such public speculation. Cooper forthrightly admitted what

little he knew about the booster problem arid answered in picturesque detail a host

of questions about new developments for his space suit, his spacecraft, his mission.

"This is going to practically be a flying camera," he said, explaining the new slow-

scan television monitor, the 70-millimeter Hasselblad and its different film packs,

the special zodiacal-light 35-millimeter camera, and a 16-millimeter, all-purpose

moving-picture camera. Cooper had difficult), convincing some reporters that the

duration of the M:\-9 mission would depend on how well it went--for "as many

as 22 orbits"--and that he was still "struggling" to find a suitable name for space-

craft No. 20. But otherwise he talked freely about the most significant differences
between the MA-8 and MA 9 spacecraft, although obviously he could not name

all 183 of the changes then underway at McDonnell's Canaveral shop? _-

Weight growth had been the primary nemesis in preparing for every Mercury

mission, and this was especially true for the day-long mission. As is characteristic

perhaps of all American technology, and especially of advanced modifications to

military aircraft, overweight accessories tended to compromi_ the vehicles' per-

formance. In the case of the MODM spacecraft, heavier batteries for more

electrical power, another 4-pound bottle of oxygen, 9 pounds of cooling and 4.5

pounds of drinking water, plus 15 more pounds of peroxide fuel were imperative

additions. Experimental gear, a full load of consumables for life support systems,

and various modified components were also judged necessary, though heavier,

installations. In an effort to compensate for these added weights, the 12-pound

Rate Stabilization Control System (RSCS), a 3-pound UHF and a 2-pound telem-

etry transmitter, both of which were true redundancies now; and, in particular,

the 76-pound periscope were deleted. Manned Spacecraft Center engineers almost

discarded the fiber-glass couch in favor of a new hammock to shave away 17 more

pounds, but that change did not materialize because the engineers feared the

material might stretch and the astronaut bounce. So the MA-9 payload con-

tinued, through 31 weeks of grooming, to grow into an estimated weight of 3026.3
pounds in orbit? :'

Such weight increases had become expected, at the rate of about two pounds
per week of preparation, and early in 1962 the Mercury managers had called for
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an extensive requalification program of the parachute and landing system.

Known as Project Reef, these tests had effectively allayed all fears about the ring-

sail parachutes' margin for error with heavier loads long before Sigma 7 gave an

even better demonstration. At the beginning of 1963, NASA scientists from other

centers were pleased to gain some voting strength on the 20-man committee estab-

lished nine months earlier to decide what in-flight scientific experiments should be

conducted. But the majority voting strength of this panel still remained with

MSC engineers, whose weight-consciousness and power-consciousness effectively

stifled the transformation of MA-9 and spacecraft No. 20 into a more purely

scientific orbital laboratory?'

Another ground test program behind the scenes, namely Project Orbit, which

by the end of February 1963 had completed a 100-hour full-scale simulated mis-

sion in its thermo-cryogenic vacuum chamber, stirred up concern that the reaction

control thrusters might get sluggish or freeze during long periods of inactivity in

space. In all other respects, Project Orbit seemed to certify that the McDonnell

spacecraft and all subcontracted systems were ready and reliable for a full day or

more up there. 4_

Meanwhile, the tiger teams at work on Atlas 130-D were exceptionally pleased

when, on March 15, 1963, the second factory rollout and flight-acceptance in-

spections on this booster were completed without a single minor discrepancy.

Philip E. Culbertson, Gus Groissant, John P. Hopman, and David R. Archibald

of General Dynamics/Astronautics flew across the country to deliver to their test

conductor at the Cape, Calvin D. Fowler, what they believed to be their best bird

yet. Bernhard A. Hohmann and helpers at Aerospace Corporation had defined

an offset of the booster engines to counteract the threatening roll rate that Schirra

had experienced at liftoff. And on April 22 spacecraft and rocket were mated. _

By the end of April, all plans and preparations had been well laid and revised

in accord with the precedents and lessons of previous flights. The detailed flight

plan, technical information summaries, calculated preflight trajectory data, public

information directives, experiments guidebook, and documentation directives were

all disseminated. The world was girdled by military and medical recover 5' per-

sonnel waiting for May 14 and the launch of Gordon Cooper. A total of 28

ships, 171 aircraft, and about 18,000 sen, icemen were assigned to support MA-9.

These included 84 medical specialists, a reduction by half in the number of medical

monitors and corpsmen since Glenn's flight. This was a token of the confidence

the planners now had in Mercury and its men?;

But that confidence was not shared by everyone. While Cooper struggled to

select the most appropriate name for his capsule, criticism of NASA and its imple-

mentation of national space goals swelled once again. Philip H. Abelson, editor

of Science, the journal of the American Association for the Advancement of

Science; Warren Weaver of the Alfred P. Sloan Foundation; and Senator J.

William Fulbright from Arkansas raised voices in protest against the Moon race

and against manned space flight in general. The costs of manned orbital flight,
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the confusion regarding "science" and "technology," and urgent social and political
problems deserving equal attention were to be widely debated. 4s

Against this context, when Cooper finally announced his choice of a call-sign--
Faith 7, symbolizing "my trust in God, my country, and my teammates"--NASA
public affairs officers were described by the Washington Post as worried :

The naming of the bell-shaped capsule--a tradition accorded to the astronaut
riding it--has given Cooper some bad moments. He has picked "'Faith 7,"
which has drawn some raised eyebrows in the "image" conscious space agency.

"Suppose that, for some reason, we lost the capsule at sea," said one source.
"Then it would come out reading something llke, 'The United States today lost
Faith .... ,,, 4_

So much had happened, so many things had changed in the four years since
Project Mercury had become publicized by the selection of its seven astronauts,
that the Manned One-Day Mission seemed an appropriate new name to symbolize
the differences. Now there was a second class of nine more astronauts-in-training;

there was the national goal of a lunar landing before 1970; there were new facil-
ities, new administrators, and thoroughly reorganized procedures and policies to
follow. Mariner II, in its magnificent survey of Venus in December 1962, was
interpreted a few months later as having proved Venus to be one destination in
planetary space that might as well be forgotten as a target for manned landings.
Mars remained a mystery, and so also did Earth's Moon_ for that matter, but the

decision to try Project Apollo made Mercury already merely a demigod. While
Project Ozma used radio telescopes in a search for evidence of intelligent life
elsewhere in the universe, Telstar II was launched May 7, 1963, to renew the
hope that Earthmen might exercise greater intelligence than they had in the past

by establishing more intelligent communications with each other, s°

In the midst of the heat of scientific and political criticism of both Department
of Defense and NASA space priorities and costs, NASA and the Mercury managers
had to decide what, if anything, should be the next mission after MA-9. If
Walter Williams and others at MSC had their way, an MA-10 mission, planned
for a three-day sojourn in space, would follow. But they were overruled, and
Julian Scheer, the new NASA Deputy Assistant Administrator for Public Affairs,
announced emphatically on May 11, "It is absolutely beyond question that if this
shot is successful there will be no MA-10." 51

So Astronaut Cooper knew, as he made the final preparations after four years
of training, that his flight would mark the end of the beginning. A well-known
life insurance company subscribed to Cooper's faith by underwriting the first
commercial astronaut policies, including one for Cooper. The Mercury opera-
tions team gathered at the Cape the second week in May and found Faith 7, Atlas

130-D, and Cooper all ready to take off. Only the weatherman, Ernest A.
Amman, voiced his doubts about the May 14 launch date2-"

At 6:36 on the morning of May 14, Gordon Cooper was sealed inside his
Faith 7 spacecraft atop the steeple that was his Atlas. He checked off all his sys-

492



The worldwide interest and sense o[ identification with Project Mercury was always

apparent. From Glenn's flight on, one country that particularly responded to the

challenges o[ manned space flight was Australia. Shown here on April 21, 1963, is

Premier o[ Western Australia David Brand (center) presenting the original painting,

"Perth, the City o[ Lights," to Manned Spacecra[t Center. Astronauts Schirra and

Slayton accepted this commemoration o[ Perth's role in Project Mercury.

tems and awaited completion of the blockhouse and Control Center checkoffs,
which should count down to ignition about 9 o'clock and lift him up to insertion
about 9:05. A suction-cup force pump, the kind commonly called a "plumber's
friend," had been Alan Shepard's parting gift to Cooper, but the instruction
inscribed on the handle, "Remove before launch," had been obeyed. It would

not make the long trip with Cooper.
While waiting, Cooper heard the secondary control center on Bermuda report

that its basic C-band radar system was misbehaving both in azimuth and range.
So he napped for a time during repairs. When Bermuda had corrected the dif-

ficulty, at about 8 o'clock, the countdown was resumed, and the gantry was ordered

back. But the diesel engine failed to move the gantry, and engineers scurried

around, looking for the proper plumber's helper to repair a fouled fuel injection
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pump. More than two exasperating hours were lost on the "fail-safe" diesel
locomotive before the count could resume.

At high noon, the gantry was driven back. But radar data from Bermuda,

which was vital to the go/no go decision before the point of no return, now was

intermittent. The launch was postponed. Cooper emerged from his capsule,

saying, "I was just getting to the real fun part .... It was a very real simula-

tion." Later that afternoon he went fishing, while checkout crews stayed at the

pad, seeking out unsuspected trouble spots such as the diesel fuel pumpY

That night Mercury Operations Director Williams broadcast the word: "All

systems are go, and the weather is good. Let's pick up the count and go."

Cooper lay down to sleep, confident that his safety and the mission would keep

until he should awake and take his place.

Next morning the countdown proceeded smoothly_ Cooper had lain in the

capsule only two and a half hours when he heard the final chant :

"T minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1. Ignition. Liftoff." 5,

Faith 7 FOR 22 ORBITS

Thirteen seconds past 8:04, range-zero time, on the morning of May 15, 1963,

Mercury-Atlas 9 lumbered upward the two inches that defined liftoff and thun-

dered on toward its keyhole in the sky. Inside MA-9, Astronaut Gordon Cooper

felt the smooth but definite push intensify as Faith 7 gained altitude faster each

second. His clocks marking the moments in synchronization, Cooper shouted

through the din of the afterburner behind him to Waiter Schirra, his predecessor

and now capsule communicator at the Cape, "Feels good, buddy .... All systems

go." s_

Sixty seconds upward, MA-9 initiated its pitch program, and Cooper felt

the max-q vibrations grow, but the rate gyros sensed greater lateral oscillations

than the pilot did. Six or seven swings from peg to peg on his instruments, and

the flight smoothed out. Two minutes and 14 seconds upward Cooper heard "a

loud 'glung' and then a sharp, crisp 'thud' for staging" as booster engines cut

themselves out and off. Then away flew the needless escape tower, and at three

minutes after launch cabin pressure sealed and held while Cooper reported,

"Faith Seven is all go."

The Atlas sustainer engine continued to accelerate, and its guidance system

performed perfectly for two more minutes before SECO. Faith 7 and "Sigma 7"

swapped remarks on the sweetness of the trajectory. Schirra, at the point of
Cooper's orbital insertion and capsule separation, said, "Smack dab in the middle

of the go plot. Beautiful." And Cooper replied, after turning around on the
fly-by-wire, "Boy, oh, boy.., working just like advertised !"

In full horizontal flight over Bermuda at 17,547 miles per hour, Cooper

watched his booster lag and tumble for about eight minutes, then checked his

temperatures and contingency recovery areas, and tried to adjust to the strange
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new sensations and perspectives at a little more than 100 miles (near his perigee)

above sea level. Floating higher in his couch, now that he was weightless, Cooper

agreed with Carpenter's report that an astronaut's sense of the cockpit changes

when he reaches zero g and no longer feels himself lying flat on his back. Status

checks with the Canary Islands and Kano, Nigeria, came on so fast that Cooper

could hardly believe he had crossed the Atlantic Ocean and half of Africa already.

Over Zanzibar, he learned that his orbital parameters looked good enough

for at least 20 revolutions and that all Faith 7's telemetry was working well. His

suit temperature fluctuated somewhat erratically, but as he watched his first sunset

from space over the Indian Ocean he forgot his discomfort while looking at the air-

glow, spotting the twinkleless stars, and observing sheet lightning in scattered thun-
derstorms "down under." He saw the lights of Perth, Australia, on schedule 55

minutes after liftoff, and over Canton Island, in the Polynesian Archipelago, just

south of the equator, the Sun began to rise behind him (as he flew backward to-

ward the sunrise), and Cooper reported observing Glenn's "fireflies," or C'arpen-

ter's "frostflies," drifting along with the spacecraft at five miles per second.
From Guaymas, Mexico, Grissom, acting as capsule communicator, officially

relayed the computer-blessed "go for seven orbits." Cooper, audibly impressed

with the perfection of the flight so far, said, "It's great .... quite a full night ....

everything appears very nominal on board here." As Cooper passed over the

launch site at Cape Canaveral, Schirra raised him on the radio circuits once again

and complained, "You son-of-a-gun, I haven't got anything to talk about .... I'm

still higher and faster, but I have an idea you're going to go farther." The

manned one-day mission was off to an auspicious start. Alan Shepard, who had

been Cooper's backup pilot and was now also talking to Faith 7 from Mercury

Control, coached Cooper into his second orbit, saying, "All of our monitors down

here are overjoyed. Everything looks beautiful."

Cooper thought so, too. All his spacecraft and physiological systems per-

formed perfectly on his first two orbits. His only complaint concerned an oily

film on his "windshield" that seemed to be on the outside pane of the window.

Between Zanzibar and Muchea on his second pass, Cooper dozed off for a four-

minute nap and then drifted across the Pacific, observing storms while inverted

and stars when facing spaceward.

Beginning with his third orbit, the astronaut checked over the 11 experiments

in which he was to participate. He prepared to eject a six-inch-diameter sphere,

equipped with polar xenon strobe lights, that was to test his ability to spot and

track a flashing beacon in a tangential orbit. At three hours and 25 minutes

elapsed time, Cooper clicked the squib switch and heard and felt the beacon kick

away. But, try as he might, he could not see the flashing light in the dusk or on

the nightside during this round. On the fourth orbit, however, he did spot the

beacon at sunset and later saw it pulsing. So he knew he had indeed launched a

satellite from his satellite. Cooper jubilantly reported to Carpenter on Kauai,

"I was with the little rascal all night."
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Subsequently, on his fifth and sixth orbits, Cooper saw the flashing xenon
several more times, and likewise spotted the constant xenon ground light of
44,000 watts placed at Bloemfontein, a little horseshoe-shaped town in the Union
of South Africa. Having eaten some blte-sized brownie and fruitcake foods and

excreted periodic samples for urinalysis, Cooper also kept up with his calibrated
exercises, took oral temperatures and blood pressure readings, and did other duties

required for the highest priority experiments of the MA-9 mission, the aeromedi-
cal ones.

Also on his sixth orbit, after nine hours in space, the astronaut set his cameras,

attitude, and switches to deploy a tethered balloon, similar to the one tried on
MA-7, for aerodynamic studies of drag and for more visual experiments. The
balloon, a 30-inch-diameter Mylar sphere painted fluorescent orange, was to be
inflated with nitrogen and attached by a 100-foot nylon line to the spacecraft
antenna canister; a strain gauge in the canister should be able to measure the
differences in pull on the balloon at apogee (166 miles) and perigee (100 miles).
Cooper carefully went through his checklist, then tried to eject the balloon package,
but nothing happened. He tried again, and still nothing happened. Because
the antenna canister was later lost, no one ever knew why the tethered balloon

failed to eject. But the second failure of this experiment was more severely dis-
appointing than the first.

When Cooper surpassed Schirra's record by moving into a seventh orbital
pass, he was engaged with the radiation experiments and with the hydraulic work
of transferring urine samples and condensate water from tank to tank. During
the automatically recorded radiation measurements, he had to turn the recorders

on and off precisely on time and estimate accurately, without benefit of gyros, his
drifting spacecraft's attitude. The hydraulic work was more difficult, because the

hypodermic-type syringes used to pump the liquid manually from one bag con-

tainer to another were unwieldy and exasperatingly leaky. At 9:27 elapsed

time, Cooper spoke into his tape recorder, "The thing about this pumping under

zero g is not good. [Liquid] tends to stand in the pipes, and you have to actually
forcibly force it through."

After 10 hours of the mission, Zanzibar officially informed Cooper that he

had a go for 17 orbital passes. The tracking, communication, and computing

facilities at Goddard Space Flight Center in Maryland had long since settled

down to a routine in following Faith 7 around the world. The actual orbital

parameters for Cooper's flight were proving so close to those planned that the

differences were measurable only in tenths of a mile and hundredths of a degree.

MA-9 was circumnavigating Earth once every 88 minutes and 45 seconds at an
inclination angle of 32.55 degrees to the equator. Soon, as Earth turned beneath

Cooper, his orbital track would have shifted too much to keep him within range of

most of the scattered tracking and communications sites in Mercury's worldwide

network. Then, too, the word "orbit" would become confused, because passing
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over the same meridian on the rotating planet is not the same as passing through

the space-fixed point of orbital insertion.
Cooper spent his last "orbit" before his scheduled rest period, on orbits 9

through 13, in extensive activity. He finished the radiation measurements; he

ate his supper of powdered roast beef mush and gulped some water; he took pic-

tures over India and Tibet; and he checked all his machinery for readiness to power

down and drift and dream for the next seven hours or so. Passing from the

Himalayas to Japan in less than five minutes, Cooper was aroused by John Glenn's

second transmission from the tracking ship Coastal Sentry, located near Kyushu.

Veteran spaceman Glenn assured Astronaut Cooper, "You're sure looking good.

Everything couldn't be finer on this pass." Ten minutes later Cooper had tra-

versed the Pacific lengthwise in a southeasterly direction and had come over

the telemetry command ship Rose Knot, positioned near Pitcairn Island, at latitude

25 degrees south and 120 degrees west. There he gave a full report on all systems;

the shipborne communicator advised him to "settle down for a long rest."

But Cooper was still too excited and fascinated to feel sleepy. Orbit 9 was to

carry him again around South America, over Africa, northern India, and Tibet

during daylight, and he resolved to record on film some of the remarkable things

he could see while looking down at open terrain. On this circuit Cooper snapped

most of his best photographs, demonstrating his contention that he could see roads,

rivers, small villages, and even individual houses if the lighting and background

conditions were right. High over the highest plateau on Earth, the Tibetan high-

lands, where the air is thin and visibility is seldom obscured by haze, Cooper

thought he could even judge speed and direction of ground winds by the smoke

from the house chimneys.

In their third radio contact, John Glenn, as "Coastal Sentry Quebec," advised

Cooper, who had now been in space over 13 hours, 34 minutes, that he should "tell

everyone to go away and leave you alone now." Cooper then relaxed and fell into

a sound sleep. He awoke drowsily an hour later when his suit temperature got

too high. Intermittently, for the next six hours, during orbital passes 10 through

13, Cooper napped, took more pictures, taped status reports occasionally, and

cursed to himself over the bothersome body-heat exchanger that 'kept creeping

away toward freezing or burning temperatures. At the end of his rest period,

Cooper taped his surprise at having napped so soundly that neither floating arms

nor weightless dreams had startled him into awareness of where he was when he

woke. But he cautioned psychologists not to make too much of this:

Have a note to be added in for head-shrinkers. Enjoy the full drifting flights
most of all, where you have really the feeling of freedom, and you aren't worried
about the systems fouling up. You have everything turned off, and just drift-
ing along lazily. However, I haven't encountered any of this so-called spilt-off
phenomena. Still note that I am thinking very much about returning to Earth
at the proper time and safely.
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Coming around Muchea again, on his fourteenth pass, Cooper checked over
all his systems, found his oxygen supply plentiful, and reported his peroxide fuel
for attitude control showing 69 percent remaining in the automatic tank and 95

percent in the manual. He was in good shape, and all systems were still working
"as advertised." At this point, Gordon Cooper spoke a prayer into his tape
recorder aboard Faith 7, high in the heavens over the South Pacific. The MA-9

mission was well beyond its midpoint in time and space, and Cooper was humbly
gratefuI that everything was still nominal. Physiologically his vision he knew

was abnormally good. Philosophically the vision of this eighth man in history to
orbit Earth in a manned satellite was bound to his culture, his times, and his
origins in Oklahoma? c

Orbit 15 was consumed largely in calibration of equipment and synchroniza-

tion of docks, since by now Earthmen had experienced one more full 24-hour day
of grace, whereas Faith 7's elapsed time was faster by some 16 seconds than range-
zero elapsed time. Orbit 16 brought Cooper back over Cape Canaveral and
onward, virtually retracing his first shadow over Earth. The President of

El Salvador had radioed greetings on pass 15, and on 16 Cooper sent a similar
political greeting to African leaders meeting in Ethiopia. Then he buckled down
immediately to another high-priority experiment requiring elaborate timing
precautions.

As he entered Earth's shadow, or nightside, on this sixteenth orbit, Cooper
caged and freed his gyros in such a manner as to allow his automatic attitude
control system to torque the spacecraft slowly in pitch through the plane of the
ecIiptic. He couId view, through his window, the mysterious phenomena of
zodiacal light and night airglow layer. Together these two different objectives
were called "dim light" phenomena, and the experimental photographs were
designed to answer astrophysical questions about the origin, continuity, inten-
sity, and reflectivity of visible electromagnetic spectra along the basic refer-

ence plane of the celestial sphere. They might also help answer some questions
about solar energy conversion in the upper atmosphere. From Zanzibar, past the
Canton Island station, Cooper called out the count as he clicked the series of astro-
nomical photographs. Although the zodiacal light pictures turned out under-
exposed and the airglow shots overexposed, they were of usable quality and
supplemented Carpenter's pictures from Aurora 7 nicely.

Over Mexico, Cooper shifted to the next most important photographic task,
that of snapping horizon-definition imprints in each quadrant around his local
vertical position. Just as University of Minnesota scientists had prepared him
for the zodiacal light task, so Massachusetts Institute of Technology researchers had
arranged for these snapshots to aid in the design of a guidance and navigation sys-

tem for Project Apollo. Cooper's horizon-definition pictures marked a significant
advance beyond those from the MA-7 mission. In contact with the Cape once
again, Cooper lightheartedly complained like a typical American tourist, "Man,
all I do is take pictures, pictures, pictures !"
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But he was not through yet. On orbits 17 and 18 he took infrared weather

photographs of good quality and a few excellent moonset Earth-limb pictures.
Meanwhile, he resumed the geiger counter measurements for radiation, continued

his aeromedical duties, and adjusted his television monitor at the request of ground

observers. The eighteenth pass over the United States, like the sixteenth, gave
his extraordinary vistas of his country from southern California, across Dallas the

first time and Houston the second, to the Florida peninsula. He sang during
orbits 18 and 19, still surprised with every pass, still marveling at the greenery on

Earth and on his instrument panel as he came toward his thirtieth hour in space.

Although "this fine plumbing they put in this thing" proved more troublesome

later, Cooper had learned to adjust his suit temperatures for comfort and to eat and

drink over the rim of his helmet fairly effectively, if awkwardly. Then on his

nineteenth orbit, while checking his warning lights before a high-frequency antenna

test over Hawaii, Cooper noticed the first potentially serious systems anomaly of his
mission.

A small telelight lit up green, indicating that Faith 7 was decelerating and that

the centripetal force of gravity had overcome by .05 g the centrifugal force of the

spacecraft's orbital moment of inertia. This had to be a false indication, reasoned

Cooper, because he felt, and his loose gear still appeared, weightless. But were g
forces building up imperceptibly? California confirmed no such indication.

Mercury Control showed great concern over the implications of this little light

for the attitude stabilization at retrofire. The fears of the flight controllers were

realized on the next pass, when Cooper lost all attitude readings. Then, on the

twenty-first orbit, a short-circuit occurred in a busbar serving the 250-volt main

inverter, leaving the automatic stabilization and control system without electric
power. The minor glitch had become a serious hitch.

Mercury Control Center was in a flurry of worried activity, cross-checking

Faith 7's problems and Cooper's diagnostic actions with identical equipment at

the Cape and in St. Louis, then relaying to each communications site questions to

ask and instructions to give. Cooper remained cool, if not calm, now that his

alertness had been stimulated by a medically prescribed pill of dextroamphetamine.

On the twenty-first pass (over the tracking ship Coastal Sentry), John Glenn

helped Cooper prepare a revised checklist for retrofire procedure during the next,

and last, time around. Only Hawaii and Zanzibar were within voice radio range

on this last circuit, but communications were good. When the ASCS inverter blew

out, Cooper also noted that the carbon dioxide level was rising in both his suit and

cabin. "Things are beginning to stack up a little" was his classic understatement

to Carpenter, and then Zanzibar heard him say he would make a manual reentry.

Twenty-three minutes later Cooper came into contact with Glenn again, re-

porting himself in retroattitude, holding manually, and with checkoff list complete.

Glenn gave the 10-second countdown, and Cooper, keeping his pitch down 34

degrees by his window reticle, shot his retrorockets manually on the "Mark!"

Glenn reported: "Right on the old gazoo .... Dealer's choice on reentry here,
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fly-by-wire or manual . . . It's been a real fine flight, Gordo. Real beautiful all

the way. Have a cool reentry, will you."

"Roger, John. Thank you."

And that he did. All the complicated, crowded events of the next 15 minutes
occurred precisely as planned, while Faith 7 plummeted down through the atmos-

phere. Four miles ahead of the prime recovery ship, again the carrier Kearsarge,

just south of Midway Island, the canopied capsule containing Gordon Cooper

broke through a mild overcast and landed on the lazy waves of the blue Pacific.

Splashdown came 34 hours and 20 minutes after liftoff. Cooper professed dis-

appointment that he too had "missed that third elevator" aboard "Begonia," mean-

ing the Kearsarge. The spacecraft floundered in the water for a moment, then

righted itself, as hovering helicopters dropped their swimmers and relayed Cooper's

request as an Air Force officer for permission to be hoisted aboard the Navy's car-

rier. Permission was granted, and 40 hot, humid minutes later the explosive

hatch blew open at the command of MSC engineer John B. Graham, Jr. Physi-

cians examined Cooper for eight more minutes while he lay in the couch. Then

they helped him emerge and steadied him during a moment of dizziness until he

regained his equilibrium. Away in triumph marched the one-man crew of the

one-day Mercury mission? 7

Like Schirra, Cooper went through arduous medical, technical, and operational

debriefings aboard the Kearsarge and later back at the Manned Spacecraft Center.

He, too, was found to be dehydrated and suffering from a slight case of orthostatic

hypotension. He had lost seven pounds since suiting up, but after drinking "a

few gallons of liquid," he was fine, ebullient both mentally and physically, and

convinced that "we certainly can elongate this mission." Robert C. Seamans,

Jr., Associate Administrator of NASA, and Robert Gilruth, Director of MSC, had

different ideas about MA-10, but Cooper reiterated the proof that "man is a pretty

good backup system to all these automatic systems, and I think the mission was

conducted just like it was planned . . . in spite of . . . equipment breaking
down." _s

In addition to undergoing technical debriefings over the next several days,

Cooper was honored by parades through Honolulu, Cocoa Beach, Washington--
where he addressed a joint se_ion of Congress--and New York City, where he

was hailed by one of the largest tickertaped crowds ever to greet an individual.
Other crowds in Houston and in his hometown of Shawnee, Oklahoma, also cele-

brated the return of the sixth Mercury astronaut from space.

The fact that Cooper, like Glenn, had had to take action to save his mission

from a probable failure added luster and meaning to the glory he received. While

postflight inspections, data reduction, and mission analyses proceeded through the

following month to pinpoint the causes of the few electromechanical faults of the

flight, Mercury systems engineers could find no fault with pilot performance.

Physicians, however, were cautious about the implications for longer space mis-

sions of Cooper's hemodynamic response.
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Aftermath

Members o/the Project Mercury

team were honored along with

Cooper in ceremonies in the Rose
Garden at the White House. As-

tronaut Cooper (left) and Chris-

topher C. Kraft, Jr. (center), are

shown with President Kennedy,

Vice-President ] o h n s o n, and
NASA Administrator Webb. In

addition to Cooper, those receiving

the NASA Distinguished Service

Medal were G. Merritt Preston, chief of MSC's Cape Operations; Christopher C.

Kraft, Jr., chief of the Flight Operations Division; Kenneth S. Kleinknecht, manager

of Project Mercury; Floyd L. Thompson, Director o/Langley Research Center; and

Maj. Gen. Leighton I. Davis, Commander, Air Force Missile Test Center at Cape

Canaveral. NASA Group Achievement Awards were made to Rear Admiral Harold

G. Bowen, Jr., Commander of Destroyer-Flotilla 4, for the recovery forces, and to Maj.

Gen. Ben I. Funk, Commander, Space Systems Division, for the Atlas program.

After speaking to a joint session of the

Congress, Cooper left the Capitol: left

to right, Mrs. Hattie Cooper, Vice-

President Lyndon B. Johnson, Cooper

and his wile Trudy, Speaker John

McCormack, and Lady Bird Johnson.

Part of the 2900 tons of ticker tape and

confetti that rained down on the ol_cial

party as they rode along Broadway. Off-

cial estimate of this, the largest crowd in

New York City history, was 4½ million.

L
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Probably no other result of the MA-9 minion excited more interest than

Cooper's claim to have seen from orbit objects on the ground as small as trucks

and houses. Skepticism on this point abated after the astronaut explained in

detail to representative scientists at the Cape on May 21 just where, when, and
how he could see dust and smoke below, from 100 miles directly above--lf the

contrast was right. Also at this, the first and only "scientific debriefing" follow-

ing a Mercury flight, the value of extensive questioning of the subject pilot was

clearly demonstrated, when Co@er was asked whether he could see Earthshine

on the Moon. "Well," he replied, "the Moon was fuller as it was setting than it

was on the nightside. It was almost a full Moon. Gee, that's funny, I hadn't

even realized that before. It seemed to be almost full as it was setting, whereas

on the nightside it was only a third of a Moon." ._0 This Moonshine was clearly

Earthshine. Other postflight analyses added praise for the sunshine that blessed
Faith 7. "The sun literally smiled on MA-9," wrote J. C. Jackson and Niles R.

Heller in Goddard's report of the network radio performance. "It [MA-9] was

favored with better than average radio frequency propagation conditions for the

present phase of the solar sunspot cycle." 6o

WHITHER GEMINI?

On June 6 and 7, 1963, Brainerd Holmes, Gilruth, Walter Williams, and

Kleinknecht met with Administrator Webb, Hugh L. Dryden, and Seamans in
Washington to make a final decision on whether to fly an MA-10 mission.

President Kennedy had clearly left the decision up to NASA. Webb listened

thoughtfully to the presentations of each NASA official, and although both he and

President Kennedy had heard the Mercury astronauts' plea for one more Mercury

mission, Administrator Webb announced before the Senate space committee on

June 12, 1963, that "we will not have another Mercury flight." _1 It was to be

22 months before another American manned space flight.

Project Gemini, designed in 1961 to double the volume while retaining the

basic shape and systems of the McDonnell-Mercury spacecraft, now was well into

the development and redesign phase of construction. And the Martin Company's

mighty Titan II rocket, in spite of a recent explosion on launch, had a record of

nine cleancut successes out of 16 launches. Another Mercury-Atlas flight would

have been a relatively economical way to extend space technology and fill the time

(then estimated at a year) before Gemini-Titan could be flight-tested. But now

that Project Apollo, employing a concept called lunar orbital rendezvous (LOR)

to land a man on the Moon and recover him, was the ultimate goal of the decade,

space rendezvous and docking had to be perfected. Mercury had selwed far more

than its original purpose, but it could hardly be maneuverable. And so Project

Gemini was designed to fill these gaps. As people were asking whither and

whether Gemini was taking them, Mercury died a natural death, while Apollo
and Saturn were aborning.
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Epilogue

ROJECT Mercury ended on the threshold of an era of exploration and dis-
covery that staggers the imagination. Manned space flight of the most

elementary sort had proved so successful that mankind seemed destined to embark

on more ambitious celestial expeditions. The seventh decade of the 20th century

also promised the logical extension of manned space flight technology beyond

Earth's orbital corridor. Largely because of Project Mercury, which fostered

Project Apollo and fathered Project Gemini, the United States had become com-

mitted to send men to explore the Moon only 350 years after Galileo first turned a

telescope toward Earth's natural satellite.

Precedents set by Mercury were visible in many different ways to the tax-

payers who watched the plans for NASA's Gemini and Apollo programs take

shape. Most obvious was the configuration of the two-man spacecraft that Mc-

Donnell was building for launches by the Martin Company's Titan II missile.

The Gemini spacecraft was to be a far more sophisticated vehicle, with modular

components easily accessible, with a lift/drag ratio provided by an offset center of

gravity, with a real, if limited, orbital maneuvering capability, and with ejection

seats instead of an escape pylon. Except for its doubled size, its countersunk

viewports, and its lack of the escape tower, however, Gemini looked much like the

familiar Mercury capsule?

Plans and boilerplate models of the Apollo spacecraft--rather, of the so-called

"command module" that would house three men in a tubby pyramid during

launch and return to Earth, via the Moon--were being tested by airdrops from

airplanes, by a second Little Joe (II) booster series, and by pad aborts using a

tractor-rocket escape pylon. These and other evidences of Mercury's influence

on design, development, testing, and training for more advanced space flights

showed that NASA's new Manned Spacecraft Center and its Marshall, Kennedy,

and Goddard Space Flight Centers were managed and staffed by most of the same

personnel who had formed the original Mercury team. Growth and thorough-

going organizational changes affected many individuals adversely, but the core of

the Mercury team moved forward in the mid-1960s toward further exploitation

of "lessons learned" from Mercury for manned space flight at large?

It was primariIy to hasten concentration on the accelerated manned space

program and to move away from the "egg-shell" Mercury package and toward
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more nearly "first-class" spacecraft accommodations that James E. Webb, Hugh

L. Dryden, and Robert C. Seamans had decided against a fifth manned Mercury-

Atlas mission. NASA administrators wanted to concentrate their engineering

talent as soon and as completely as possible on the next major step toward the

Moon. They realized the political and psychological risks of a lengthy delay

before Americans again went into space, but they took these in stride as necessary

to the longer range goals?

The week after Mercury was officially terminated, the Soviet Union launched

into orbit Vostok V, carrying VaIery F. Bykovsky, and two days later Vostok VI,

with "cosmonette" Valentina V. Tereshkova aboard. Both flights ended on June

I9, 1963, after 81 circuits by Bykovsky and 48 by Tereshkova. The flights fol-

lowed slightly different orbital planes, exhibited no co-orbital maneuvers, and

thus were similar to the tandem flights of Andrian Nikolayev and Pavel Popovich

in August I962. Tereshkova, trained as a parachutist and not as a pilot, be-
came not only the first woman to go into space but alto the first "layman," or

non-pilot-engineer. When later she and Nikolayev were married and became

parents, their healthy and normal baby seemed to indicate that fears about genetic

damage from exposure to cosmic radiation were groundless?

Most significantly, perhaps, Vostoks V and VI apparently signaled the end of

the era of solo space flight. When the Soviets next sent men into space, on

October 12, 1964, they began a new series with Voskhod I, which carried three

men around Earth 16 times. And in 1965, the United States--taking what com-
fort it could, said one historian, from the fable of the tortoise and the hare--

began its new Gemini series of twin-seated, maneuverable satellite missions, which

were to make Mercury seem primitive indeed. When in March and June of

that year Cosmonaut Alexei Leonov and Astronaut Edward H. White took their

respective closely tethered "walks"--more nearly "swims"--in space, the fact that

their command pilots were in the spacecraft to help in case of trouble seemed com-

forting. '_ Neither cosmonauts nor astronauts were ever again likely to go into

space alone in their machines. In this sense only, therefore, man's heroic age of

solo space exploration may be said to have endcd in June 1963.

Almost four months after the passing of Mercury and the last Vostok flights,

and only a few weeks before the national shock of President Kennedy's assassina-

tion, NASA and its Manned Spacecraft Center held their formal, public post-

mortem on the first American manned satellite program. Staged on October 3

and 4, 1963, at the Music Hall in Houston and attended by somc 1300 people from

NASA, the military, industry, and news media, this "Mercury Summary Con-

ference" featured 20 papers on the overall program, with emphasis on Gordon

Cooper's day-long MA-9 mission of May. Covering program management,

booster performance, a_stronaut preparation, network operations, and MA-9 in-

flight experiences and experiments, these papers constitute the best available

technical overview of Project Mercury. _'

The decorous proceedings were marred somewhat on the final day of the con-
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ference by the appearance in newspapers throughout the country of a controversial

story built around three pages of one report.' In a paper on "Spacecraft Pre-

flight Preparation," four MSC engineers from Florida sketched the nature and
evolution of the intricate and exhaustive checkout procedures followed at the

Cape after McDonnell's delivery of one of its capsules to the launch site. Dis-

cussing "quality assurance," the authors dwelled on the problem of component
defects and malfunctions discovered by Mercury inspectors in industrial hardware.

Inspections for MA-9 turned up 720 system or component discrepancies, 536
of which were attributed to faulty workmanship. "In Project Mercury," con-

cluded the MSC authors, "thousands of man-hours were expended in testing,

calibration, assembly, and installation of a variety of hardware that later failed to

meet performance specifications or that malfunctioned during systems tests in a

simulated space environment." And often these delays could have been avoided

"if adequate attention to detail during manufacture or thorough inspection before

delivery had been exercised. ''_

Although the import of this rather didactic engineering treatise was that the

history of Mercury spacecraft prelaunch preparations presented a good object lesson

in the rigorous demands for quality control and reliability testing before manned

space flight--as opposed to missile, instrumented spacecraft, or even aircraft

experience--journalists blew the implied criticism of McDonnell into a cause
cdl_bre. "NASA blasts industry" was the general tenor of the news dispatches

coming out of Houston. Coupled with the General Accounting Office's contem-

poraneous criticism of NASA and its contractors in the lagging Centaur program,

the news coverage of the summary conference added some ammunition for attacks

on the "great moondoggle." 9

In a hurriedly called press conference in Houston and in hearings the next week
before the House Committee on Science and Astronautics, NASA, MSC, and

McDonnell leaders denied that any resentment or dissatisfaction existed because of

anything in past or present NASA-McDonnell relations. 1° Congress was satisfied,

if the press was not, and this rather small tempest in a rather large teapot subsided

quickly. The furor did suggest, however, that one of the lessons the Mercury
technical staff had not learned well enough was extreme prudence in all public

references to relations between NASA and its contractors and other agencies. Pos-

sibly the "candor at Canaveral" and elsewhere, for which the press had occasionally

commended the Mercury team, would be the first casualty of the ongoing manned

space effort.

In general, the authors of papers read at the Mercury Summary Conference,

aware of the difficulty of making technological and administrative generalizations

in the new and rapidly changing field of astronautics, offered only guarded conclu-

sions about the significance of Mercury experiences for the Gemini and Apollo

programs. But indirectly there, and more directly elsewhere, they did assess the
state of the art and science of manned space flight, ask what Mercury had taught

that might benefit Gemini and Apollo, and even venture some answers? 1
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Project Mercury lasted 55 months, from authorization through the one-day

mission, and while the earliest planned orbital mission slipped 22 months past its

first scheduled launch time, Mercury achieved its original objectives with John

Glenn's MA-6 flight only 40 months after formal project approval. Compared

with either advanced missile or aircraft development programs, this was a good

record ; but many engineers denied the validity of such a comparison.

Mercury mobilized a dozen prime contractors, some 75 major subcontractors,

and about 7200 third-tier sub-subcontractors, and vendors, all of whom together
employed at most about two million persons who at one time or another had a

direct hand in the project. In addition, the NASA complement on Mercury

eventually reached 650 workers in the Space Task Group and Manned Spacecraft

Center and 7 I0 elsewhere in research and development support of the project. A

conservative estimate of the maximum number of military servicemen and Defense

Department personnel supporting an individual Mercury mission (both MA-6

and MA-9) counted 18,000 people, and another conservative estimate added 1169

persons from educational and other civilian institutions. Thus, if the estimate of

1,817,000 workers employed by the Mercury vendors was too liberal and unreal-

istic, the total peak manpower figure of 2,020,528 wa.s probably as accurate a figure
as could be obtained. '2

"Quick look" total cost estimates given at the summary conference in October

1963 showed that Mercury had cost $384,131,000 throughout the program, of

which 37 percent went for the spacecraft, 33 percent for the tracking network, and

24 percent for launch vehicle procurement. Flight operations and "R and D"

costs made up the remainder, as then estimated, but the final cost accounting was

complicated by the unsettled conditions of closing and disposition costs and the

mingling of Mercury and Gemini costs during 1962 and 1963. Through Glenn's

flight, however, Mercury had cost about $300 million. _ Through Cooper's flight

NASA estimated the grand total cost of Mercury at slightly more than $400 million
(see Appendix F).

NASA engineers and physicians listed three primary "lessons learned" from

their experience with Mercury for manned space flight. Their foremost medical

objectives had been fulfilled, and the responses of two men in suborbit and four men

in orbit had shown that human beings can function normally in space if adequately

protected. Rather than acceleration g loads and weightlessness limiting man's

capacity to fly in space, the men who flew Mercury seemed to adapt to "zero g"

surprisingly well. The main medical problems were simple personal hygiene

in flight, and the postflight readjustment symptom of orthostatic hypotension.

Both appeared to be curable by technical developments rather than by preventive
medicine.

Secondly, Mercury had proven that final launch preparations took far more

time than anyone had anticipated in 1958 to ensure perfect readiness and reliability

of the machines and men. NASA had had designed, therefore, an automated

digital system for the future, called "ACE," for Acceptance Checkout Equipment,
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to reduce human error in environmental chamber testing and the length of time

required on the flight line at the Florida spaceport. Thirdly, mission control re-

quirements, integrating the astronaut with his flight monitors and directors around

the world, had grown to encompass the fullest utilization of real-time telemetry,

tracking, computing, and display data. Nothing less would suffice for future

missions. Two more acronyms came into use, "MCC" for the new Mission Con-

trol Center at Houston, and "GOSS" for Ground Operational Support Systems,

reflecting the degree of complex automation being installed for positive ground

control of future space flights.

Studying how they could improve on their performance for succeeding pro-

grams, NASA officials and engineers listed several other valuable technological and

managerial lessons from Mercury. In spacecraft design, problems had been

encountered with safety margins, redundancy, accessibility, shelf-life of parts, inter-

changeability, and with materials whose behavior under unfamiliar environmental
conditions had not been wholly predictable. Regarding qualification of systems

and components, there should be more analysis in an effort to make techniques

"conservative, complete, integrated, and functional." Fabrication and inspection

standards carried over from development into manufacturing work should be madc

still more "rigorous, detailed, current, and enforced." Engineers working for the

Manned Spacecraft Center, both in Houston and at the Cape, called for continuous

upgrading of tests, inspections, and other validation procedures, particularly with

respect to interface compatibilities between systems. In configuration control,

NASA manned space flight developers recognized their perennial weight control

problem and their need to become more responsive, more familiar in detail, and

more aware of danger signals in the production and fabrication phases of their

business. And the managers of Mercury now acknowledged that methods of

management that had worked well enough in the first American manned space

project would not suit Gemini and Apollo, already in motion. They had only

begun to use the sophisticated Program Evaluation and Review Technique, called

"PERT," which had evolved from the Na'_3_s experience in its nuclear submarine

and Polaris missile development programs. Now PERT and other management

tools, such as the incentive contract, would have to be exploited to the fullest extent

practicable. 14

Perhaps the most significant lesson learned from Mercury was that man was

still invaluable to the machine. Mercury saw the evolution of the astronaut from

little more than a passenger in a fully automatic system to an integral and full)

integrated element in the entire space flight organism. By the end of the project,

the Mercury capsule, instead of simply being a machine with a man in it, had

truly become a manned space vehicle. Mercury Flight Director Christopher C.

Kraft, an engineer, spoke for all exponents of manned space flight, irrespective

of discipline : "Man is the deciding element .... As long _s Man is able to alter

the decision of the machine, we will have a spacecraft that can perform under an t'

known conditions, and that can probe into the unknown for new knowledge." '_
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ByNovember1963,ProjectMercurywasclearlyrelegatedto anhonorablenichei_
history.TheresourcesthathadledProjectMercurywerenowreorganizedandre-
committedtowardProjectsGeminiandApollo. Thatreorientationisunderscoredin
thisphotograph[romPresidentI(_ennedy'svisitto CapeCanaveralonNovember16.
Asthechartsandmodelsshow,th'esubjectisnotMercurybutApollo. Theplaceis
Blockhouse34. Thebrie[erisGeorgdE.MuelIer,successortoD.BrainerdHolmesas
heado[NASA'smanned space flight program. The [ront row, Ie[t to right: George

Low, Kurt Debus, Robert C. Seamans, Jr., ]ames E. Webb, President Kennedy, Hugh

L. Dryden, Wernher yon Braun, Gen. Leighton I. Davis, and Sen. George Smathers.

Yet as Mercury faded farther into the past and Gemini and Apollo moved

forward, some profound questions remained unanswered, and indeed usually not

even askedY' In the democratic society of the United States, did the formal com-

mitment to costly space exploration, and especially the increased emphasis on

manned space flight beginning in the Kennedy administration, actually represent

a consensus among the electorate? The pace and chances for success of this

country's drive toward spacefaring preeminence depended, finally, on the con-

tinned willingness of the American taxpayer to pay the bills. However divergent

may have been the appeals of the two political parties in the 1964 Presidential

election, neither the Republicans nor Democrats seriously questioned the existence
of such a consensus.

Many more mundane problems plagued the times, some seeming so over-

_vhelming as to demand dramatic and drastic solutions like those widely presumed

to issue from space technology. But the arrival of the so-called "space age,"

heralded by Mercury astronauts and Vostok cosmonauts, did capture most men's

imagination and did seem to dwarf the petty quarrels of men and nations. Vagxle

hopes for future peace and prosperity accompanied public support of preparations
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for two- and three-man spacecraft, but fears about the population explosion, nu-

clear proliferation, and social disparities made many -,,onder whether the manned

space flight enterprise was worth the effort and the price. Why send two or three
men to the Moon when two or three billion others remained rooted in human tur-

moil? Questions similar to this found traditional answers in terms of national

security, scientific curiosity, economic benefits, and technological by-products, but

ultimately the national commitment was an act of faith.

Still, many Americans, both technically literate and illiterate, doubted the

return from the $400 million spent on Project Mercury and the vastly greater

expenditures being allocated for succeeding manned space projects. A substantial

portion of the scientific community agreed with Alvin M. Weinberg, Director of

the Atomic Energy Commission's Oak Ridge National Laboratory, who argued

that "most Americans would prefer to belong to a society which first gave the

world a cure for cancer than to the society which put the first astronaut on

Mars." 1_ Others deplored the fact that the American space effort was basically

a "race to the Moon," having no nobler motivation than traditional nationalistic

rivalry. Still others would confine the Nation's astronautical activities to un-

manned instrumented space vehicles, thereby diminishing the cost of space

exploration, as well as presumably avoiding the likely prospect that some day men

would die in space? 8

Nevertheless, whether most people in the United States approved or not, in

the mid-1960s it seemed that not only American machines but selected and trained

American citizens were in the space venture to stay. Project Mercury, leaving a

legacy that perhaps was even more important psychologically than technologically,

was already history. Hugh L. Dryden, only a few weeks before his death late in

1965, expressed his faith in manned space flight and offered a fitting epitaph for

Project Mercury:

Man is distinguished from other forms of life by his powers of reasoning and
by his spiritual aspirations. Already the events of the last seven ),ears have had
profound impact on all human affairs throughout the world. Repercussions
have been felt in science, industry, education, government, law, ethics, and
religion. No area of human activity or thought has escaped. The toys of
our children, the ambitions of our young men and women, the fortunes of
industrialists, the daily tasks of diplomats, the careers of military officers, the
pronouncements of high church officials--all have reflected the all-pervading
influence of the beginning steps in space exploration. The impact can only be
compared with those great developments of past history like the Copernican
theory which placed the Sun, rather than the earth, at the center of our solar
system; to the work of Sir Isaac Newton in relating the fall of an apple to the
motion of the moon around the earth through the universal law of gravitation;
to the industrial revolution; or to other great landmarks in the history of
mankind, a9
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st "Specifications for Manned Space Cap-
sule," specification No. S-6, Nov. 14, 1958,
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ministrator, "Status of Manned Satellite Proj-
ect," Nov. 25, 1958. See also letter, Clarence
A. Syvertson, Ames Aeronautical Laboratory,
to Dir., Langley Aeronautical Laboatory, re
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cury," Dee. 27, 1958 ; letter, Emme to Link and

Grimwood, M'arch 23, 1964.

_tDonlan, interview, Langley Field, Va.,

Jan. 7, 1964. Cf. Neil A. Armstrong, "1 De-

cided to Get Aboard," Li[e, CV (Sept. 27,

1963), 84.

r_Low, "Status Report No. 6--Project

Mercury," Feb. 3, 1959; see also Donlan, com-

ments, Sept. 3, 1965.

_" Letter, Reid to NACA Dir., July 29, 1958 ;

memo, Low to Sih, erstein, Dec. 12, 1959.

r.: Letter, Low to Grimwood, Nov. 13, 1963 ;

Theodore yon K5rm,4n, Aerodynamics: Selected

Topics in the Light o[ Their Historical Devel-

opment (Ithaca, N.Y., 1954), 189. The

famous Renaissance sculpture by Giovanni da

Bologna of Mercury poised on a zephyr's head,

ready to spring into space, is an "image of en-

ergy" and the "accepted symbol of victorious

speed," according to Kenneth Clark, The Nude:

A Study in Ideal Form (New York, 1959), 282.

r._Edith Hamilton, Mythology (New York,

1958), 33; Thomas Bulfinch, Mythology,

abridgement by Edmund Fuller (New York,

1959), 18; Emme, Aeronautic_ and Astro-

nautics, I915-1960.

_ The announcement of the code name for

NASA's man-in-space program was reported

in a two-page edition of the strikebound New

York Times as an incidental part of the main

story: "Big Rocket Engine for Space Flights Is

Ordered by U.S.," New York Times, Dec. 18,

1958. See also, Ms., Louise Dick, "public

Statements on Manned Space Flight and

Project Mercury," Aug. 12, 1960, 4.

Chapter VI

House Committee on Science and Astro-

nautics, 87 Cong., 1 sess. (1961), A Chronol-

ogy o[ Missile and Astronautic Events, 64-66;
Eugene M. Emme, Aeronautics and Astro-

nautics: An American Chronology o[ Science

and Technology in the Exploration o[ Space

1915-I960 (Washington, 1961), 106, 143.
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_t "Pilot Support System Development (Live

Specimen Experiment)," Report 6875, Mc-

Donnell Aircraft Corp., June 1959. Cf. "Test

Results Memorandum," McDonnell Aircraft

Corp., June 9, 1959. John H. Glenn, inter-
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neers later joined STG.

_TPurser, log for Gilruth, April 27, 1959.
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overview of selection philosophy and program

arrangements see Ms., Robert B. Voas, "Pre-

liminary Draft _f Astronaut Selection Section,

Mercury Technical History," Aug. 28, 1963.
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David K. Trites, Sept. 22, 1959; and Trltes

to Donlan, "Summary of Psychological Test-

ing of Candidates for Project Mercury,"
undated.

.-9.Quoted in letter, Donlan to NASA Hq.,

Dec. 16, 1960.
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American Medical Assn., Atlantic City, June 9,
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Jan. 7, 1964, and comments, Sept. 3, 1965.
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Greenfield wrote, "Heaven has always existed
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Chapter VII

1 In considering how both technology and

techniques began to evolve through the plan-

ning and tooling stages and into manufactur-

ing and production, this chapter and the next

make the conventional yet conceptually use-
ful distinction between mechanical and human

(factors) engineering endeavors. Another im-
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safety first and mission success second, was im-

plicit from the start, but became explicit in the

production programs only after many tech-

nical arguments and much rethinking. The

process of man-rating the machines is meant to
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pletely automatic system for Earth-orbital

flight. The reciprocal process of machine-
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by no means singular, concern of those respon-
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and Space Exploration, 86 Cong., 1 sess.
(1959), The Next Ten Years in Space, 19$9-

1969, report by T. Keith Glennan, Hugh L.

Dryden, Abe SiIverstein, John P. Hagen, and
Homer E. Newell, Jr., 120.
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C-10.
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Ms., "Overall Plan: Department of Defense

Support for Project Mercury," undated [ca.
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Report to the Secretary o[ De/ense on Depart-
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1963; approved by Leighton I. Davis, Maj.
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1965. See also memo, Gilruth for staff, "Ap-

pointment of Associate Directors," Sept. 15,
1959.

"Joachim P. Kuettner, "Manrating Space

Carrier Vehicles," in Ernst Stuhlinger et al.,
eds., From Peenemilnde to Outer Space: Com-

memorating the Fi]tieth Birthday o/ Wernher

von Braun (Huntsville, Ala., 1962), 629-630.

See also "Biographic Sketch: Dr. Joachim P.

Kuettner," Marshall Space Flight Center, May

1, 1963 ; Kuettner, interview, Huntsville, April

28, 1964.

'Memo, Kuettner to "all labs," Develop-

ment Operations Division, Army Ballistic Mis-

sile Agency, "Mercury-Adam Project," Jan. 14,
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status report, May 21, 1959. Cf. typescript
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1959]. See also memo, A. Richard Felix to

Dir., Aeroballistlcs Lab., "Visit to NASA,

Langley Concerning Future Wind Tunnel Tests

of the Jupiter-C Boosted Manned Space Cap-

sule," Jan. 15, 1959; and Mack W. Shettles,

"Status Report--Project Mercury," ABMA re-

port No. DFE-IN-09-59, Feb. 13, 1959. Cf.

memo, Dieter Grau to "M-G&C-DIR, .... Un-

satisfactory Condition on MR Abort Sensing

System," Oct. 11, 1960.

"F. W. Brandner, "Proposal for Mercury-

Redstone Automatic Inflight Abort Sensing

System," Army Ballistic Missile Agency report

No. DG-TR-7-59, Redstone Arsenal, June 5,

1959, 1.

ix See, for example, letter, James D. Sams to

CO, ABMA, "Project Mercury-Redstone De-

lineation of Responsibility," Oct. 8, 1959;

memo, C. J. Kronauer, to Capt (?) Hombaker,

"Project Mercury Schedule Notification,"

Oct. 12, 1959; Debus to Kuettner, "NASA-

ABMA-AFMTC Project Mercury Operating

Agreement," Nov. 9, 1959; letter, Gen. John B.

Medaris to Yates, Dec. 10, 1959; Yates to

Medaris, Dec. 2 I, 1959.

l'Brig. Gen. Homer A. Boushey in The

L
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viewing the man-in-space program in the Oc-
tober issue of the trade journal Automatic Con.
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(Feb. 1963), 95-99, 139-146. See also House
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plex, see transcript, "Proceedings of the Mer-
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_' White interview; Philip E. Culbertson,
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paper, ninth International Astronautical Con-

gress, Amsterdam, Aug. 1958.
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_ S. E. Skinner, Executive Vice Pres., Gen-
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Control," speech, first General Motors-wide
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Robert De Roos, "Perspective '64," booklet

(General Dynamics/Astronautics, 1964).
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Angeles, Feb. 1957. Cf. Nicholas E. Golo-
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Tool," paper No. 60-MD-1, American Soc.

of Mechanical Engineers, Feb. 10, 1960, 8.

n George M. Low, in comments, Oct. 5,
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-_ ttarry R. Powcll, "The Impact of Re-

liability on Design," paper No. 60 MD 2,
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and Flight Safety," Mercury Project Summary,
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:_ Charles W. Mathews_ interview, Hous-
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and Bertram, "Mercury-Redstone Launch Ve-
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denced in "Status Report No. 3 for Period

Ending July 31, 1959," Langley/STG, with
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Army Ballistic Missile Agency, "Mercury-Red-

stone Launch Schedule," Aug. 25, 1959. Cf.

memo, Purser to Project Dir., "Project Mer-
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York, 1959).
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tle Joe Firing of 11/4/59," Nov. 6, 1959. See
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"Flight Test Report, LJ-2," NASA Project
Mercury working paper No. 169, April 1961.
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Cf. Mayer, "The Motion of a Space Vehicle
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(Englewood Cliffs, N.J., 1965). For texts of

all executive agreements, memoranda of un-

derstanding, and other international arrange-

ments after 1959, see Senate Committee on

Aeronautical and Space Sciences, 89 Cong.,

1 sess., United States International Space Pro-

grams, July 30, 1965. Dwight D. Eisenhower,
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I965. See also Loyd S. Swenson, Jr., "The
Telecommunications Revolution in the Nine-
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gins of Space Telemetry," in Emme, ed., The

History o[ Rocket Technology, 253, 268. See

also Harry L. Stiltz, ed., Aerospace Telemetry

(Englewood Cliffs, N.J., 1961) and Mayer
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quirements in 1958. See also Mengel, "Satel-

lite Ground Data Networks," Appendix B in
Alfred Rosenthal, Goddard '63: A Year in Re-

view at Goddard Space Flight Center (Green-

belt, Md., 1964), B-l, B-9.
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to Project Mercury," mimeographed 24-page

document prepared by Information Services,

General Electric, Radio Guidance Operation,

Syracuse, N.Y., ca. June 1963.
n._ Powers, memo for file, "Points of Em-

phasis in Promoting the Public Picture of the
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ganization of the Space Task Group," Jan. 11,

1960. See also Ms., Robert Merrifield and

C. F. Bingman, "Organization: Technical

Itistory of Project Mercury," June 3, 1963.

"' Memo for files, anon., "Outline of Off-

Range Remote Site Training Program for

Flight Control Personnel, " Jan. 14, 1960. Cf.

"Aeromedical Flight Controller Briefing,"

NASA/STG, May 23-27, 1960. "Operation

and Maintenance: Flight Controller Remote

Sites: Operation Manual, MO-118R," West-

ern Electric Co., June 1960.

';: Letter, Walter C. Williams to Kurt H.

Debus, "Proposal for Mercury-Redstone Co-

ordination Committee," Jan. 18, 1960; letter,

Williams to Donald N. Yates, "Mercury-Atlas

Flight Test Working Group," Jan. 18, 1960;
Howard Gibbons, "Ostrander's Job at NASA

Not Related to Space Rift," Newport News
Daily Press, Dec. 10, 1959. See also proposed

memo of understanding, "Relationships Be-

tween OSFP and OLVP Groups at AMR,"

suhmitted to Ostrander and Silverstein April

29, 1960.

"' Memos, Williams to staff, "Responsibili-

ties of Mercury Launch Coordination Office,"

Feb. 11, 1960; "Organization for Mercury
Field Operations," Feb. 12, 1960; letter, Wil-

liams to Yates, "Position Titles for Operation

of Project Mercury," March 9, 1960; letter,

Williams to Cdr., DesFlotFour, "Test Objec-

tives and Recovery Requirements for the Proj-

ect Mercury Atlas Test One," March 15, 1960,
with enclosure. The aborted "Launch Oper-

ation Manual for Project Mercury," compiled

by Dugald O. Black, A. M. Busch, A. M.

Eiband, John Janokaitis, Jr., and approved by

Scott H. Simpkinson, B. Porter Brown, and
G. Merritt Preston at the Cape in March

1960 is a rare but invaluable guide to its

561



subject at this time.

,z Memo, William M. Bland, Jr., to Chief,

Flight Systems Div., "Division Participation in

Project Mercury," March 4, 1960. For an

overview of the increasing tempo of Mercury

operations at the Cape, see memo, Martin A.

Byrnes for Assoc. Director, "Administrative

Support for the STG Facilities at Cape Ca-
naveral," March 4, 1960; and C. Frederick

Matthews for staff, "Administrative Staff for

Mercury Field Operation Organization," May

9, 1960.

Minutes, "Mercury Network Meeting,"

NASA/STG, Feb. 9, 1960; memo, Gilruth to

Div. Chiefs, "Designation of Flight Controllers

for Mercury Flight Operations," Feb. 8, 1960;

memo, C. F. Matthews to all concerned, "Mer-

cury Flight Controller Personnel Indoctrina-
tion and Training Plan Presentation," Feb.

25, 1960; Williams, interview, Houston, Aug.

23, 1965. See also Jim W. McCommis, draft

Ms., "Flight Control Operations," for Mer-

cury Technical History, Nov. 19, 1963.

a, Memo, William W. Petynia to Chief,

Flight Systems Div., "Summary Report of the

Duties and Responsibilities of the STG Proj-

ect Engineer During Capsule No. 1 CST,"

March 16, 1960. For the best overview of

the status of the program as seen by the STG

managers at the end of this period, see memo
for files, Purser, "Additlonal Background Ma-

terial on Project Mercury," May 1i, 1960; cf.

Purser's similar memo, "General Background

Material on Project Mercury," March 23,
1959.

_0 See R. I. Johnson, et aI., "The Mercury-
Redstone Project," TMX53107, MSFC Sat-

urn/Apollo Systems Office, June 1964, 5-39,
41; Ms., "Proceedings of the Mercury-Atlas

Booster Reliability Workshop," Convair/Astro-

nautics, San Diego, July 12, 1963, passim.

See also ABMA/AOMC instructions, N. I.

Reiter, Jr., "Mercury Project Symbol," Oct.

7, 1959, Code AP 940-13, ORDAB-DY.

7tBernhard A. Hohmann, "Pilot Safety

and Quality Assurance for Project Mercury,"

report No. STL-TR-60-0000-69047, Feb. 8,

1960; [Kucheman, Henry B.], "Reference

File, AFBMD Support, Project Mercury,"
bound folder of documents, Air Force Space

Systems Div., El Segundo, Calif., Jan. 4, 1961,

Sect. 5, Table 11; Osmond J. Ritland, inter-

view, Andrews Air Force Base, Md., Dec. 30,
1964.

_2Hohmann interviews; see p. 189. See

also Simpkinson, interview, Houston, Oct. 4,

1965, and papers from the period between
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June 1961 and May 1962 when he was as-

signed to San Diego as Gilruth's special as-

sistant. For more technical details, see R. J.

Smith, "Flight Proofing Test Report for Abort

Sensing and Control Unit--Mercury--Missile-

borne," Convair/Astronautics report No.

27A515 R, Aug. 5, 1960.

7_ "Reliability Program Revlew--Project

Mercury," McDonnell Aircraft Corp., Feb. 27,

1960; John C. French, interview, Houston,

Aug. 3, 1964. For a retrospective view of
reliability in all of the Mercury program, see

Waiter C. Williams, "On Murphy's Law," in

Paul Horowitz, ed., Manned Space Reliability

Symposium, Vol. I, American Astronautical

Society Science and Technology Series (New

York, 1964), 1-11.

7_Purser, log for Gilruth, Jan. 6, 1960;

Richard M. Mansfield, "Project Mercury Re-

visited," Virginian-Pilot and Portsmouth Star,

Marcia 27, t 960; House Committee on Science

and Astronautics, 86 Cong., 2 sess. (1960),

Li[e Sciences and Space, Aug. 15, 1960, 13;

Senate Committee on Aeronautical and Space

Sciences, 86 Cong., 2 sess. (1960), Space

Research in the Life Sciences. At this junc-

ture, Astronauts Shepard and Grissom were

asking for permission to ride the next Little Joe
shot into space. Virgil I. Grissom, interview,
Houston, March 29, 1965.

_ Purser, log for Gilruth, Feb. 9, 1960. See

also Robert L. Seat, interview, St. Louis, Sept.

1, 1964; Seat and Waldram, "Project Mer-

cury Test Plan," McDonnell Aircraft Corp.,

Feb. 19, 1959.

T6Purser, log for Gilruth with enclosures,

agenda for conferences on reliability test pro-

gram, March 9, 1960. Two other Chrysler

Corp. engineering executives responsible for

factory management of man-rating the Red-

stone were Robert P. Erickson and Edward J.

Dofter: H. D. Lowrey, interview, Washington,

Nov. 17, 1965. For details of the factory

test programs see R. M. Torigian, "Reliability

Test of the Redstone A-7-1 Rocket Engine,

RE 7112a," Chrysler Corp. Missile Division

Technical Memorandum ML-M125, April 14,

1960; and G. S. Upton, "Mercury-Redstone

Aft Section Test Report," CCMD Technical

Report GLC-R5, Oct. 1960.

TrWalter F. Burke, interview, Aug. 31,

1964; MacMillan, interview, St. Louis, Sept. 1,

1964. See also minutes, Jerome B. Hammack

and Jack C. Heberlig, "ABMA-MAC-NASA

Panel No. 1 Meeting," March 22, 1960; memo,

Curtis L. Ferrell to Emll P. Bertram, MFL,

"Mercury-Redstone [capsule-booster documen-
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tationproblem],"May18,I960.
_JamesA.Chamberlin,interview,Hous-

ton,June1, 1964;andcomments,Sept.9,
1965.Seealsomemo,Gilruthforallorgani-
zationalunits, "Organizationof NASA
ParticipationinCSTatMAC,"May12,1960.

_'_Memo,SilversteintoDir.,MarshallSpace
FlightCenter,"MercuryCapsulePrelaunch
Operationsat Huntsville,"March29,1960.
A recentrevisionofABMA'scheckoutplans
hadnotshownmuchefforttosavetime.See
"MercuryCheckoutat SystemsAnalysisand
ReliabilityLaboratory,"ABMA-DODReport
No.DRT-TM5-59,Aug.13,1959,Rev.A,
March5,1960.

n0Memo,SilverstelntoDir.,MarshallSpace
FlightCenter,"Reviewof MercuryCapsule
PrelaunchOperationsatHuntsville,"April5,
1960;HouseCommitteeonScienceandAstro-
nautics,87Cong.,1 scss.(1961),Defense

Space Interests, Hearings, statement and docu-

ments, General Thnmas D. White, USAF,

91-97.

_ Purser, "Notes on Manned Snac," Flight

Management Meeting, June 27-28, 1961," 1, 2.

See also Gilruth memo, "Organization of NASA

Participation in CST."

_:Memo, Robert E. McKann to Chief,

Flight Systems Div., "Visit to STL, CV/A, and
Rocketdyne (NAA) Feb. 15 18, 1960," Feb.

29, 1960. See also P. I. Harr, "Results of
Reliability Evaluation Test Program for

Mercury-Atlas Abort Sensing and Implementa-

tion System," Convair/Astronautics report No.

AX62-0008, April 24, 1962.

_ Memo, Edison M. Fields to Chief, Flight

Systems Div., "Visit to BMD/STL at Los

Angeles," Jan. 19, 1960; letter, Hohmann to

Gilruth, March 25, 1960; letter, Williams to
Hohmann, April 18, 1960 ; Con_,ariety, Feb. 17,

1960. See also transcript, "Proceedings of the

Mercury-Atlas Booster Reliability Workshop,"

San Diego, July 12, 1963, passim. The reliabil-

ity team at Convair/Astronautics consisted of

factory manager J. P. Hopman, reliability chief

H. F. Eppenstein, and quality control manager
D. R. Archibald. For similar concerns on the

Redstone, see memos, Debus to Earl M. ButIer,

"Weight and Balance Measurements on Project

Mercury," Dec. 23, 1959; and H. R. Palaoro

to Butler, "Weight and Balance Measurement

Requirements for Project Mercury-Redstone,"

Feb. 16, 1960.

"_ "Status Report No. 6 for Period Ending

April 30, 1960," STG; "MA-I Report No. 3

for Period Ending Jan. 27, 1960," STG;

"MA-1 Report No. 4 for Period Ending Feb. 3,

1960," STG; "MA-1 Report No. 5 for Period

Ending Feb. 4, 1960," STG; "MA-1 Report
No. 10 for Period Ending April 15, 1960/'

STG; memo, Bond to Chief, Engineering Div.,

"MA-I Test Flight," Feb. 1, 1960.

_ Memo, North to Dir., Space Flight Pro-

grams, "Rec]uest "for Approval of Mercury

Funding," June 24, 1960. See also Evert Clark,
"NASA Centralizes Launch Management,"

Aviation Week, LXXII (May 30, 1960), 28,

29.

" See Robert L. Rosholt, An Administrative

History of NASA, I958-1963, NASA SP-4101

(Washington, 1966), 154-160; memo, T. Keith

Glennan to Dir., "Appraisal of NASA's Con-

tractor Policy and Industrial Relations," Feb.

29, 1960. For an excellent overview of NASA

policies in general at this time, see the type-

script, "Questions and Answers proposed for

Congressional Testimony," by Hugh L. Dry-

den's staff, ca. May 1960.

"_ "Information Requested by McKinsey and

Co., Inc.," STG, April 9, 1960; letter, Gilruth

to Harry J. Goett, Dir., Goddard Space Flight

Center, May 3, 1960.

s_Rosholt, Administrative History of NASA,

154, 101, 124; Rosholt has paraphrased the

McKinsey report as follows (pp. 157-158):

"The report revealed that NASA's record

in supervising its out-of-house efforts was spotty.
Difficulties had arisen because NASA neglected

certain basic prerequisites to effective contractor

supervision, such as adequate statements of

work, sufficient and flexible funding, and prop-

erly focused technical responsibility. (A basic

problem in connection with the last named

prerequisite was NASA's tendency to establish
two channels of supervision--one from head-

quarters, the other from the field center.)

"NASA's supervisory job was difficult in

that it could neither use the 'trust the contrac-

tor' approach (high reliaMllty was too crucial
t_ be left to the contractor alone) nor the

'tight control' approach (which would 'dis-

courage contractor creativity and initiative').
• . . Therefore NASA had to follow a middle

course, which combined contractor operating

freedom with close NASA guidance. To achieve
this balance it would be essential that there be

a constant flow of information back and forth

between NASA and the contractor. This flow

could be promoted by periodic progress review

meetings between NASA and the contractor,

the placement of a NASA representative in

the contractor's plant (to permit continuous
face to face communication), and the use of a

progress reporting system."
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so "Pretest Report for Off-the-Pad Escape

System Qualification Test," NASA Project

Mercury working paper No. 1t2, March 1,
1960.

_See "Determination of Net Thrust of

Project Mercury Tower Jettison Rocket and

Escape Tower Assembly," NASA Project Mer-

cury working paper No. 202, July 3, 1961;

"Review of Mercury Launch Abort System Ex-

perience . . .," NASA general working paper

No. 10,007, July 15, 1963.

_1 Memo, Bland for Flight System Division

files, "Program Objectives," Sept. 30, 1959, 2.

House Committee on Science and Astro-

nautics, 87 Cong., 1 sess. (1961), A Chronology

o[ Missile and Astronautic Events, March 8,

1961, 114, 115. See also Charles S. Sheldon

I1, "The Challenge of lntcrnationai Competi-

tion," paper, third American Inst. of Aero-

nautics and Astronautics/NASA Manned Space

Flight Meeting, Houston, Nov. 6, 1964, 10-11,
reprinted and revised as Appendix A in Senate

Committee on Aeronautical and Space Sciences,

89 Cong., 1 sess. (1965), International Co-

operation and Organization [or Outer Space,
427-477.

Chapter IX

Memos, George M. Low to Abe Silver-

stein, "Information for Program Management

Plan Meeting," Oct. 6, 1960; T. Keith Glen-

nan to Silverstein, July 11, 1960; Silverstein

to Glennan, "MR-3 Launch Date," July 16,

1960; Silverstein to Robert R. Gilruth, "MR-3

Launch Schedule," July 25, 1960; Walter C.

Williams to NASA Hq., International Pro-

grams Office, "Monthly Summary of Project

Mercury Activities," Aug. 8, 1960; Warren J.

North, "History of Mercury Schedules: Earliest

Possible Manned Flights," chart, Aug. 13,

1960. See also Abe Silverstein, "Progress in

Space Flight," Astronautics, V (Nov. 1960),

24-25, 140-t42.

" For the Report of the President's Com-

mission on National Goals, see Henry M.

Wriston, et al., Goals [or Americans (Engle-

wood Cliffs, N.J., 1960). Note especially the

section by Warren Weaver, pp. 101-124, on

"A Great Age for Science." Cf. J. L. Penick,

Jr., et al., eds., The Politics o[ American Sci-

ence: 1939 to the Present (Chicago, 1965),

221.

House Subcommittee of the Committee

on Appropriations, 86 Cong., 1 sess. (t959),

National _ Aeronautics and Space Administra-
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tion Appropriations, testimony of Hugh L.

Dryden, 15; House Committee on Science and

Astronautics, 86 Cong., 2 sess. (1960), Review

o] the Space Program, Part II, testimony of

George M. Low, Feb. 16, 1960, 761. For an

excellent analysis of political positions and

public opinion on American space policy

(1957-1963) as a whole, see Vernon Van

Dyke, Pride and Power: The Rationale o[ the

Space Program (Urbana, Ill., 1964). Eisen-

hower's position is described on pp. 82-83.

_Glennan's introspection on the role of

international competition was best expressed

in an address at a Yale University symposium

on Oct. 7, 1960. See also letter, Glennan to

Eugene M. Emme, Oct. 19, 1965. For an

overview of Air Force programs, see Ernest G.

Schwiebert, "USAF's Ballistic Missiles--1954-

1964: A Concise History," Air Force and

Space Digest, XLVII (May 1964), 51-I66,
later published as A History o[ the U.S. Air

Force Ballistic Missiles (New York, 1965).

_The best open monograph comparing

Soviet and American space accomplishments

is Charles S. Sheldon II, "The Challenge of

International Competition," paper, third
American Inst. of Aeronautics and Astronau-

tics/NASA Manned Space Flight Meeting,

Houston, Nov. 6, 1964, revised and reprinted
in Senate Committee on Aeronautical and

Space Sciences, 89 Cong., 1 sess. (1965), In-

ternational Cooperation and Organization [or

Outer Space, Appendix A, 427-477.

"Project Mercury Discussion," brochure,

STG, June 20, t960. See also memo, Dieter

Grau to Dir., Guidance and Control Div.,

Marshall Space Flight Center, "Unsatisfactory

Condition on MR Abort Sensing System,"

Oct. 1 I, 1960; minutes, "Resume of Mercury-

Redstone Panel 2 Meeting," LOD-MSFC,

Aug. 24, 1960.

7"Project Mercury Discussion," B-276,

B-187, B-258, B-204; comments, William

Underwood, Executive Sec. of CMLC, to

Eugene M: Emme, Nov. 1, 1965; draft Ms.,

B. Leon Hodge, et al., "RecoveD" Operations

Portion," for Mercury Technical History,

Aug. 1963.

S NASA Contract No. NAS-190, "Relia-

bility Study of Mercury Capsule System,"

June 9, 1960, was signed by William P. Kelly,

Jr., for the government and by D. P. Murray
for McDonnell Aircraft Corp.

o Nicholas E. Golovin, "An Approach to a

Reliability Prediction Program," American

Society for Quality Control. Transactions o[

1960 Convention, San Francisco, May 25,
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1960, 173. See also, memos, Silverstein to

Deputy Assoc. Administrator, "Project Mer-

cury Reliability Analysis," June 21, 1960;

Golovin to Dir., Office of Space Flight Pro-

grams, "Project Mercury Reliability," June 23,

1969. "Old data and wrong ground rules

gave bad figures from our standpoint," said

Walter Williams in interview, Houston, Aug.

23, 1965. Silverstein and Low tended to side

with the working levels on this issue : see Low,
comments, Oct. 5, I965.

_ Letter, Glennan to James S. McDonnell,

Jr., June 30, 1960, with enclosure [from which

next quotation is taken], "Proposed Work
Statements for McDonnell on Mercury Cap-

sule System Reliability," June 30, 1960, 2.

i_ Letter, McDonnell to GIennan, July 13,

1960, NASA Central Files, Washington. Ap-

parently Mr. McDonnell was unaware of the
NASA-MAC reliability contract NAS-190.

1--Paul E. Purser, log for Gilruth, July 21,

1960; "Informal Reliability Discussion for

STG by AAR Staff," July 21, 1960; Ms. notes
on reliability meeting, Purser, July 21, 1960;

F. John Bailey, Jr., interview, Houston, July

16, 1964. For a later statement of Head-

quarters' policy see Landis S. Gephart, "NASA
Requirements for Reliability and Quality As-

surance," in Western Space Age Industries and

Engineering Exposition and Conference:

NASA Day, April 27, 1962, NASA SP-4

(Washington, 1962 ), 49-56.

_'_John C. French, interview, Houston, Aug.
3, 1964; memo, Gephart to Everett W. Quin-

trell, "Background Information on Astronaut's
Task Description and Performance Evalua-

tion," Aug. 31, 1960. Cf. letter, J. Y. Brown,
Contract Manager, McDonnell Aircraft Corp.,

to W. P. Kelly, Jr., NASA Contracting Officer,

Aug. 24, 1960.

11 See Low, comments, Oct. 5, 1965; Aleck

C. Bond and Maxime A. Faget, Ms., "Tech-

nologies of Manned Space Systems," Chap.

14, "The Role of Ground Testing in Manned

Spacecraft Programs," 167-177.

1_ Mercury operations were governed by the

agreement "Overall Plan--Department of De-

fense Support for Project Mercury Operations,"

Jan. 15, 1960, but some of the difficulties in

working out specific operational procedures at

the Cape may be found in Francis E. Jarrett,

Jr., and Robert A. Lindemann, "Historical Ori-

gins of NASA's Launch Operations Center,"

Kennedy Space Center, Historical Monograph

No. 1, Cocoa Beach, Fla., Oct. 1964, 69-76.

See also letters, Henry N. Moore to distribu-

tion, AFMTC, "NASA Organizational Changes

at AMR and PMR," June 27, 1960; and Kurt

H. Debus to G. J. Weber, MAC, July 28, 1960;

Responslblhtlesand Ms. paper, anonymous, " " '''

and Procedures for AMR Support of Project

Mercury," ca. Aug. 1, 1960.

:g J. F. Shields, personnel study chart, MSC

Florida Operations, Jan. 4, 1964; G. Merritt

Preston, interview, Cape Kennedy, April 29,

1964; George F. Killmer, Jr., interview, Hous-

ton, Sept. 14, 1965. See also Ms. paper, Gil-
bert B. North, "Development and Checkout

of the NASA Mercury Capsule," McDonnell

Aircraft Corp. [ca. Sept. 1960].

_=John F..Yardley, William Dubusker, inter-

views, St. Lou_s, Aug. 31, Sept. 1, 1964. See

also Ms. paper, H. H. Leutjen, "Ground Check-
out and Launch Procedures for M'an-in-Space

Operations," McDonnell Aircraft Corp. [ca.

Aug. 1961]; McDonnell Aircraft Corp. inter-

office memo, J. T. Dale to W. F. Burke, "Mer-

cury-Redstone Panel I Meeting at MSFC on

11 August 1960," Aug. 16, 1960. Field pro-
curement was standardized to some extent by

memo, Harold G. Collins to all Mercury Hangar

S personnel, "Procurement Procedures on Con-

tract NAS 5-59," Sept. 8, 1960.

_ Project Orbit is not to be confused with

Project Orbiter; see p. 29. Yardley, Robert

L. Seat, interviews, St. Louis, Sept. 1, 1964;

memo, Lewis R. Fisher for 'Project Direc-

tor, "Proposal for Environmental Qualifica-

tion Test of Mercury Capsule," June 21, 1960;

A. E. Wilkes, "Proposal for Full Scale Simu-

lated Mission Test, Orbit Phase; Immediate

Capabilities," McDonnell Aircraft Corp. report
No. 7730, Aug. 29, 1960; memo, Floyd W.

Fuhs to distribution, "Project Orbit Team

Member's Responsibilities," McDonnell Air-

craft Corp. memo No. PO-650-3, Feb. 2, 1961.

For an overview of Project Orbit, see A. M.

Paolini, "Evaluation of a Mercury Spacecraft

in a Simulated Orbit Environment," McDon-

nell Aircraft Corp. preliminary report, May 29,

1962.

_ Gilruth quoted by John J. Williams and

Donald M. Corcoran, "Mercury Spacecraft

Pre-Launch Preparations at the Launch Site,"

paper, American Institute of Aeronautics and

Astronautics, Space Flight Testing Conference,

Cocoa Beach, Fla., March 18-20, 1963, 18.

Cf. p. 28. See also draft Ms., Frank M.

Crichton, "Quality Control and Inspection,"

for Project Mercury Technical History, July 3,
1963.

.,OBond and Faget, "Technologies of

Manned Space Systems"; Development Engi-

neering Inspection Data Book, SEDR 183, Mc-
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Donnell Aircraft Corp., Aug. 16, 1960. For

Project Orbit, see F. W. Fultz, A. E. Wilkis,

J. J. Mazzoni, et al., informal McDonnell Air-

craft Corp. memos, Sept. through Dec. 1960,

including preliminary McDonnell report 7869-

9 [no title], June 7, 1961: all included in file

by Robert A. Hermann and Joe W. Dodson,

"Project Orbit notes."

"_Bailey interview; Mss., "Briefings, NASA-

Industry Apollo Technical Conference," July

18, 1961; "Reliability and Flight Safety Prob-
lems," April 4, 1962, 8; "Reliability and Crew

Safety in Manned Space Flight," Feb. 20, 1963;
Bailey, "Review of Lessons Learned in the

Mercury Program Relative to Spacecraft De-

sign and Operations," paper, American Insti-

tute of Aeronautics and Astronautics Space

Flight Testing Conference, Cocoa Beach, Fla.,

March 18, 1963.

=Abc Silverstein, interview, Cleveland,
May I, 1964; House Committee on Science and

Astronautics, 87 Cong., I sess. (1961), Fourth

Semiannual Report o[ the National Aeronautics

and Space Administration, 208-209.

-"3Ms., Karl F. Greil, for Mercury Tech.

History, "History of the Reaction Control Sys-

tem," July 1962, 160-161. Cf. 145, 67-68

[English trans, by L. S. S.]. See also another

draft Ms. by Norman B. Farmer, "Instru-

mentation," June 27, 1963, for some discus-
sion of equally acute problems.

"_ See R. D. Korando, "Mercury Capsule

No. 7: Configuration Specification (Mercury-
Redstone No. 3)," Report 603-7, McDon-

nell Aircraft Corp., Aug. i, 1960, revised Nov.

I0, 1960; R. F. Mackcy, "General Flight Plan:

Atlas Boosters for Project Mercury," Aero-

space Corp. report AS-60-0000-0036, Sept.
1960.

=Memo, Faget to Flight Systems Div.,

"Mercury-Atlas Meeting on Feb. 26, 1960 at

Space Tcchnology Laboratories," March 4,

I960, 3.

-"NASA News Release 60-233, "MA-1

Capsule Instrumentation," undated; memo,

Charles J. Donlan to Langley Research Center,

attention Clyde Thiele, "Inspection of MA-1

Capsule," March 18, 1960; memo, R. E. Mc-

Kann to Chief, Flight Systems Div., "Trip to

Mercury Project Office at Patrick Air Force

Base," April 14, 1960. The basic preflight

documentation for MA-1 is found in the fol-

lowing NASA Project Mercury working pa-

pers: "MA-1 Mission Directive," No. 132,

April 11, 1960; "General Information for

MA 1 Recovery Force," No. 142, July 8, 1960;
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"Landing Area Prediction MA-I," No. 143,

July 13, 1960; "Summary of Calculated Pre-

flight Trajectory Data for MA-I," No. 144,

July 25, 1960. See also "Data Acquisition

Plan, MA-I," undated; and "Project Mercury

Description of Plans for MA-I," prelaunch

report, June 24, 1960.
'-'_Letter, Walter Williams to Cdr., DesFlot-

Four, March 15, 1960, with enclosure, "Test

Objectives and Recovery Requirements for the

Project Mercury Atlas Test One."

Detailed descriptions of preflight opera-

tions for all Mercury Iaunches are summa-

rized in Ms., George F. Killmer, Jr., et al.,

"Mercury Technical History--Preflight Oper-

ations," MSC Florida Operations, Dec. 30,

1963. For MA-I, see pp. 68-71. For an

overview of the coordination and cooperation

mechanics among the Mercury-Atlas team, see

letters, Silverstein to Courtland D. Perkins,

Asst. Secy. of the Air Force (R and D), Aug.

26, 1960, and Gilruth to Silverstein, "Project

Mercury Coordination between NASA-MAC

and BMD-STL-Convair," Aug. 26, 1960, with
enclosures.

_ Memo, Low to Administrator, "Mercury-

Atlas Test No. 1," July 26, 1960. For the

more general "man-rating" procedures for the

Atlas Booster about this time, see STL report

TR-60-0000-69079, "Atlas Booster Flight

Safety Review General Operating Procedures

and Organization," June 6, 1960.

Memo, Low to Administrator, "Mercury-

Atlas I, Post-Launch Information," July 29,

1960; see also Ms., "MA-1 Operation,

7/29/60," launch diary, anon. This same

day George Low delivered a paper before the

first NASA-Industry Conference that officially

and publicly named for the first time "Project

Apollo" as a manned lunar circumnavigation

program for the future: see NASA-Industry

Program Plans Con[erence, Washington, D.C.,

July 28-29, 1960, 80.

_ Memo, North to Administrator, "Analy-

sis of MA-1 Malfunction," Aug. 22, 1960.

See also Sally Anderson, ed., Final Report

Mercury/Atlas Launch Vehicle Program, Aer-

ospace Corp. report No. TDR-269 (4101)-3,

E1 Segundo, Calif., Nov. 1963, VIII-14.

_: Joseph A. Kies, Naval Research Labora-

tory, Washington, "Atlas-Mercury Failure:

Examination of Failed Parts," report, Aug. 30,

1960, 3; Andre J. Meyer, Jr., "Trip Report,"

Aug. 30, 1960.

"_"Flight Test Report for Mercury-Atlas

Mission No. 1 (capsule No. 4)," NASA Proj-

ect Mercury working paper No. 159, Nov. 4,
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1960,12-1.Someideaofthecomplexityof
datareductionproceduresforMercuryingen-
eralandoftheimpactofMA-I on data coordi-

nation procedures in particular may be gleaned
from the draft Ms. by Richard G. Arbic and

Robert C. Shirley, "Data Coordination," for

Mercury Technical History, Part III, M., July

10, 1963.

_' Minutes, "Mercury-Atlas Coordination

Panel, Sept. 14, 1960," Sigurd A. Sjobe_g, sec-

retary, with enclosures, Sept. 29, 1960.

35Transcript, "Press Group Interview with

Gilruth, Williams," Oct. 26, 1960, 2. Leading

questions were asked by Douglas Dederer of

the Cocoa (Fla.) Tribune. Gilruth also was

reported to have said that he would not be

surprised "to wake up any morning" to find
the Soviets had accomplished manned orbital

flight. Alvin B. Webb, Jr., Washington Post,

Oct. 30, 1960. Webb also editorialized to

say, "Mercury--named for a winged-footed

Roman God--appears to have both feet in a
molasses vat." House Committee on Science

and Astronautics, 87 Cong., 1 sess. (1961), A

Chronology o[ Missile and Astronautic Events,

123, 124, 132; Sheldon, "The Challenge of
International Competition," passim.

_ For an overview of the parallel develop-

ment of this rocket research aircraft see

Thomas A. Toll and Jack Fischel, "The X-15

Project: Results and Research," Astronautics

and Aeronautics, II (March 1960), 20-28.

_:Eugene M. Emme, Aeronautics and
Astronautics: An American Chronology o[

Science and Technology in the Exploration o[

Space, 1915-1960 (Washington, 1961), 126
130.

3s Public Papers o/ the Presidents o[ the

United States: Dwight D. Eisenhower, 1960-

61 (Washington, 1961), 630; A Chronology

o[ Missile and Astronautic Events, 121_ 123.
See also Senate Committee on Aeronautical

and Space Sciences, 88 Cong., 1 sess. (1963),
Documents on International Aspects o] the Ex-

ploration and Use o[ Outer Space, I954-1962,

May 9, 1963, 181. Eisenhower listed Pioneer

V, Tiros I, Transit I, Echo I and the X-15

flight in the "impressive array of successful ex-

periments" during the year preceding Aug. 17,
1960. He omitted mention of the first success-

ful Polaris launches from the submerged

nuclear submarine George Washington, on

July 20, for flights of over 1000 miles down the
Atlantic Missile Range, and he also avoided

publicizing the solid-fueled Minuteman missile

and the SAMOS and MIDAS satellite pro-

grams.

_ Washington Post, Sept. 27, 1960. Chap-

man Pincher reported in the Washington Daily

News, Dec. 1, 1960, that Victor Jaanimets,

a sailor who deserted the Russian ship that

brought Khrushchev to New York, had told

U.S. intelligence services that the ship, the

Baltika, was equipped with mockups and

demonstration equipment to advertise the

Soviet feat in case they succeeded in an early

attempt to put a cosmonaut in orbit.

4, A Chronology o[ Missile and Astronautic

Events, 129. See also Nancy T. Ga-

marra, "International Aeronautical Federation

(FAI) ," section in Senate Committee on Aero-

nautical and Space Sciences, 89 Cong., 1 sess.

(1965), International Cooperation and Organ-

ization [or Outer Space, 419-426.

,t Silverstein quoted in news story in New-

port News Times-Herald, Aug. 8, 1960. See

also Brig. Gen. Thomas R. Phillips, "U.S. Out

of Man-in-Space Race Until Saturn Is Ready

in 1965," and "Criticism of Mercury Space

Program Said to Lack Validity," St. Louis

Post-Dispatch, Sept. 1 and 2, 1960; "Astro-

nauts Hope for '61 Flight," New York Times,

Sept. 19, 1960; "NASA's Chief Expects Red

Space Shows," Baltimore Sun, Sept. 20, 1960;

Warren Rogers, Jr., "Man-in-Space Effort by

U.S. Rolls Again," New York Herald Tribune,

Sept. 25, 1960.

4:Newsweek, LIV (Oct. 19, 1959), 73-76.

This magazine continued with blanket criti-

cisms in LIV (Nov. 2, 1959), 26; LV (Feb. 8,

1960), 67-68; LV (Feb. 15, 1960), 35; but

a special report on the manned space race in

Newsweek, LVI (July 11, 1960), 55-59, was

entitled "The Dawn," symbolizing better

understanding of STG's efforts.

4._Hanson W. Baldwin, "Neglected Factor

in the Space Race," New York Times Maga-

zine, Jan. 17, 1960, 77; Arthur C. Clarke,

"Rocket to the Renaissance," Playboy, VII

(July 1960), 34, 84.

" James Barr, "Is Mercury Program
Headed for Disaster?" Missiles and Rockets,

VII (Aug. 15, 1960), 12-14. See also Carl

R. Huss, comments, Oct. 5, 1965.

*_ Memo, Gilruth to staff, "Favorable Press

Comments (for a change)," with two en-

closures, Sept. 16, 1960: Marvin Miles' article

described the "recent splurge of sniping at the

Mercury program," and Glennan's letter of

August 26 commended the article "as a shot of

adrenalin" for all the workers on Mercury.

Memo, North to Administrator, "Back-

ground of Project Mercury Schedules," with
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enclosures, including a chronology, Aug. 14,

1960. Significant excerpts from this memo

illustrated other features of Headquarters

concerns :

"A major factor in the compressed Mer-

cury schedule is concurrent effort in the areas

of research and development, design, and

manufacturing. As a result of this concurrent

effort, many of the capsule subcontractors

underestimated their costs and delivery dates.

As early as October 1959, McDonnell antici-

pated cost increases ranging from 200% to

450% from some of their major subcontractors,

such as Bell Aircraft, AiResearch, Collins Ra-

dio, and Grand Central Rocket.

"Because of different flight test objectives,

it is possible to fly some of the early capsules

with incomplete and unqualified systems.

"From the standpoint of project urgency, it

was consistent policy to set . . . classified tar-

get schedules as tight as possible .... How-

ever, since problem areas cannot be pinpointed

in advance, it was felt that the project ob-

jectives could be most rapidly achieved by pur-

posely setting optimistic target schedules and

keeping everyone working to meet these
dates ....

"One is tempted to extrapolate . . . there-

by obtaining May 1961 and November 1961,
as the actual launch dates for the manned Red-

stone and manned orbital flights. It is hoped,

however, that based on past experience, sub-

sequent capsules can be more accurately

scheduled through capsule systems checkout.

Conversely, it must also be remembered that

as yet none of the production capsules have

been qualified during the maximum Q abort

and reentry missions."

_7 Low, "Project Mercury Progress," an ad-

dress before UPI Editors Conference, Wash-

ington, Sept. 9, 1960, NASA News Release 60-

275; Low, comments, Oct. 5, 1965.

_For the significance of the AACB, see

Robert L. Rosholt, An Administrative History

o[ NASA, 1958 to 1963, NASA SP-4101

(Washington, 1966), 172-173; see also NASA

News Release 60-260, Sept. 13, 1960.

_u Richard M. Mansfield, "Project Mercury:

Race or Pure Science?" Virginian-Pilot and

Portsmouth Star, Sept. I1, 1960.

_0 "An Open Letter to Richard Nixon and

John Kennedy," Missiles and Rockets, VII

(Oct. 3, 1960), 10-11; John F. Kennedy, "If

the Soviets Control Space They Can Control

Earth," Missiles and Rockets, VII (Oct. 10,

1960), 12-13; "Nixon 'Declines' to Join De-
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lense/Space Debate," Missiles and Rockets,

VII (Oct. 24, 1960), 13; Richard M. Nixon,

"Military has Mission to 'Defend' Space,"

Missiles and Rockets, VII (Oct. 31, 1960),
10 11. Cf. a similar set of questions and an-

swers in Western Aviation, Missile and Space

Industries (Nov. 1960). See also Edward C.

Welsh, interview, Washington, Sept. 1, 1965.

_ See Robert Hotz, editorial, "The Gather-

ing Storm Over Space," Aviation Week,

LXXIII (Nov. 7, 1960), 21; and "Sharp De-

fense/Space Changes Expected," Aviation

Week, LXXIII (Nov. 14, 1960), 30.

s_ Hans W. Gatzke, The Present in Perspec-

tive: A Look at the World Since 1945 (2 ed.,

Chicago, 1961), 188. See also Philip C.

Jessup and Howard J. Taubenfeld, Controls

[or Outer Space and the Antarctic Analogy

(New York, 1959), 200, 282.

m House Committee on Science and Astro-

nautics, 86 Cong., 2 sess. (1960), The Prac-

tical Values o[ Space Exploration, Report No.

2091, July 5, 1960, 1. Cf. revision as House

Report No. 1276, Oct. 2, 196I, 20-22.

_ Ibid., 54. Aside from the better illustra-

tions and the updated figures on space costs

and accomplishments, the August 1961 revision

of this report contained one significant addi-

tion, namely a two-page (20-22) discussion in
the national security section entitled "Inter-

preting The Race," which said in part:

"The fact that we are racing the Russians

to the moon and the planets should not be

allowed to obscure certain facets of the precise
situation we are in.

"To begin with, it is essential to realize

that sending men beyond earth's environment

requires rockets of very high thrust--big

boosters. The Soviets, who have about a 5-

year jump on the United States in this field,

have such rockets in operation. Our biggest

ones are still in the development stage, al-

though they are showing considerable prom-

ise. So we begin this particular phase of

'the race' under a marked handicap and

doubtless will be in second place for some
time to come.

"It is equally important, however, to

recognize that 'getting there first' is only one

part of the race. Two other parts are just as

crucial :

1. What will we learn from our effort to

explore beyond the Earth ?

2. How will we use this knowledge after

it is acquired?

"The Vikings had the technique to get to
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theNewWorld'first,'butEngland,France,
andSpainwontheprizes.... Withnoin-
tenttodeprecatethenotableachievementsof
theSovietUnionin spaceresearch,it can
nonethelessbesaidthatthebroadscopeofthe
Americanefforthas--thusfaratleastbeen
c_utstandingin itsscientificresults."And, as

subsequent parts t_f this report suggest, our
free enterprise system has been quick to take

advantage of the technological fall out.
"In summary, our international prestige

and stature, so far as they are influenced by our

space activities, depend on all three elements
of 'the race'--not on one or two."

= Memo, Benjamine J. Garland to Project

Director, "Possible Meteoroid Damage to Mer-

cury," with enclosure, June 2, 1960, 3.

;_Letter, Smith J. DeFrance to Alan B.

Kehlet, "Information Requested by STG on

Pressure Transducers and an Auxiliary Drag

Device for Mercury," with enclosures, Sept. 16,
1960; memo, Caldwell C. Johnson to Faget,

"Auxiliary Drag Device--Mercury," Nov. 2,

1960; John P. Mayer, comments, Sept. 8, 1965.

Back in 1957 Avco had proposed a metallic

drag chute shuttlecock configuration for the

same purpose for the Air Force Man-in-Space

studies. See also "Summary of Several Short

Studies Pertaining to the Retro-Rocket System

Capabilities for the Mercury Mission," NASA

Project Mercury working paper No. 160,

Nov. 9, 1960.
:'_The reinstatement of development work

on the pneumatic impact bag followed after

Gerard J. Pesman learned the details of more

experiments on human impact at Wright-Pat-
terson late in 1960. For a resume of this work

see J. W. Brinkley, R. A. Headley, and K. K.

Kaiser, "Abrupt Acceleration of Human Sub-

jects in the Semi-Supine Position," paper,

Symposium on Bio-Mechanics of Body Re-

straint and Head Protection, Naval Air Mate-

riels Center, Philadelphia, Pa., June 14-15,
1961.

:" Memo, Peter J. Armitage and E. N. Har-

rin to Chief, Operations Div., "Mercury Cap-

sule Water Stability," Oct. 31, 1960.

_" Memo, Harrin to Chief, Operations Div.,

"Static Water Stability Tests of Personal Egress

Capsule," Jan. 10, 1961.

_" "Project Mercury Status Report No. 8 for

Period Ending October 31, 1960," STG, 17-

18; "Astronaut Preparation and Activities

Manual for Mercury-Rcdstone No. 3," NASA

Project Mercury working paper No. 174, Feb.

6, 1961.

"_ Memo, Yardley and G. M. Preston to

Silverstein, et al., "Summary of Conclusions

Reached Regarding the CST Plans and Cape
Checkout Plans for Capsules 5 (MR-2) and

7 (MR 3)," Sept. 9, 1960, 3. For MAC's
home factory response to the field workers'

difficulties with electrical, piping, sequencing,

inspection, and cleanliness problems, see draft

memo by H. Earle Moore and Walter F.

Burke, "Quality Assurance Project Mer-

cury," Sept. 12, 1960.

"_Memo, Richard Sachen and James T.

Rose to W. H. Gray, "General Summary of

Capsule Systems Tests on Capsule. No. 7,"

Dec. 1, 1960, with enclosures. Convair/

Astronautics had encountered the skin-cracking

problem in 1955 during the Atlas development

program. At that time no solution had been
discovered.

"_ Memo, Jerome B. Hammack and Rose to
W. tl'. Gray, "General Summary of Capsule

Systems Tests on Capsule No. 7," Dec. 1, 1960,

5, 6. This memo, with enclosures 1-17, gives

a detailed engineering history of the problems

encountered during the systems testing of the

first manned Mercury capsule. Although

STG inspectors found 189 electrical and me-

chanical discrepancies in their final acceptance

test, MAC's own inspectors had listed some

370 such discrepancies before their final clean-

up prior to delivery.

_*See Leutjen, "Ground Checkout and

Launch Procedures," 3. Revised procedures

for expediting checkout "sqetawk sheets" and

discrepancy reports were issued shortly there-

after: see memo, Yardley and Preston to

Hangar S Supervisors, "Cape Inspection

Policy Clarification," Oct. 20, 1960.

_ Letter, Williams to Commanding Officer,
Air Force Missile Test Center, attention Lt.

Col. R. D. Stephens, Sept. 6, 1960; "T-605

Operation, MR Mission," STG, Sept. 8, 1960;

"MR-1 Mission Rules," STG, Nov. 2, 1960;

letter, Williams to Kurt H. Debus, "Flight

Safety Review for MR Missions," Sept. 22,

1960, with enclosure, "Flight Safety Review

Plan"; letter, Williams to Cdr. DcsFlotFour,

"NASA Personnel Assignment for MR I

Test," Sept. 28, 1960, with enclosures;

memos, Low to Administrator, "Tests of Mer-

cury Redstone 1 and Little Joe 5," Nov. 2,

1960; and "LJ-5 and MR-1 launchings,"

Nov. 4, 1960; Williams, Management Memo-

randum, No. 13, "Working Hours, Launch

Operations Branch," Oct. 5, 1960.

" Letter, James P. Gleason to Kenneth E.

BeLieu, Nov. 7, 1960. For one source of this

concern, see Drew Pearson, "Space Shot
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Moved to Election Eve," Washington Post,

Nov. 2, 1960.

"*Project Mercury Status Report No. 8";
"Project Mercury Discussion," briefing charts,
Oct. 31, 1960.

6, "Project Mercury Flight Test Report for
Little Joe Mission No. 5 (capsule No. 3),"
NASA Project Mercury working paper No. 166,
Dec. 23, 1960; letter, Williams to R/A F. V. H.
HilIes, Dec. 14, 1960; memo, Low for Ad-
ministrator, "Report on Little Joe No. 5 and
Mercury Redstone No. 1," Nov. 10, 1960. See
also Fisher, comments, Sept. 15, 1965.

0_Memo, North to Dir., Space Flight Pro-
grams, "Project Mercury PMP Charts," Sept.
21, 1960, explains why the chimp was elimi-
nated from LJ-5. John C. Palmer, "Test
Directive for Little Joe V," approved count-
down procedures, undated. See also minutes,
"Little Joe V AeroMedical Operations Review
Meeting," Richard S. Johnston, secretary, July
12, 1960; "Mission Document for Little Joe

No. 5 (Capsule No. 3)," NASA Project Mer-
cury working paper No. 121, May 25, 1960.

,0 Low memo, Nov. 10, 1960; memo, Low
to Asst. Administrator for Congressional Rela-
tions, "Mercury Redstone and Little Joe 5

Launchings," Nov. 16, 1960. The additional
Litde Joe airframe was suggested by Silver-
stein. Memos, William M. Bland, Jr., to
Faget, "Visit of representatives of NAA-MD
to STG," Feb. 1, 1960, and "Further Develop-
ment of Little Joe Booster," Feb. 8, 1960;
North to Silverstein, "Request for Approval
Project Mercury Funding," June 27, 1960; Sil-
verstein to Budget Office, "Budget on Approval
of Project Mercm3, Funding," June 29, 1960.

Cf. memo, C. J. Donlan to LRC Procurement
Officer, "Contract NAS 9-59, Refurbished Lit-
tle Joe Static Booster, Expedited Delivery,"
Nov. 16, 1960.

,1 Memo, Johnson to Faget, "Mercury

Weight Growth--Effect upon Orbit Insertion
Probability, Retrograde Maneuver, Parachute
Loads, and Flotation," Nov. 22, 1960, 1-3.

Johnson speculated on possibilities:
"The really interesting scheme requires

starting all over. Consider six (6) Pioneer or

Explorer second stage motors clustered to-

gether as a posigrade-retrograde power

pack ....

"On the subject of parachutes and weights:

it is quite likely that the impact skirt system

and its associated 100 pounds of weight could
be eliminated if the capsule impact attitude

could be restricted to 'pilot feet first' and

without much swing. The main difficulty now

is the pilot's low tolerance to lateral accelera-
tion .... This is not a proposal but it's worth
thinking of."

See also Huss comments.

_-"Letter, Gleason to BeLieu, Nov. 3, 1960.
For the description o1 events following, see
memos, Low to Administrator, "MR-I Launch-
ing," Nov. 7, 1960; Low to Dir., Space Flight
Programs, "Mercury-Redstone I Launching,"
Nov. 14, 1960; Low to Administrator, "MR-1
Launching," Nov. i8, 1960.

_3For news criticism in the wake of MR-I,
see William Hines, "Mercury Failure Puts
Early Flight in Doubt," Washington Evening

Star, Nov. 21, 1960; "Astronaut Flight Still
Slated in '61," New York Times, Nov. 26,
1960; Louis Kraar, "Man in Space Tests Far
Behind Schedule," Wall Street Journal, Nov.

28, 1960; and "Space Experts Sniping at
Mercury," Space Age News, Nov. 21, 1960.

" Memo, Low to Administrator, "At-
tempted Launching of MR-l," Nov. 21, 1960;
Hammack, interview, Houston, Feb. 13, 1964;
and memo report, Hammack for Proj. Dir.,
"Attempted Launch of Mereury-Redstone No.
i Mission on November 21, 1960," Nov. 23,
1960.

*: Memo, Low to Administrator, "Explana-
tion of MR-1 Failure," Nov. 23, 1960; Jo-
achim P. Kuettner, interview, Huntsville, April
28, 1964.

_ Memo, Low to Dir., Space Flight Pro-
grams, "PMP Briefing on December 2, 1960,
Project Mercury," Nov. 28, 1960; and Low
comments.

'_Memo, Low to Administrator, "MR-1
Launch Information," Dec. 15, 1960. For re-
test preparations, see "Mercury-Redstone,
NASA, LOD-LOB, Master Operational Sched-
ule," rev. Nov. 15, 1960, for MR-l, Report
No. M-LOD-G-TR-49.4-60, rev. Dec. 2,
1960, for MR-1A, Marshall Space Flight Cen-
ter. Ms., "MR-1A Review," STG, Dec. 17,
1960.

7sMemo, Low to Administrator, "Mercury-
Redstone 1 Launching," Dec. 20, 1960. See
also Jerome B. Hammack and Jack C. Heber-
lig, "The Mercury Redstone Program," paper,
American Rocket Society, Space Flight Report
to the Nation, New York City, Oct. 9-15, 1961,
16-17.

_Memos, Howard C. Kyle to Mercury

Flight Dir., "MR-1 Launch on December 19,
1960--observations" ; Tecwyn Roberts to Flight

Dir., "Report on Test No. 5111," Dec. 20,
1960; and Stanley C. White to Flight Dir.,
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"MR-1A Test No. 5111," Dec. 20, 1960. For

the later post-flight inspection of MR-IA, see

letter, Purser to Burke, "Contract NAS 5-59;

Post-Flight EvaIuation of Capsule Number

Two," Jan. 31, 1961, with two enclosures.

See also Chap. X, footnote 26.

_0 Memo, North to Dir., Space Flight Pro-

grams, "Mercury Capsule Changes and Flight

Schedule," Dec. 6, 1960:

"Open loop operation of the Abort Sensing

and Implementation System (ASIS) is a

change which does not detract from the effec-

tivity of the system. This changes in fact,

makes the system more reliable and effective

because a pilot who is placed in the control loop

has the ability to assess whether a true abort

situation exists. In this concept, the pilot would

get a red light indication that an abort is called

for but wouZd manually activate the escape

sequence. The inherent aerodynamic stability

and high structural strength of the Redstone

should provide a sufficient time constant be-

tween capsule abort light indication and time

for abort decision. The pilot, after observing

the abort llght, can either immediately abort,

if he is in a critical flight regime, or he can

rely on secondary cues such as changes in ac-
celeration, changes in attitude, and radio voice

transmissions from visual observers or telemeter

monitors. Although it is reasonably clear that

the Redstone should be flown with an open

loop ASIS, the Atlas operational procedure is

not yet resolved because allowable pilot reac-
tion time will be somewhat less. I feel, how-

ever, that experience with the manned Red-
stone will convince us that the manned Atlas

should also be flown open loop. Incidentally,

three Atlas ASIS systems have been flown open

loop to date; two would have caused inadvert-
ent aborts."

Warren North was himself a test-pilot engi-

neer, and this viewpoint became even stronger

over the next year; see North and Walter

Williams, "The NASA Astronaut Program,"

Aerospace Engineering, XX (Jan. 1962),
13-15.

sl For an overview of the meetings and con-

ferences on the MA-[ failure, see James M.

Grimwood, Project Mercury: A Chronology,

NASA SP-4001 (Washington, 1963), 111,

112. On the MA-I review of Nov. 16, 1960,

see "Mercury-Atlas Program," briefing bro-
chure Nos. AD-60-0000-02356 and AT-60-

0829-00415, undated. Minutes, "Summary

of Test Programs and Recommendations for

MA-2 Launch," Sjoberg, secretary, Nov. 16,

1960; Ms. notes, Purser, "STG Position on

MA-I," Dec. 20, 1960; draft letters, Purser

to DonIan, Faget, and James A. Chamberlin,

Dee. 31, 1960, and Jan. l, 1961; memo, Low

to Dir. Space Flight Programs, "Project Mer-

cury Status," Dec. 29, 1960; and Richard V.

Rhode, interview, Washington, Jan. 18, 1966.

_" A Chronology o[ Missile and Astronautics

Events, 135; Sheldon, "The Challenge of In-

ternational Competition," 11, 26, and com-

ments, Aug. 12, 1965.
_3G. Pokrovsky, "We Give Space to the

Russians," Washington Daily News, Dec. 5,
1960; "Lead-Footed Mercury," Time, Dec. 5,

1960; "Man in Space," editorial, New York

Times, Dec. 2, 1960.

Chapter X

t NASA Fifth Semiannual Report to Con-

gress, October 1, I960, through June 30, I961,

153. This report, not published until July I l,
1962, is highly anachronistic (see pp. 5, 6)

and should be used with caution. See also

memo, Aaron Rosenthal to Dir., Office of

Space Flight Programs, "Temporary Reassign-

ment of Ma,power Spaces," with enclosures

on STG complement requirement for fiscal

1962, Dec. 5, 1960.

Eugene M. Emme, Aeronautics and Astro-

nautics: An American Chronology o[ Science

and Technology in the Exploration o] Space,

I915-1960 (Washington, 1961), 134, 139-

151; STL Space Log (Jan. 1961), 24, 3-8.

Charles S. Sheldon II has corrected the pound-

age figures in terms of lifting capacity to 100
nautical mile altitude. Official comparisons

sometimes unfairly counted the weights of

U.S. rocket casings and not those of U.S.S.R.

casings.
'_Senate Committee on Aeronautical and

Space Sciences, 88 Cong., l sess. (1963), Docu-

ments on International Aspects o[ the Explora-

tion and Use o[ Outer Space, 1954-1962, May

9, 1963, 186.
i The informant was Lt. Col. Paul D.

Hickman, of the Armed Forces Industrial Col-

lege. See House Committee on Science and

Astronautics, 87 Cong., I sess. (1961), A

Chronology o[ Missile and Astronautics

Events, 139-140; House Committee on Science

and Astronautics, 87 Cong., 2 sess. (1962),

Aeronautical and Astronautical Events o[

1961, 1-2; and "U.S. Officer Says 2 Reds Died

in Space," Newport News Daily Press, Jan. 15,

t961. Soviet spokesmen later denied this re-

port, of course, and most informed American

opinion credits the Soviet denial. Two

571



U.S.S.R. attempted launchings of Mars probes

on October i0 and 14, 1960, may have con-

fused this issue. For an important demurrer,

see the letter by Julius Epstein, a research as-

sociate of the Hoover Institute of Stanford

University, reprinted in the Congressional

Record on Aug. 6, 1965: "Open Versus Secret

Procedures in Space Programs," pp, 18813-
18814.

"Documents on International Aspects

o[ . . . Outer Space, 188. For some perspec-

tive on the larger interregnum and the search

for a national space program between 1958

and 1962, see House Committee on Govern-

ment Operations, 89 Cong., 1 sess. (1965),

Government Operations in Space (Analysis

of Civil-Military Roles and Relationships),
49-71.

Ms., "Report to the President-Elect of

the Ad Hoc Committee on Space," Jerome B.

Wiesner, chairman (unclassified version), Jan.

12, 1961,11,12.

= Ms., "Report to the President-Elect of the

Ad Hoc Committee on Space," Wiesner, chair-
man (classified version), Jan. 10, 1961, 17.

The other members of this committee were

Kenneth BeLieu, Trevor Gardner, Donald F.

Hornig, Edwin H. Land, Max Lehrer, Edward

M. Purcell, Bruno B. Rossi, and Harry J.
Watters.

"At a press conference on Oct. 26, 1960,

Robert R. Gilruth was asked about the pos-

sibility of using the Titan rather than the

Atlas for orbital flight. Gilruth said he

preferred the Atlas, pointing out that the tech-

nical problems connected with it were being

solved, whereas those associated with the Titan
were nowhere near solution. The fact that

the second stage of the two-stage Titan ignited

in flight presented additional problems to

orbital flight, he said. In contrast all three

Atlas engines ignited at liftoff. Gilruth

actually drafted a letter intended for Maj. Gen.

Osmond J. Ritland, commander of the Air

Force Ballistic Missile Division, asking for a

briefing on the possible application of the Titan

to the Mercury program. The letter (Gilruth

to Ritland, Jan. 18, 1961) was never mailed,

primarily because the conceptual development

of the follow-on program after Mercury was

beginning to take shape. In May 1961 Robert
C. Seamans was sold on the Titan II as a

launch vehicle for Mercury Mark II, and

thereafter NASA and DOD agreed to support

each other's use of Titan II and III respec-

tively; Seamans, interview, Washington, Sept.

I, 1965.
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_' House Committee on Science and Astro-

nautics, 87 Cong., 1 sess. (1961), Third An-

nual Report in the Fields o[ Aeronautics and

Space, Jan. 18, 196t, XVI, 8-9; Paul E.

Purser, interview, Houston, March 15, 1965;

George M. Low, interview, Houston, March

19, 1964.

_" Washington Post, Jan." 12, 1961; "Wash-

ington Roundup," Aviation Week, LXXIV

(Feb. 6, 1961), 5; Washington Evening Star,

Jan. 12, 1961; Newport News Daily Press,

Jan. 27, 1961. The Wiesner Report admitted
that the committee's review of the nation's

space program had been made hastily.

n Public Papers o[ the Presidents o[ the

United States: Dwight D. Eisenhower, 1960-61

(Washington, 1961), Item 421, 1038, "Fare-
well Radio and Television Address to the

American People," Jan. 17, 1961. Eisenhower

had warned: "In the councils of government,

we must guard against the acquisition of un-

warranted influence, whether sought or un-

sought, by the military-industrial complex.

The potential for the disastrous rise of mis-

placed power exists and will persist .... We

must never let the weight of this com-

bination endanger our liberties or democratic
,1

processes ....

1_ On the "military-industrial complex"

problem, see George T. Hayes, ed., The In-

dustry-Government Aerospace Relationship,

2 vols. (Menlo Park, Calif., May 1963), Stan-

ford Research Institute Project No. IS-4216;

Robert Hotz, "Gathering Storm Over Space,"

Aviation Week, LXXIII (Nov. 7, 1960), 21;

Hotz, "Sharp Defense/Space Changes Ex-

pected," Aviation Week, LXXIII (Nov. 14,

1960), 30-31. See other articles in Aviation

Week, LXXIV (Jan. 16, 1961), 21 ; (Jan. 30,

1961), 21, 34; Robert L. Rosholt, An Admin-

istrative History o[ NASA, 1958-1963, NASA

SP-4101 (Washington, 1966), 184; House

Committee on Science and Astronautics, 87

Cong., I sess. (1961), Military Astronautics

(Preliminary Report), Staff report No. 360,

May 4, 1961.
_For some of the scientists' criticism of

Mercury, see Jay Holmes, America on the

Moon: The Enterprise o[ the Sixties (New

York, 1961), 72-82. The most prevalent

scientific objection to Mercury was expressed

by the question "Why put the sensitive stom-

ach and heart of a man out in space when his
other senses can be sent out there with man

staying on the ground but in the loop?"

Douglas R. Lord, interview, Washington,

Sept. 3, 1965.

t
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FOOTNOTES

1_ House Committee on Science and Astro-

nautics, 87 Cong., 1 sess. (1961), NASA Au-

thorization, Hearings, Part I, March 13-April

17, 1961, 4, 192, 195, 199, 213. Cf. Rosholt,

Administrative History o[ NASA, 136-137, 184,

190-195 for more details on the extremely com-

plex financial history of NASA during this

period. See also Merton ,]'. Peck and Frederic
M. Scherer, The Weapons Acquisition Proc-

ess: An Economic Analysis (Boston, 1962),

100. It is perhaps significant that what pur-

ports to be a House Committee on Science

and Astronautics manuscript, entitled "Project

Mercury: A Preliminary Progress Report,"

dated October 1960, accurately estimated (at

last) a completion cost for Project Mercury

at $:393 million, of which approximately $110

million would be spent on the McDonnell

contract for the spacecraft.

_5 "Interim Report," Joint Air Force/NASA

Ad Hoc Committee on Atlas Boosted Space

Systems, Jan. 19, 1961. Richard V. Rhode,

interview, Washington, Dec. :30, 1964; Bern-

hard A. Hohmann, interview, Houston, Sept.

16, 1965. Richard V. Rhode pursued the
method with which the Atlas contractor would

fit the "belly band" to the booster's top sec-

tions, since there were small metal appendages
that would have to be ground flush to the

booster's surface. He was particularly in-

terested in how they would prevent the metal

from being undercut and thereby weakening

the structural strength even more. General

Dynamics responded that they had a technician

with capability to prevent undercutting.

Rhode asked to be shown. After seeing the

proof, he directed that this individual be sent

to the Cape to perform this part of the "fix."

Rhode, interview, Washington, Jan. 18, 1965.

l_Letter, Purser to Rhode, Jan. 10, 1961;

Ms. notes, Purser, "STG-773, 67-D Instru-

mentation," Jan. 3, 1961; Ms., "Agenda--

Abort Parameters," Jan. 4, 1961. Seamans

and Abe Silverstein of NASA Headquarters;

James R. Dempsey of Convair/Astronautics,
and the Secretaries of the Air Force and the

Department of Defense were all involved in

telephonic conferences behind the scenes on
the MA-2 decisions. For the final decision

to go with the "horse collar," see Ms., Purser,
"Notes for Rhode Committee: Status of

MA-2," Feb. 13, 1961.

"Rhode, "The First Hundred Seconds,"

paper, American Rocket Society Conference
on Launch Vehicle Structures and Materials,

April :3, 1962. Rhode here applied his ex-

perience with the Electra and the Atlas to

Saturn problems of fuel slosh, acoustics, panel

flutter, buffeting, and wind effects during the
first 100 seconds. "In a structural sense there

is really no such thing as a 'launch vehicle,' "
he said.

1. Holmes, America on the Moon, 189-190;

Hotz, "New Vigor for Space Program," Avia-

tion Week, LXXIV (Jan 16, 1961), 21.

10 James E. Webb, interview, Washington,

Sept. 3, 1965; Webb, address before Science

Convocation at Brandeis University, Wal-

tham, Mass., Nov. 7, 1965, NASA News Re-
lease. See also "Washington Roundup," Avi-

ation Week, LXXIV (Jan. 30, 1961), 21.

20 Holmes, America on the Moon, 190-192;

Senate Committee on Astronautical and Space

Sciences, 88 Cong., 1 sess. (1963), NASA Au-

thorization [or Fiscal Year 1964, Hearings,

Part I, 5-6; NASA biography of James E.

Webb, Jan. 27, 1964. For details of Webb's

background, see Senate Committee on Aero-

nautical and Space Sciences, 87 Cong., 1 sess.

(1961), Nomination o[ ]ames Edwin Webb to

be Administrator o[ the National Aeronautics

and Space Administration.

-"' "Washington Roundup," Aviation Week,

LXXIV (Jan. 30, 1961), 21; "Kennedy Ap-

points Webh to Direct NASA," Aviation

Week, LXXIV (Feb. 6, 1961), 29; Hotz, "Suc-

cess and Disappointment in Space," Aviation

Week, LXXIV (Feb. 6, 1961), 21; Newport

News Daily Press, Feb. 5, 1961; Holmes,

America on the Moon, 192. Webb's appoint-

ment was confirmed by the Senate on Feb. 9,

and he was sworn in on Feb. 15, 1961.

a, Letter, Overton Brooks to John F.
Kennedy, March 9, 1961 ; Kennedy to Brooks,

March 23, 1961 ; see also "Washington Round-

up," Aviation Week, LXXIV (Jan. 16, 1961),

25; "Cooperation Theme is Stressed by NASA
and Defense Officials," Aviation Week,

LXXIV (,]'an. 30, 1961), 34; and "Washing-

ton Roundup," Aviation Week, LXXIV (Feb.

6, 1961), 25.

_Excerpts from messages compiled by

Purser, special assistant to director, STG, re

status of spacecraft No. 5. During one of the

McDonnell tests, when the air leakage rate

was being checked, the inspectors found that

gas seepage was too great. The best seal they

could obtain left a leakage rate of 1725 cc./

min. at 4.9 p.s.i, for 45 minutes, as against

the specified maximum rate of 650 cc. The

defect causing this was found at the umbilical

connector and traced to warpage of the cap-
sule frame. McDonnell rcworked the struts

and stringers to make a better fit. This is but
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one sample from daily reports to STG about

the rework status of one selected component.

Afterward, on July 5, 1960, STG approved a

spacecraft leak rate of 1000 ce per minute.

Memo, Richard S. Johnston, Asst. Head, Life

Systems Branch, to Chief, Flight Systems Div.,

"Capsule Leakage Rates," July 5, 1960.

_tMessage, John J. Williams, Launch

Operations, Marshall Space Flight Center, to

G. Merrltt Preston, STG Cape Operations,

Oct. 4, 1960; "Postlaunch Report for Mer-

cury-Redstone No. 2 (MR-2)," NASA/STG,

Feb. 13, 1961; NASA News Release 61-14-1,

"Project Mercury Background," Jan. 28, 1961.

For the MR-2 mission directive, see NASA

Project Mercury working paper No. 138, dated

Apr. 15, 1960, rex'. Nov. 29, 1960, and Jan. 27,
1961.

:_David S. Akens, Paul K. Freiwirth, and

Helen T. Wells, History o[ the George C. Mar-

shall Space Flight Center (Huntsville, Ala.,

May 1961), Vol. I, Appendix B, "Mercury-

Redstone Chronology," 28, 32; Francis E.

Jarrett, Jr., and Robert A. Lindemann, "His-

torical Origins of NASA's Launch Operations

Center to July 1, 1962," Kennedy Space Cen-

ter Historical Monograph No. I, Cocoa Beach,
Fla., Oct. 1964, B-26.

'_ Akens, Freiwirth, and Wells, History o[

Marshall Space Flight Center, Vol. I, 32;

memo, E. D. Geissler, Aeroballistics Div., Mar-

shall Space Flight Center, to STG, "Project

Mercury-Redstone: Trajectory Data for MR-

2," Jan. 23, 1961 ; memo, Walter C. Williams,

Operations Dir., STG, to Marshall Space

Flight Center, "Launch Trajectories for MR 2

and Subsequent Flight," Dec. 20, 1960; "Tech-

nical Information Summary of Mercury-Red-

stone Mission MR-2," Marshall Space Flight

Center, Jan. 20, 1961. Williams' 12-gnominal
reentry decelerations were not connected with

the 12-g emergency maximum advocated by

the Air Force in 1958 for the "man-in-space"

study program. The 12-g maximum desired
for the MR-2 mission was set for two reasons:

( 1 ) It represented the midway point between a

normal Mercury-Atlas reentry (about 8 g) and

the worst Mercury-Atlas reentry (about 16 g) ;

and (2) normal reentry for the Mercury-Red-

stone was about I I to 12 g. STG felt it was

necessary to study the g-load effects on the

chimpanzee in this range. The fact that both

acceleration and deceleration g loads surpassed

12 served to prove the supine couch concept.

*: "Project Mercury Technical Information

Summary of Mercut3'-Redstone Mission No. 2

(Capsule No. 5)," NASA/STG, Jan. 24, 1961;
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"Technical Information Summary Concerning

Mercury-Redstone Mission MR-2," MSFC re-

port TPR M 60 1; NASA News Release

61-14-2, "MR-2 Flight Profile," Jan. 28,

1961; "Project Mercury Background."

_ NASA News Release 61-14-3, "Animal

Flight Program," Jan. 28, 1961; "Information

Guide for Animal Launching," July 23, 1959;

"Countdown and Procedures (Animal Subject)

for Project Mercury Flight MR-2," USAF

Aeromedical Field Laboratory, Holloman Air

Force Base, N. Mex., Dec. 1960.

7, Norman E. Stingely, John D. Mosely, and

Charles D. Wheelwright, "MR-2 Operations,"

in Results o[ the Project Mercury Ballistic and

Orbital Chimpanzee Flights, NASA SP-39

(Washington, 1963), 7.

_" "Recover 5" Operations Requirements for

Mercury-Redstone Test No. 2," STG, undated

[about Jan. 12, 1961]; "Mercury Recovery

Forces," NASA fact sheet, undated; Message,

Cdr., DesFlotFour, to STG, "Public Informa-

tion for MR-2," Jan. 5, 1961. The helicopters
were from Marine Aircraft Group 26, the Mer-

cury project officer of which was 1st Lt. Wayne

E. Koons, USMCR.

_t Letter, Walter Williams, STG, to Cdr.,

DesFlotFour, re NASA personnel assignment

for MR-2 test, Jan. 6, 1961.

= "Master Operational Schedule, MR-2,"

Marshall Space Flight Center, Jan. 20, 1961,

5-26, 27-30, 32-47, 48-77; Final Report: Mer-

cury-Redstone Project Launch Operations,

Marshall Space Flight Center, May 28, 1962,

121, Appendix L, "MR-2 Daily Log Sum-
mary," 1-4.

_ "MR 2 Flight Test Profile--Operations

Directive No. 1904, Mercury - Redstone

Launch," Air Force Missile Test Center, Jan.
5, 1961, 4-10.

:;_ Ibid. Ham's depth of respiration was

measured by a pneumograph consisting of a

rubber tube filled with copper sulfate solution.
Electrical resistance of the solution varied as

the tube was stretched. At one point during

the testing of sensors for measuring the pri-

mate's respiration, technicians discovered that

when the pneumograph was attached high on

the thorax, the chimp breathed low and vice

versa. One solution was to use two pnu-

emograph straps in conjunction. Results o[

the Project Mercury Ballistic and Orbital Chim-
panzee Flights; A. D. Catterson, MSC Medical

Support Operations, interview, Houston, Oct.
23, 1964.

"Countdown and Procedures (Animal

Subject) for MR-2"; "Animal Flight Pro-



FOOTNOTES

gram"; Marshall Star, Feb. 1, 1961; Stingely,

Mosely, and Wheelwright, "MR-2 Opera-
tions," 9-11. Each animal received 15 com-

mercial food pellets and a fourth of an orange

at a feeding. One 12-ounce serving was given
at about T minus 20 hours and another at T

minus I5 hours. Water intake was limlted to

800 co. from T minus one day through recov-

ery. The name "Ham" also honored the com-

mander of Holloman Aeromedical Laboratory,
Lt. Col. Hamihon Blackshear.

_"MR-2 Flight Test Profile--Directive

1904." Staff members under the operations

director had a variety of duties and responsi-

bilities. For example, the launch director,

located in the blockhouse, reported on the
readiness of the launch vehicle; the launch

conductor, also in the blockhouse, was respon-

sible for detailed supervision of Iaunch opera-

tions; the capsule test conductor had a similar

duty on the countdown; and the flight director,

located in the Mercury Control Center, had

detailed flight-control responsibility from lift-

off to touchdown.

._TMemo, Tecwyn Roberts, Flight Dynamics

Officer, to Flight Director, "Report on Test

3805," Feb. 2, 1961; penciled notes on the

countdown of MR-2, anon., Jan. 31, 1961.

The origin of the popuIar space term "A.OK"
is a matter of widespread public ]-nterest. In

reporting the Freedom 7 flight, the press attrib-
uted the term to Astronaut Shepard, and in-

deed NASA News Release 1-61-99, May 5,

1961, has Shepard report "A.OK" shortly after

impact. A replay of the flight voice communi-

cations tape disclosed that Shepard himself did

not use the term. It was Col. John A.

"Shorty" Powers who reported Shepard's con-

dition as "A.OK" in a description of the flight.

Tecwyn Roberts of STG and Capt. Henry E.
Clements of the Air Force had used "A.OK"

frequently in reports written more than four

months before the Shepard flight. Roberts

attributed coinage of the term to Paul Lein,

of the Western Electric Co., while the track-

ing network was being constructed. Lein,

however, said that "A.OK" was a communal

development among communications engineers

while circuits were first being established down-

range from Cape Canaveral. The voice cir-

cuits at first gave poor quality. The bands

were narrow, and the systems operated on 1500

cycles. There was much static and back-

ground noise. Words got lost in voice circuit

systems checks. To make transmissions

clearer, the communicators started using
"A.OK" because the letter "A" has a brilliant

sound. Other sources claim that oldtime rail-

road telegraphers used "A-OK" as one of

several terms to report the status of their equip-

ment. Be that as it may, Powers, "the voice of

Mercury Control," by his public use of

"A.OK," made those three letters a universal

symbol meaning "in perfect working order."
n Penciled notes on MR-2 countdown;

memo, William S. Augerson, Life Systems

Group, to Christopher C. Kraft, Mercury Con-

trol Center Flight Dir., "Blockhouse Medical

Monitoring of MR-2," Feb. 6, 1961; W. J.

Kapryan, "Posdaunch Report for MR-2,"

Feb. 2, 1961. Some flight notes on MR-2,

author unknown, dated Feb. 1961, indicated

that the inverter had operated at temperatures

as high as 200 degrees F.

3,,,Postlaunch Report for MR-2," 9;

NASA News Release, Cape Canaveral, Jan.

30, 1961; Roberts memo; memo, Warren J.

North, Head, Manned Satellites, NASA Hq.,

to Franklyn W. Phillips, NASA Hq., "MR-2

Flight Results," Feb. 1, 1961; tape of press

conference following MR-2 launch, Cape Ca-

naveral, Jan. 31, 1961. Cf. Carl R. Hum

comments, Oct. 5, 1965.

_* "Postlaunch Report for MR-2," 9; memo,

North to STG, "Retrocontrollers Comments,"

Feb. 9, 1961. Brief accounts of Ham's flight

may be found in Kenneth F. Weaver, "Count-
down for Space," National Geographic,

CXIX (May 1961), 725-734; and in Judith

Viorst, Projects: Space (New York, 1962),
37-38.

4t Memo, Morton Schler, capsule environ-

ment monitor, to Kraft, "MR-2 ECS Flight

and Postflight Summary," Feb. 6, 1961.

*""Mercury-Redstone II Flight Parame-

ters," chart, Feb. 7, 1961; "Calculated Pre-

flight Trajectory Data for MR-2," Project

Mercury working paper No. 168, Jan. 19, 1961.
See also North memo.

,7 NASA Filth Semiannual Report to Con,

gress. See also NASA films, MR-2 Launch,
March 1961, and Sixth Quarterly Report, April

1961.

'l"Postlaunch Report for MR-2," 10;

MR-2 flight parameter chart; tape of press
conference following MR-2 flight; some flight

notes on MR-2, anon., dated Feb. 1961 ; House

Committee on Science and Astronautics, 87

Cong., 1 sess. (1961), Project Mercury, Second

Interim Report, 34-37; Wayne E. Koons and

James L. Lewis, interviews, Houston, Sept. 16,
1965. Robert F. Wallace, an STG informa-

tion officer on the scene, reported that Ham
was excited when returned to Hangar S after
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his flight. Being unable to debrief his han-

dlers, Ham alone knew at this time how gruel-

ing his flight had been. Flashbulbs and

crowding newsmen made him highly agitated,

and he snapped at several people. Back in
his trailer, his suit was not removed until he

became calm, and at that time a famous "grin"

photograph was made. Later, when his han-

dler led him back toward a capsule for pictures

requested by the TV crews, Ham again became

highly perturbed. It took three men to calm

the "astrochimp" for the next round of pic-

tures. On April 2, 1963, Ham was given to

the National Zoological Park, Smithsonian In-

stitution, Washington, D.C., where for the past

several years he has been in good health and

has thrilled many children.

,5 The amount of water in the spacecraft

caused great concern to members of STG's Life

Systems Group when they found the heatshield

had punctured holes in the lower pressure bulk-

head. Life Systems renewed studying alterna-

tives, making either optional or impossible the

deployment of the landing bag. More drop
tests were undertaken by the Aeromedical Bio-

physics Group of the Wright Air Development

Division. Simulating the Mercury drop rate

of about 30 feet per second, the Wright group

found that human test subjects could sustain

impacts of about 35 g.and recover from "a con-
fused state" in about five seconds. STG con-

sidered this within fairly safe limits for an

interim measure, but the margin of safety was

too small to accept for the routine operation

of a Mercury mission. Memo, Gerard J. Pes-

man to Assoc. Dir., "Use of Impact Bag for

Water Landings," Feb. 13, 1961. In all of

the manned missions the impact bag was

deployed.

_" See R. I. Johnson, et al., "The Mercury-

Redstone Project," Saturn/Apollo Systems

Office, Marshall Space Flight Center, June

1964, 8-9. Cf. Huss comments. Regarding

the impact bag problems at this time, see

memo, Rodney G. Rose to Chief, STG Engi-

neering Div., "Summary of Air Drop and Fa-

tigue Program with Production Capsule No. 5,"

May 4, 1961, and Ms. paper, "Project Mercury

Water Landing Problems," presented to 30th

annual AIAA meeting, New York City, Jan.

24, 1962.

_z Purser, "Notes on Capsule Review' Board

Meeting," Jan. 20, 1961. The conception of

Mercury Mark II (or what was named Project

Gemini almost a year later) was taking place

at this time. See memo, Purser to STG Dir.,

"Atlas Modifications, Cost, and Scheduling,"
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Jan. 17, 1961. Message, Hohmann and Rob-

ert H. Brundin to Philip E. Culbertson, re

tests of the restraining band to reduce the dis-

continuity stresses in the M/A station 502 area,
Jan. 16, 1961.

4s Seamans interview; "MA-2 Mission Di-

rective," NASA Project Mercury working pa-

per No. 140, June 24, 1960, rev. Aug. i1, 1960,

Jan. 29, 1961, and Feb. 9, 1961; Donald T.

Gregory, "Technical Information Summary of

Mercury-Atlas Mission No. 2 (Capsule No.
6)," Feb. 10, 1961.

'_ Rhode interview. Owing to airline engi-

neers' strike, Rhode flew to the Cape via a

routine Air Force logistics flight, arriving just

in time to climb the gantry and personally in-
spect the "fix."

,0 Webb interview; memo, George M. Low

to Administrator, "Mercury-Atlas 2 Launch,"

Feb. i8, 1961; "Calculated Trajectory Data

for MA-2," NASA Project Mercury working

paper No. 163, Dec. 7, 1960.

_ "P r oc e e d i n gs of the Mercury-Atlas

Booster Reliability Workshop," San Diego,
July i2, 1963, passim.

_'0Low, interview, Houston, Sept. 15, 1965;

Ritland, interview, Andrews AFB, Dec. 30,

1964; Gilruth, interview, Houston, Mar. 18,

1964; P. E. Culbertson, comments, Aug. 16,

1965; Paul P. Haney, comments, Sept. 15,
1965; Purser, notes on MA-2 launch as re-

layed from Mercury Control Center, Feb. 21,
1961.

5_ "Post Launch Report for Mercury-Atlas

No. 2 (MA-2)," STG, March 13, 1961, 161.

An unidentified ship, a tanker flying a ham-
mer-and-sickle flag, but apparently without any

unusual radar antennas, also was able to see the

unusual reentry. Memo, Donald C. Cheat-

ham to Assoc. Dir., "Russian Ship in MA-2

Primary Landing Area," March 8, 1961.

_Memo, North to Administrator, "Pre-

liminary MA-2 Flight Results," Feb. 23, 1961.

Many NASA engineers and managers think of

MA-2 as being "the day Mercury won its
spurs" from the Air Force because in retro-

spect it represented the only potentially serious

difference of opinion with the military services

throughout the program; see Low comments.

_:"Press Conference; Mercury-Atlas No.

2," Cape Canaveral, Feb. 21, 1961. See also

John H. Glenn, Jr., "We're Going Places No
One Has Ever Traveled in a Craft No One's

Flown," Li[e, L (Jan. 27, 1961); Loudon

Wainwright, "Chosen Three for First Space

Ride," Li[e, L (March 3, 1961). For the

Atlas manufacturer's postt]ight analysis, see
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A. F. Leondis, "Project Mercury Structural
Dynamic Analysis (Atlas 67D; MA-2)," Con-
vair/Astronautics report No. AE 61-0743,

Aug. 10, 196i.
"The Mercury-Redstone Project," 5-37.

_ Ibid., 8-15. Before a press conference

on February 8, 1961, President Kennedy had
cautioned against a premature effort to "put
a man in space in order to gain some prestige
and have the man take a disproportionate

risk." On February 28, Webb announced the
President's order for a thorough review of
the nation's space programs, and on March 2
a group from the President's Science Advisory
Committee was already on tour and at the
Atlantic Missile Range for a briefing on Proj-
ect Mercury. See Aeronautical and Astro-
nautical Events o[ 1961, 5, 8, 9.

Joachim P. Kuettner, note for Dr. yon

Braun, Feb. 7, 1961; memo, Kuettner to von
Braun and others, Marshall Space Flight Cen-

ter, "Recommendation to Space Task Group on
Manned Mercury-Redstone Flight," Feb. 7,

1961; "Daily Journal," Launch Operations
Directorate--Marshall Space Flight Center,

Feb. 6, 1961.

r_Memo, Emil P. Bertram to Kurt H.
Debus, "MSFC Meeting on MR-3 Manned
Flight," Feb. 10, 196i; message, Debus to
Kuettner, undated [about Feb. 12, 1961] re
Launch Operations Directorate reply to Kuett-
ner's memo of Feb. 7, 1961. See table 8-3
in Johnson et al., "The Mercury-Redstone
Project," 8-15. The first priority list of weak
"components" included the thrust controller,
vibrations, cutoff arming timer, abort sensors,
peroxide tank pressure regulator, peroxide sys-
tem cleanliness, and a liquid oxygen manhole
leak.

_0 Memos, North to Dir., Space Flight Pro-
grams, "Mercury Status as of March 2, 1961,"
Mar. 3, 1961, 2, 3; Wernher yon Braun to
Marshall Space Flight Center, "Sensitivity of
Mercury Launching Dates," March 3, 1961.

GtMessage, Marshall Space Flight Center
to STG, March 15, 1961; "Project Mercury
Status Report No. 10 for Period Ending
April 30, 1961," NASA/STG, 31; memo,
Jerome B. Hammack, STG Cape Operations,
to Project Dir., "Mercury-Redstone Booster
Development Flight (MR-BD)," March 26,
1961.

_Letters, Brooks to Kennedy, March 9,
1961; Kennedy to Brooks, March 23, 1961.
See also Air Force replies to these and other
charges in House Committee on Science and
Astronautics, 87 Cong., 1 sess. ( 1961 ), De[ense

Space Interests, Hearings, March 17-23, 1961.
Purser in his log for Gilruth, March 7, 1961,
reported ushering the Hornig panel around
Mercury sites from March 1 through 4: "All
the comments I overheard were favorable. I

also received very favorable direct comments
from Dr. Hornig and the various paneI
members."

,3 Lloyd V. Berkner and Hugh Odishaw,
eds., Science in Space (New York, 1961). See

Holmes, America on the Moon, 193-195. See
also the special issue devoted to "Space Ex-
ploration in the Service of Science" of Bulletin
o/ the Atomic Scientists, XVII (May-June
1961), 169-240.

e4House Committee on Science and Astro-

nautics, 87 Cong., 1 sess. (1961), Hearings,
1962 NASA Authorization, Part I, testimony of

Abe Silverstein, March 14, 1961, 77, 94, 99.

Luncheon talk by James E. Webb, NASA
Administrator, to the American Astronautical
Symposium, Washington, D.C., March 17,
1961.

The steps leading to the decision for an
accelerated U.S. space program to include
landing an American on the moon before

1970, as presented to the Congress on May 25,
1961, are to be detailed in subsequent NASA
histories.

07Senate Subcommittee of the Committee

on Appropriations, 87 Cong., 1 sess. (1961),

Independent Offices Appropriations, 1962,
Hearings, testimony of Hugh L. Dryden, 642-
643, 656.

_See "The Expanded Space Program,"
Historical Sketch o[ NASA (EP-29), 27-35.

"_"Technical Information Summary of Lit-
tle Joe 5-A (Capsule No. i4)," STG, March
6, 1961, 1-3 ; "Recovery Operations Require-
ment for Little Joe Test No. 5-A," undated;
and Low comments. See pp. 291-293.

:nTable adapted from memo, Low to Ad-
ministrator, "Little Joe 5A Test," March 16,
1961. See also "Mission Directive for Little
Joe No. 5A," NASA Project Mercury working
paper No. 177, March 7, 1961, 3-1.

:_ Memo, North to Administrator, "Prelim-
inary Flight Results, Little Joe 5-A," March
20, 1961. See also memo, Low to Dir., Space
Flight Programs, "Little Joe 5-B Preparation
Schedule," March 24, 1961. The fact that
both primary and secondary main parachutes
deployed immediately after the escape tower
jettisoned complicated "quick-look" observa-
tions: see transcript, "Press Conference, Little

Joe VI [LJ-5A], March 18, 1961 ," with Robert
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L. Krieger and William M. Bland, Jr., at
Wallops Island.

TJNorman F. Smith and Chauvin, "Post-
launch Report for Mercury Little Joe No. 5A

(LJ-5A)," STG, April 11, 1961, 1. Lewis
Fisher, in comments, Sept. 15, 1965, has said

that "Little Joe 5A was anything but unedify-
ing .... This type of failure may have easily
occurred on a Mercury-Atlas flight with very

severe program impact had not the Little Joe
5 series pinpointed and fixed a marginal design
condition."

_ Memo, unsigned, "Publicity Releases on
Mercury," Marshall Space Flight Center, Feb.
8, 1961.

_t "Information Plan: Redstone Develop-
ment Test: MR-BD," NASA, March 21, 1961,
2. For an example of this policy, see NASA
News Release 61-57, "Mercury Redstone
Booster Development Test," March 22, 1961.
One of the most famous of publicity fact sheets,
issued by STG from Langley Field on April 10,

1961, was entitled simply "'IF': A Study of
Contingency Planning for the Project Mercury
Mission."

75"The Mercury-Redstone Project," 8-16;

"Final Report: Mercury Redstone Project
Launch Operations," Appendix O, 2; memo,
Geissler, "Project Mercury-Redstone: Trajec-
tory Data for MR-BD," March 20, 1961;
"Master Operational Schedule for MR-BD,"
Marshall Space Flight Center, March 6, 1961 ;
memo, S. Snyder to NASA Technical Person-
nel, "Mercury-Redstone (MR-BD) Launch,"
March 23, 1961.

_"Hammack memo. Mercury working
paper 178 was by J. W. Maynard, T. J. Skopin-
ski, and P. S. Leatherman, "Calculated Pre-
flight Trajectory Data for Redstone Booster
Test (MR-BD)," March 17, 1961.

_ Memo, Low to Administrator, "Mercury

Redstone Booster Development Test," March
27, 196t. See also note, Eugene E. Horton

to Powers on MR-BD publicity and point of
test in "wriggling" Redstone; message, Powers

to Paul Haney, date missing.
:' Of a total of 71 Redstone booster flights

(including 4 Mercury-Redstone) through
March 24, 1961, only I0, or 14.1 percent, were
classed as failures by the latest revision of a

composite document prepared under W. A.
Mrazek, Director, Structures and Mechanics
Division: "Redstone Vehicle Malfunction

Study (Mercury-Redstone Program)," MSFC
report No. DSD-TM-12-60, Rev. B, May 1,
1960, 8.

7, See "Final Report: Mercury-Redstone
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Project Launch Operations," Appendix M;
Ms., George F. Killmer, Jr., et al., "Mercury
Technical History--Preflight Operations,"
Dec. 30, 1963, 85-90, Fig. I 1 ; James M. Grim-
wood, Project Mercury: A Chronology, NASA
SP_001 (Washington, 1963), 131, 207, 218.

'_Purser, log for Gilruth, April 10, 1961;
Purser, interview, Houston, Feb. 12, 1964;
Gilruth interview; Silverstein, interview, Cleve-
land, May 1, 1964; Aeronautical and Astro-
nautical Events of I961, 15. See also "Rumors

Fly as Moscow Alerts Press," Washington
Po% Apr. 11, 1961.

"1Donald F. Hornig, chairman, "Report
of the Ad Hoc Mercury Panel," Apr. 12, 1961,
18, passim. The membership of this panel
included, in addition to Hornig, Paul Beeson,
W. John Bell, Milton V. Clauser, Edward H.
Heinemann, Lawrence S. Hyland, Donald P.
Ling, Robert B. Livingston, Harrison A.
Storms, and Cornelius Tobias. The two tech-
nical assistants were Douglas R. Lord and
James B. Hartgering, and two special consult-
ants were Alfred P. Fishman and Paul
Wickham.

Uibid. See also "Debate Reported Over
Space Shot: Kerr Asserts Kennedy Aides Dis-
puted Flight's Wisdom," New York Times,
May 10, 1961; Lord interview. Mac Mills
Link, Space Medicine in Project Mercury,
NASA SP-4003 (Washington, 1965), treats at
greater length some of these problems in her
chapter VIII, entitled "The Season of Crisis:
1961," 112-125.

For an overview of these issues, see chap-
ter on "Gagarin" in Holmes, America on the
Moon, 83-92; Thomas A. Reedy, "Britons Say
Reds' Timing May Indicate 'Lie in Sky,'"
Newport News Daily Press, April 13, 1961.

Some question was also raised in Congress and
the press whether Gagarin's flight was in fact
a complete orbit, since it apparently fell short
of its starting point by a few miles.

s_ Memo, Powers to Gilruth, "Pre-planned
Comment for Possible Russian Space Shot,"
Sept. 27, 1960. All quotations are taken from
House Committee on Science and Astronautics,

87 Cong., 1 sess. (1961), Discussion o[ Soviet
Man-in-Space Shot, 7, I1, 16, 18, 27, 33.

It is widely believed that Yuri A. Gagarin

rode all the way down to impact inside his
capsule and that his flight was made fail-safe
by the choice of a rather steep reentry trajec-
tory. For pictorial comparisons of the Soviet
spacecraft and booster systems, see the series of
articles in Aviation Week, LXXXII (May 10,
1965), "Russla Displays Vostok with Spherl-
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cal Cabin," 28-29; (May 17, 1965), "Soviets

Unveil 3-Stage ICBM," 26-31; (May 24,

1965), "Photos of Vostok Display Reveal New

Details of Spacecraft," 76-78; (May 31,

1965), "Photos Show Details of Cabin, Suit,"

58-60; (June 7, 1965), "Gazenko Discusses

Soviet Space Medicine," 40-45. Cf. memo, M.

Scott Carpenter to Gilruth et al., "Cosmonaut

Training," Nov. 24, 1964.

*" These parameters are based on a 28-page

typewritten translation by Joseph L. Zygiel-

baum from Pravda, April 25, 1961, entitled

"The First Flight of Man into Cosmic Space,"
and circulated around STG as the best data

then available. For comparative information,
see Senate Committee on Aeronautical and

Space Sciences, 87 Cong., 2 sess. (1962),

Soviet Space Programs: Organization, Plans,

Goals, and International Implications, Table

I, 106-107, 108; and Charles S. Sheldon II,

"The Challenge of International Competition,"

paper, the Third American Inst. of Aeronau-

tics and Astronautlcs/NASA Manned Space

Flight Meeting, Houston, Nov. 4-6, 1964,

Table V, 26. See also F_d_ration A_ro-

nautique Internatlonale, record claim.

S' Soviet Man in Space (Moscow, [1961]),

93. See also Joseph L. Zygielbaum, "The

Soviet Space Program," in the World Book

Science Annual, 1965 Science Year (Chicago,

1965), 64-75.

_ Statement by Yuri A. Gagarin at the

Soviet Scientist's Club reported April 16, 1961,

in The First Man in Space: The Record of

Yuri Gagarin's Historic First Venture into

Cosmic Space: A Collection of Translations

from Soviet Press Reports (New York, 1961),

41; the first quotation is taken from Y.

Maksaryov, ed., Technical Progress in the

U.S.S.R., 1959-1965, trans. David Skvirsky

(Moscow, [1963]), 10.

_" Newport News Times-Herald, April 13,

1961; statements of Glenn, Virgil I. Grissom,

and Alan B. Shepard, Jr., April 12, 1961;

statement of Gilruth, April 12, 1961; NASA

News Release 61-80, April 20, 1961.

_o House Committee on Science and Astro-

nautics, 87 Cong., 1 sess. (1961), Report No.

391, to accompany H.R. 6874, Authorizing

Appropriations to the National Aeronautics and

Space Administration, testimony of Seamans,

360-382; Aeronautical and Astronautical

Events of 196l, 11, 15; and Seamans, inter-

view, Washington, Sept. I, 1965. See also

"Ups and Downs in Space as U.S. Gets Set to

Launch Man," Life, L (May 5, 1961).

_lMemos, North to Dir., Space Flight

Programs, "Operational Considerations for

MA-3," April I0, 1961; "Mission Change for

MA-3," April 17, 1961, Williams, interview,

Houston, Aug. 23, 1965; John P. Mayer, com-

ments, Sept. 8, 1965.

*-"Memos, Silverstein to Assoc. Adminis-

trator, "Mission Change for Mercury-Atlas 3,"

April 18, 1961; Snyder to NASA Technical

Personnel, Technical Information Center,

"Mercury-Atlas 3 (MA-3) Launch," April 24,

1961; "R. J. W." for record, "MA-3 Flight

Particulars," April 24, 1961; "Technical In-

formation Summary of Mercury-Atlas Mission

No. 3 (Capsule No. 8)," STG, April 17, 1961;

"Mission Directive for MA-3," Project Mer-

cury, Oct. 18, 1960, rev. March 31, 1961;
"Calculated Pre-FIight Trajectory Data,"

NASA Project Mercury working paper No.

184, April 14, 1961 ; "Mercury Control Center

Countdown Flight Control and Overall Opera-

tions MA-3," March 16, 1961; rev. April 20,

1961; "MA-3 Mission Rules--Correction

Copy," undated. See also Huss comments.

" Memo, Low to Administrator, "Mercury

Atlas 3 Launching," April 24, I961; John H.

Disher to Administrator, "Mercury-Atlas Flight

No. 3," April 26, 1961; "Mercury-Atlas No.

3 (MA-3) Memorandum Report for the Proj-
ect Director," STG, April 28, 1961. This

realistic exercise for the launch site recovery

team, as well as the beautiful performance of

the escape tower, increased confidence in spite
of the mission failure.

_ Memo, Low to Dir., Space Flight Pro-

grams, "Atlas 100-D Programmer," June 12,

1961; Hohmann, "Atlas 100-D Investigation

Board Status Report," June 14, 196I.

0; "Mission Directive for Little Joe No. 5-]3

(Capsule No. 14)," NASA Project Mercury

working paper No. 183, April 7, 1961 ; "Tech-

nical Information Summary of Little Joe No.

5-B," April 12, 1961; Alfred I. Alibrando

and Horton, "Information Plan: Project Mer-

cury Little Joe Seven," April 7, 1961; NASA

News Release 61-82, "Project Mercury Escape

System Test: Little Joe Seven," April 20, 1961.

Low has commented that "if Little Joe 5B had

failed, it might have put a constraint on MR-3

that would have prevented its launching."

"Post-Launch Report for Mercury Little

Joe Mission 5B (LJ-5B)," NASA Project

Mercury working paper No. 195, June 12,

1961, 1-1, 2-I, passim. So far above the

design limits for max- q on Little Joe was

the performance of LJ-5B that this produc-

tion capsule might have carried a man safely
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after all if all other provisions had been de-
veloped : Williams interview.

9T"Status Report No. 10 for Period Ending

April 30, 1961," STG, was the tenth quarterly
review of Project Mercury by the 700 or so
members of STG for NASA Headquarters. Of

six flights since January, only two (MA-3 and
LJ-5A) were admitted failures. Of I0 quali-
fication flight tests with production McDonnell
capsules to date (the 4-1rich flight of MR-I
was excluded), 6 (including MR-BD) were
counted as "successful," although a historical
accounting should, on the basis of intent, make
that record read 5 out of 10 "unsuccessful" at

least. Capsule orbit weight was calculated at
2836 pounds and expected to be 2874 pounds
by July, still within Atlas capabilities. "Proj-
ect Orbit," the simulated orbital test prod.ram
using Capsule No. 10 in McDonnell's altitude
chamber, was well underway; the tracking net-
work and ground instrumentation system was

reported 95 percent complete; while ground
qualifications testing and reliability testing

were said to be 95 and 90 percent complete,
respectively. Readiness for the first manned

sub-orbital test flight, including the lately
renewed studies to "quick-fix" the impact pro-
tection, landing system, and reaction control

system, and to test more animals in centrifuges,
was asserted to be clear if the flight safety
review board meetings at the Cape on April
28-29, 1961, should certify both capsule and
booster.

Chapter XI

I Letter, Larry Stoddard, Rating Section,
National Broadcasting Company, Inc., to Sig-
man Byrd, Hist. and Library Services Br.,
MSC, March 15, 1965; "Postlauneh Report for
Mercury Redstone No. 3 (MR-3)," NASA
Project Mercury working paper No. 192, June

16, 1961, 73; James M. Grimwood, Project
Mercury: A Chronology, NASA SP-4001

(Washington, 1963), 35, 124; "Postlaunch
Trajectory Report for Mercury-Redstone Mis-
sion 3 (MR-3, Capsule 7)," NASA Project
Mercury working paper No. 210, Oct. 12, 1961,
1-2.

Tape of press conference, Mercury astro-
nauts, Cape Canaveral, Feb. 22, 1961. At
the conference Robert R. Gilruth pointed out
that the four remaining astronauts were not
eliminated, since there would be other flights.

He said it was simply that at this point in the
program a few had to be selected to participate
in a particular mission, and that it was only
practical to select those best prepared. The
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others would continue training. Nancy Lowe,
secretary to the Mercury astronauts for more
than four years, said in an interview with the
authors on Feb. 27, 1964, that STG had been
besieged for interviews only after the an-

nouncement that Shepard, Glenn, and Gris-
som had been selected to train for the first

flight.

_Memo, George M. Low to Dir., Space
Flight Programs, "Project Mercury Status,"
Jan. 6, 1961; memo, Warren J. North to Dir.
of Space Flight Programs, "Mercury Status as
of Jan. 13, 1961," Jan. 16, 1961; "Project
Mercury Status Report No. 9 for Period End-
ing Jan. 31, 1961," 3.

4Alan B. Shepard, Jr., interview, Hous-
ton, Aug. 6, 1964.

House Committee on Science and Astro-

nautics, 87 Cong., 2 sess. (1962), Aeronautical
and Astronautical Events o[ 1961, 7; "Individ-
ual Astronaut Monthly Training Schedules,
Sept. 1960-Feb. 1961," undated; Donald K.
Slayton, "Pilot Training and Preflight Prepara-
tion," in Con[erence on Medical Results o[ the

First U.S. Manned Suborbital Space Flight:
A Compilation o/ Papers, NASA in Coopera-
tion with National Institutes o[ Health and Na-

tional Academy o[ Sciences (Washington,
1961), 95.

6,,Pilot Preparation for MR-3 Mission,"
undated; Carmault B. Jackson and Richard S.

Johnston, "Astronaut Preparation and Activi-
ties Manual for MR-3," NASA/STG, Dec. l,
1960.

7Memo, Sigurd A. Sjoberg, et al., Flight
Operations Div., STG, to Assoc. Dir.,
"Astronaut Briefing and Debriefing for MR-3
Mission," April 4, 1961; letter, Walter C.
Williams to Comdr., Air Force Missile Test

Center, re personnel at Grand Bahama de-
briefing, April 26, 1961.

aNASA News Release 61-99, "Mercury-
Redstone 3 Press Conference, Cape Canav-
eral," May 5, 1961 ; memo for files, Martin A.
Byrnes, STG, "Recovery MR-3," May 11,
1961; "MR-3 Recovery Operations," anon.,
undated. R/A G. P. Koch directed recovery

operations in the impact area. His supporting
ships and their commanders were: carrier,

Champlain, Capt. R. Weymouth; destroyers,
Decatur, Cdr. A. W. McLane; Wadleigh,
Lt. Cdr. D. W. Kelly; Rooks, Cdr. W. H.
Patillo; Sullivans, Cdr. F. H. S. Hall; and

Abbott, Cdr. R. J. Norman; and radar ship
(DDR) N. K. Perry, Cdr. A. O. Roberts. The
recovery force again included the P2V aircraft
under Cdr. R. H. Casey, Jr.

L
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* Letter, Williams to R/A F. V. H. Hilles,
March 14, 1961 ; letter, Cdr., Air Force Missile
Test Center, to Hilles, "Mercury Air-Ground
Voice Relay and Real-Time Display in AMR
Telemetry Aircraft," March 21, 1961.

10Message, [Cdr. DesFlotFour] to STG et

al., April 19, 1961; memo, Sjoberg et al., to
NASA Assoc. Dir., "MR-3 Postflight Debrief-
ing of Alan B. Shepard," Aug. 22, 1961. As
it turned out, the same helicopter pilot team
(Marine Lts. Wayne E. Koons and George F.
Cox) that practiced with the three astronauts
in the special training team effected the water
recovery of the first suborbital spaceman.
Wayne E. Koons and James L. Lewis, inter-
view, Houston, Sept. 16, 1965.

_1Letter, F. W. Reichelderfer to T. Keith

Glennan, June 9, 1960; memo, Williams to
Maj. Gen. Leighton I. Davis, "Meteorological
Support of Project Mercury," Aug. 31, 1960;
Reichelderfer to Gilruth, April 18, 1961, with
enclosure, "Status of Weather Support for Proj-
ect Mercury, April 1961."

a-""Operations Requirements No. 1904,
Mercury-Redstone Launch," Feb. 15, 1961.

1_ Byrnes memo.
" Based on a series of interviews. Also see

Mae M. Link, Space Medicine in Pro}ect
Mercury, NASA SP-4003 (Washington, 1965),
112-125. See also p. 331 of this work.

_ A. Duane Catterson, interview, Houston,
April 10, 1964.

a6 Stanley C. White, Richard S. Johnston,
and Gerard J. Pesman, "Review of BiomedlcaI
Systems Prior to the MR-3 Ballistic Flight,"
undated. Another criticism leveled by mem-
bers of the PSAC panel in March 1961 was
that the fire hazard in a pure oxygen atmos-
phere had not been sufficiently dealt with
through tests. The subject had been consid-
ered by STG; the conclusion was that depres-
surization would serve as an excellent fire ex-

tinguisher. Robert B. Voas, interview, Hous-
ton, April 15, 1964. See also p. 287.

lr Newport News Times-Herald, March 25,

1961; Shreveport Times, April 2, 1961. How-
ard I. Gibbons, then associated with the New-

port News Daily Press, later of the Public
Affairs Office, MSC, interviewed the seven
astronauts on July 7, 1959, at a NASA Press
Day event. The following Sunday, Gibbons
predicted in the Daily Press that Alan Shepard
would be the first astronaut in space. As far
as can be determined, this was the first specula-
tion in the matter. "It was just a good guess,"
said Gibbons.

_ Voas interview.

:"Shepard interview; Gilruth, interview,
Houston, March 18, 1964.

Memo, Public Affairs Officer, MSC, to
Chief, Hist. and Library Services Br., March

11, 1964. There was some resistancc to the
publicity buildup. The painful experience of
Dec. 6, 1957, when the public witnessed the

spectacular launchpad failure of the Van-
guard booster, America's first attempt to launch
an artificial satellite, had not been forgotten.
Wail Street Journal, May 2, 1961.

"_ Washington Post, May 3, 1961; New
York Times, May 5, 196I; memos, John H.
Disher, Head, Advanced Manned Systems,
NASA, to Administrator, "Mercury-Redstone
Launching," May 1, 1961, and May 4, 1961.

Chicago Tribune, April 29 and 30, 1961 ;

Washington Daily News, April 29, 1961 ; Wash-
ington Evening Star, April 29, 196I ; Washing-
ton Post, May 1, 1961; Baltimore Sun, April
30, 1961; New York Times, May 2 and 3,
1961; Newport News Times-Herald, May 2,
1961; "Mercury Astronauts Work as a Team
on MR-3," undated. A statement by Gilruth
on the mode of pilot selection for MR-3 is
contained in NASA Fi/th Semiannual Report
to Congress, Oct. I, 1960, through June 30,
1961 (Washington, 1962), 15, 17, 18.

.03"NASA Note to Editors," April 24, 1961 ;
New York Times, May 2, 1961.

" Conference on Medical Results o[ the
First U.S. Manned Sub-orbital Space Flight,
7, 8; "Pilot Preparation for MR-3 Mission,"
anon., undated. Safety measures, including

appropriate actions, covering each time seg-
ment of the second half o1 the split count-
down were published just before the MR-3
mission in "Emergency Handbook for Pad
Area Rescue, Mercury-Redstone, Capsule 7,"

May 2, 1961. This document later was re-
vised and reissued on June 29, 1961, to cover

Capsule 11 and the MR-4 flight.
=Ibid.; Sjoberg, April 4 memo; "Post-

launch Report for MR-3," 43-45. During
the early part of the countdown on May 5,
John Glenn, the backup pilot, spent consider-
able time in the spacecraft assisting in systems
checkouts. To help relleve any tension Shep-
ard might have built up, Glenn pasted a little

sign on the spacecraft panel, reading "No
handball playing here." This bit of levity
hearkened back to their training days. Later
he went to Mercury Control Center and stood

behind Donald K. Slayton, spacecraft com-
municator, helping to gather data to feed to
Shepard during the flight.

"Postlaunch Report for MR-3," 45-46;
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Conference on Medical Results, 8; memo,

Henry E. Clements to Christopher C. Kraft,

Jr,, "Test 108, 4-5 May, 1961, Network Status

Monitor Report," May 8, 1961 ; "Mercury Red-

stone 3 Press Conference"; memo, Disher to

Administrator, "Mercury-Redstone Mission,"

undated. After four hours without relief and

with only a primitive urine colIection system,

his underwear got wet, but the suit air regen-

erating system worked very well. Sjoberg,

Aug. 22 memo; Lee McMillion, interview,

Houston, Oct. 30, 1963; memo, Carl R. Huss

to Flight Dir., "Record and Comments on
Activities and Observations Made at Retrofire

Controller's Position During Test 108

(MR-3)," May 5, 1961.

2_"Postlaunch Report for MR-3"; Con-

[erence on Medical Results o[ the First U.S.

Manned Suborbital Space Flight, 74 ; Shepard,

speech, Society of Experimental Test Pilots,

Los Angeles, Sept. 30, 1961; letter, John A.

Powers to W. J. Philllpp[, Aug. 4, 1961. As

for the other astronauts, Carpenter and Gris-

sore observed from the Mercury Control

Center.

_S'Later, during postlaunch debriefings,

Shepard stated that the decision to carry or

eliminate the personal parachute on subsequent

flights should be left for the prime pilot. An
unidentified astronaut at the debriefing (prob-

ably Schlrra) exclaimed, "Please!"

_The "Kennedy call" was to become a

standing event in all manned Mercury flights.

_0 Shepard gave a most lucid account of his

mission from liftoff to water impact, following

his preliminary medical examination aboard

the Champlain. Shepard's dictated report is

contained in "Postlaunch Report for MR-3,"
and in the Sjoberg debriefing memo of Aug. 22.

The latter document also gives questions by
the debrlefers and answers by the astronaut

covering every aspect of the flight. Also see

"Shepard and USA Feel A. OK," Li[e, L

(May 12, 1961) ; Alan B. Shepard, Jr., "Astro-

naut's Story of the Thrust into Space," Life, L

(May 19, 1961).

31 "Postlaunch Report for MR-3"; memo,

Morton Schler to Kraft, "Postlaunch Sum-

mary Report of MR-3 Mission," May 5, 1961 ;

Byrnes memo; Sjoberg, Aug. 22 memo.

a_lbid.; memo, Slayton to Flight Dir.,

"MR-3 Mission Report," May 15, 1961. The

ships did have a communications problem

during spacecraft descent, however, because

of background interference from Latin-Amer-

ican broadcasting stations.

:_ Memo, Gilruth to staff, "Congratulatory

582

THIS NEW OCEAN

Messages in Regard to MR-3 Flight," June 17,

1961.

_"Documentation of the First Manned

Space Flight without Earth Orbit by the

United States of America," National Aero-

nautic Assn., United States Representative,

F_deration A_ronautlque Internationale, Wash-

ington, 1961. Shepard submitted certification

of his flight on May 15, 1961. Regarding con-

trasts between reports of the Shepard and Oa-

garin flights, cf. The First Man in Space: The

Record o[ Yuri Gagarin's Historic First Ven-

ture into Cosmic Space, trans, from Soviet
press reports (New York, 1961). A large

portion of the text is political propaganda.

A photograph of the launch is obscured in

clouds of smoke--much as the whole program

was. The Shepard flight was reported in

words and pictures without allusion to political

ideology. The report of the Turkish journal-
ists was extracted from Aeronautical and

Astronautical Events of I961, 24.

_ White House News Release, "John F.

Kennedy, President of the United States, Spe-

cial Message to Congress, May 25, 1961."
Freedom 7 was displayed publicly at Cape

Canaveral beginning on May 20, 1961, the day
the launch area was first opened to the public.

_gFor fiscal data on the fiscal year 1962

program, see House Committee on Science and
Astronautics, 87 Cong., I sess. (1961), 1962

NASA Authorization, Hearings; Senate Sub-

committee of the Committee on Appropria-

tions, 87 Cong., I sess. (1961), Independent

Offices Appropriations, 1962, Hearings; House
Committee on Science and Astronautics, 87

Con_., I sess. (1961), Authorizing Appropria-
tions to the National Aeronautics and Space
Administration, 28-38.

3TMercury Project Summary, Including Re-

sults of the Fourth Manned Orbital Flight,

May 15 and 16, I963, NASA SP-45 (Wash-

ington, 1963), 1. This report says more than

2,000,000 people from government, industry,

and institutions were involved in Project Mer-

cury. For the components alone there were
some 10,000 contractors, subcontractors, and

suppliers. The Public Affairs Office of the

Manned Spacecraft Center said that the Apollo

program had about 40,000 contractors and sup-

pliers as of May 1964. See also Tom Alex-

ander, Project Apollo: Man to the Moon (New

York, 1964), 8.

_ Memos, H. Kurt Strass to Chief, Flight

Systems, STG, "Activation of Study Program

Pertaining to Advanced Manned Space Proj-

ects," June 22, 1959; "First Meeting of New
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Project Panel, Wednesday, Aug. 12, 1959,"

Aug. 17, 1959; and "Third Meeting of New

Projects Panel, Monday, Sept. 28, 1959," Oct.

1, 1959; memos, Gilruth to staff, "Advanced

Vehicle Team," May 25, 1960; "Change in

Organization of the Space Task Group," Sept.

1, 1960; and "President's Request for Addi-

tional Budget Action," May 26, 1961. A

NASA-sponsored "Conference on the Peaceful

Uses of Space" was also meeting at this time
in Tulsa.

30 "Manned Spacecraft Development Cen-

ter, Organizational Concepts and Staffing Re-

quirements," May 1, 1961. Some 13 days

before the Presidential pronouncement, a

House appropriations authorization document

foresaw an increased personnel requirement for

STG, estimating the need at about 300 addi-

tional people. Moreover, it was noted that

the organization would be carried as a separate

research center for financial allocation pur-

poses, beginning with fiscal 1962, although
STG's work was then domiciled at the Lang-

ley Research Center and divided between

Langley, Goddard, and the Cape. STG's per-

sonnel strength reached 1152 by the end of

1961, and it had proposed some 3000 person-

nel spaces in the May study for a Manned

Spacecraft Development Center. Authorizing

Appropriations to NASA, 6.

4°Newport News Times-Herald, May 30,

1961; Newport News Daily Press, May 30,

1961; Aeronautical and Astronautical Eve_s

o] 1961; memo, Paul E. Purser to Gilruth,

"Log for Week of Aug. 7, 1961," Aug. 15, 1961.

Besides speculating about the move, the press

now began acquainting the public with the new

manned space projects. What later became

Project Gemini was described, and the lunar

program was discussed. The estimated cost
of these activities was mentioned frequently.

(See Washington Post, May 24 and 26, 196I;
New York Times, May 24 and 26, 1961 ; Balti-

more Sun, May 26, 1961.) A cartoon by

Herblock, of the Washington Post, pictured a

a launch vehicle and a spacecraft waiting on

the pad while the pilot (President Kennedy)
walked toward a service station and ordered

an attendant (Congress) standing by a fuel

pump, "Pill 'er up--I'm in a race."

41Virgil I. Grissom, interview, Houston,

April 12, 1965; "Postlaunch Memorandum

Report for Mercury-Redstone No. 4 (MR-4),"

Aug. 6, 1961. During his debriefing Grissom

complained about having to travel so much

for training missions. He suggested that an

ALFA trainer be installed at Cape Canaveral.

" Excerpts from messages compiled by

Purser; Morton J. Stoller, "Some Results of

NASA Space Flight Programs in 1960-61,"

paper, Third International Symposium on
Rockets and Astronautics, Tokyo, 1961.

43 Results of the Second U.S. Manned Sub-

orbital Space Flight, July 21, 196I (Washing-

ton, 1961), 4; "Postlaunch Memorandum

Report for MR-4"; "Astronaut Recovery

Handbook (Capsules No. 11 and 15)," Mc-
Donnell Aircraft Corp., St. Louis, June 1,

1961.
" "MR-4 Press Kit," June 29, 1961; Re-

sults of the Second U.S. Manned Suborbital

Flight, 3, 4. The window measured 19 inches

high, 11 inches across the base, and 7 _., inches

across the top. NASA News Release 61-152,

"MR-4 Design Changes," July 16, 1961. The

contract change proposal providing for the
observation window was submitted in October,

1959. Memo, Purser to Langley Research

Center, "Contract NAS 5-59 ; Contract Change

Proposal No. 73, Astronaut Observation Win-

dow Installation," Oct. I, 1959.
_:"Postlaunch Memorandum Report for

MR-4"; memo, Future Projects Br., Aero-

ballistics Div., Marshall Space Flight Center,

"Project Mercury-Redstone: Additional Tra-

jectory Data for MR-4," June 3, 1961.

'" Newport News Daily Press, July 16, 1961.
Someone had done Grissom the favor of paint-

ing a likeness of the crack in the original Lib-

erty Bell on spacecraft No. 11. Other astro-

naut assignments for the MR-4 mission put

Shepard and Schirra in the Mercury Control

Center, the former as "Cap Corn," the latter
as observer; Slayton and Carpenter in the

blockhouse; and Cooper flying the chase plane.

tT"Postlaunch Memorandum Report for

MR-4"; memo, Sjoberg to Assoc. Dir., "MR-4

Postfllght Debriefing of Virgil I. Grissom,"
undated. Grissom became chilled while wait-

ing in the spacecraft for launch on Wednesday,

July 19. His suit inlet temperature was about

61 degrees F. On the day of the flight, the
suit inlet temperature (55 degrees P) was

more comfortable because the astronaut's un-

derclothing remained essentially dry. Recep-
tion of medical data from Grissom's flight was

better than that from Shepard's.

_ "MR-4 Design Changes," 61-152.

*gGrlmwood, Mercury Chronology, 214;

"Postlaunch Memorandum Report for MR-4" ;

"MR-4 Press Kit"; memo, Low to NASA

Administrator, "Mercury-Redstone-4 Launch-

ing," July 17, 1961. The recovery forces

were deployed in the same manner as for
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Ham and Shepard. Under direction of R/A

J. L. Chew, stationed irt Mercury Con-
trol Center as an advisor to Williams, the

main forces consisted of an aircraft carrier,

three destroyers, and two destroyer escorts.

Five P2V aircraft, supplemented by Air Rescue

Service planes, provided contingency recov-

ery support. Carrier and shore-based heli-

copters were assigned to pick up the space-
craft, while just off Cape Canaveral a rescue

salvage vessel stood by for action in the event
of a mission abort. And, once again, land ve-

hicles were deployed around the launch site for

duty in case of a catastrophe.
Memo for news media representatives,

July 16, 1961 ; Virgil I. Grissom, "The Trouble
with Liberty Bell," in John Dille, ed., We

Seven, by the Astronauts Themselves (New

York, 1962), 216-219.

_l"Postlaunch Memorandum Report for
MR_L ,'

_ Dille, ed., We Seven, 217-218.
_The count was resumed, but after an-

other 15 minutes a 9-mlnute hold was called

for turning off pad-area searchlights--which in

the past had caused telemetry interference.

Next came a 41-minute hold because cloudy

skies had reduced light conditions to below

par for camera coverage. During this hold,

the main inverter began to overheat, reaching

190 degrees F, and so Grissom switched to

the standby unit to allow the main component
to cool. When the count resumed at 15 min-

utes before launch, he switched back to the

main inverter. Significantly, during the 80
extra minutes from astronaut insertion to lift-

off, not one of the holds was chargeable to the

booster. Sjoberg undated memo; "Postlaunch

Memorandum Report for MR-4."

In an interview with Grissom on April 12,

1965, the pilot stated that the misaligned bolt

had nothing to do with the premature explo-

sion of the hatch. In fact, if a number of

bolts were misallgned it would be unlikely
that the hatch would blow off at all. Grissom

now has the misaligned bolt as a souvenir.

The following detailed account of Gris-

sore's flight is based, like that for Shepard, on

the evidence of the motion picture camera, the

tape transcript of communications, the confi-

dential postflight report, the debriefing rec-

ords, telemetry transcripts, and personal
interviews.

The rate control system consumed about

3Y2 pounds of hydrogen peroxide in 2 minutes.

Based on this usage, if that system were used

exclusively during an orbital mission, all of
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the control fuel would be expended in 20
minutes. Grissom's automatic stabilization and

control system worked so slowly during turn-

around because, as a later review team dis-
covered, the one-pound rate thrusters contained

some decomposed material.

_"Postlaunch Memorandum Report for

MR-4"; Sjoberg undated memo; Results o[

the Second U.S. Manned Suborbital Flight;

"Project Mercury Status Report No. 11 for

Period Ending July 31, 1961," NASA/STG,

7-9, 26, 30, 31 ; memo, Richard J. Wisniewski

to NASA Administrator, "Mercury-Redstone-4

Mission," July 24, 1961; memo, John H.

Dabbs, to Chief, Flight Operations Div., STG,

"Mercury-Redstone-Four High Frequency Air/

Ground Communications Test," Aug. 23, 1961 ;

tape of press conference, Cocoa Beach, Fla.,

July 22, 1961. Participating with Grissom

were James E. Webb, who awarded the astro-

naut the NASA Distinguished Service Medal;

Leighton I. Davis; Eberhard F. W. Rees; Rob-

ert R. Gilruth; Walter C. Williams; William

K. Douglas; Alan B. Shepard, Jr., and John

H. Glenn, Jr. For Grissom's personal account

of the mission, see D_lle, ed., We Seven, 205-

231. Most of the reports attribute Grissom's

sinking lower in the water during the recovery

period to the open suit inlet valve. The astro-

naut felt that the toss of buoyancy was caused
by the neck dam. He based his belief on the

fact that the dam had been in a rolled position

for some five days; tests conducted later dis-

closed that the rolled rubber sets in two days'

time, causing a loss of airtight integrity. Virgil

I. Grissom, interview, Houston, April 12, 1965.

Also see Virgil I. Grissom, "It was a Good

Flight and a Great Float," Li[e, LI (July 28,
1961), and Grissom, "Hero Admits He Was

Scared," Li[e, LI (July 28, 1961).

_r Memo, North to Assoc. Administrator,

"Status of MR 4 Hatch Inx;estigation," Aug.

30, 1961; "Postlaunch Memorandum Report

for MR-4." Carpenter, after the second

orbital flight, was retrieved from his raft, be-

ing the only other Mercury astronaut to ride

a helicopter to a ship. He, too, was dunked

by swells before he was airborne. Grissom

expressed his opinion in an interview on April

12, 1965, that he believed the premature hatch

explosion was caused by the exterior lanyard

being loose. At that time it was held in place
by only one screw. Subsequently a better

method of securing the lanyard was effected.

Gherman Titov, 700,000 Kilometres

Through Space: Notes by Soviet Cosmonaut

No. 2 (Moscow [1962]); Titov and Martin

r



FOOTNOTES

Caidin, I Am Eagle! (Indianapolis, 1962),
based on interviews with Wilfred Burchett

and Anthony Purdy.

_ For three final reports on the Mercury-

Redstone program, see "Final Report Mercury

Redstone Project Launch Operation," Mar-

shall Space Flight Center, May 28, 1962; "The

Mercury-Redstone Project," MSFC Saturn/

Apollo Systems Office, June 1964; and Jerome

B. Hammack and Jack C. Heberlig, "The Mer-

cury-Redstone Program," paper No. 2238-61,

read before American Rocket Society, Oct.

9 15, 1961. See also memo, North to Deputy

Dir., Space Flight Programs, NASA Hq., "Mer-

cury Status Items for Project Review Meeting,

June 27, 1961," June 22, 1961.

8o Purser, Aug. 15 memo; memo, Gilruth to

Silverstein, "Recommendations on MR-5

Flight," undated; Aeronautical and Astronauti-

cal Events of 1961, 40; memo, Joachim P.

Kuettner to Eberhard Rees et al., "Final Dis-

position of Mercury-Redstone Project," Aug.

24, 1961; David S. Akens, Paul K. Freiwirth,

and Helen T. Wells, History o[ the George C.

MarJhall Space Flight Center (Huntsville,

Ala., 1960-1962), 7, 19. In an interview on

April 12, 1965, Grissom stated that some of

the astronauts wanted to proceed with MR 5

because the launch vehicle and spacecraft were
about ready.

_Titov, 700,000 Kilometres Through Space,

60-79, 91-124; Titov and Caidin, I Am Eagle!

166-200; Pavel Barashev and Yuri Doku-

chayev, Gherman Titov: First Man to Spend a

Day in Space (New York, 1962), 93-102;

Newport News Daily Press, Aug. 9, 1961.

_Stuart Symington, "Why We Lag in
Space," speech, U.S. Senate, June 26, 1961;

John W. Finney, "Capital Worried by Lags in

Plans on Race to Moon," New York Times,

Aug. 13, 1961 ; Vern Haugland, "NASA Hopes

to Put Mercury Astronaut in Orbit by Next

December or January," Newport News Times-

Herald, Aug. 7, 1961.

Chapter XII

1Message, Walter C. Williams to Cdr.,

DesFlotFour, Dec. 8, 1960; "Project Mercury

Status Report No. 9 for Period Ending Jan.

31, 1961," 40, 41, 43; Paul E. Purser, log for

Robert R. Gilruth, April 17, 1961; "Project

Mercury Status Report No. 10 for Period End-

ing April 30, 1961," 33. For a complete dis-

cussion of the MA-3 mission, see pp. 335-337.

Counting MA-4 as the fifth Mercury-Atlas

combination launched includes Big Joe.

-""Status Report No. 10," 33; James M.

Grimwood, Project Mercury, A Chronology,

NASA SP-4001 (Washington, 1963), 214;

"Project Mercury Postlaunch Report for Mer-

cury-Atlas Mission 4 (MA-4, Capsule 8A),"

NASA Project Mercury working paper No. 213,

Nov. I0, 1961.

3 Ibid.; message, NASA Hq. to STG, Aug.

25, 1961 ; memo, Morton Schler to Flight Dir.,

"Report on Test 1254," Oct. 3, 1961; Walter

C. Williams, interview, Houston, Aug. 23,

1965; Bernhard A. Hohmann, interview, Hous-

ton, Sept. 16, 1965; memo, P. I. Harr, GD/A,

to Members of Astronautics Reliability Policy

Committee, "Minutes of Special 28 August

1961 Meeting on Transistors," Aug. 29, 1961.

"Project Mercury Status Report No. 11

for Period Ending July 31, 1961," 11, 12. As

finally configured, Atlas No. 88-D had modi-

fications in the sustainer engine liquid oxygen

duct to improve performance, and the first

four panels of the upper liquid oxygen tank

area were of "thick-skln" materials designed

to support high aerodynamic loads. "Post-

launch Report for MA-4?' Moreover, a three-

second hold-down was programmed for MA-4.

Tests conducted by the Rocketdyne Division,

North American Aviation, indicated that a

two-second hold-down was adequate for Mer-

cury-modified Atlas engines. So for flights be-

ginning with MA-5, STG officials planned to

institute the two-second procedure.

n NASA News Release 61-182, "Mercury-

Atlas 4," Aug. 20, 1961; "Project Mercury

Technical Information Summary of Mercury-

Atlas Mission No. 4/8A (Capsule No. 8A),"

NASA/STG, July 21, 1961. The Mercury

ground tracking communications network at

this time had t40,000 actual circuit miles,

consisting of 100,000 miles of the teletype cir-

cuits, 35,000 of telephone circuits, and 5000 of

high-speed telemetry circuits.

6"Pre-release Draft on Launch Vehicle

(MA-4)," STG, undated; "Mercury-Atlas

4"; "Project Mercury Calculated Preflight

Trajectory Data for Mercury-Atlas Mission

No. 4 (MA-4) (Capsule No. 8A, Atlas No.

88-D)," NASA Project Mercury working

paper No. 204, Aug. 2, 1961. The nominal

launch trajectory was computed by the Aero-

space Corp. and Space Technology Labs. un-

der the technical direction of the Space Task

Group. The abort sensing and implementa-

tion system continued monitoring during the

entire powered phase. If trouble developed,
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the clamp-ring released and posigrade rockets
fired to separate the spacecraft, and the re-
covery gear was ready for action. Provided
the powered flight phase went well, by about
five minutes after launch the radlo-inertial

guidance system would be measuring speed,
altitude, and flight course. If those factors

anticipated a successful orbital insertion, the
ground guidance computer, in operation
shortly after booster engine cutoff, would
initiate the shut-down command to the sus-

tainer engine.
7,,Project Mercury Mission Directive for

Mercury-Atlas No. 4 (Capsule No. 8A),"

NASA Project Mercury working paper No. 203,
July 28, 1961; "Project Mercury Addendum
"Data Report for Mercury-Atlas Mission 4

(MA-4, Capsule 8A) ," NASA Project Mercury
working paper No. 218, Nov. 29, 1961.

"Preflight Trajectory Data for MA-4."
° Letter, Williams, STG, to Cdr., DesFlot-

Four, June 8, 1961, with enclosure, "Project
Mercury, Mercury-Atlas No. 4 Recovery Re-
quirements." The recovery forces consisted of

8 destroyers, 12 aircraft, a landing ship dock,
and a utility vessel. Williams also stipulated
secondary-zone recovery requirements and
called for a nine-hour watch. In plotting
contingency recovery areas, STG's planners
had to allow for trajectory alteration resulting
from the added thrust of escape rockets or retro-
fire in an abort.

1°Williams letter; "Mission Directive for
MA-4." William T. Lauten, Jr., said of the
solar bombs that during the program they
jokingly referred to one as the solar bomb and
to the other, which was set to detonate several

thousand feet beneath the waves, as the "so-
long bomb."

11 "Storms Hit 2 Mercury Trackers," New-
port News Times-Herald, Sept. 12, 1961;
"Postlaunch Report for MA-4"; Williams,
interview.

1_Memo, Carl R. Huss to Flight Dir., "Post-
launch Report on Test 1254," Sept. 15, 1961 ;
Purser, penciled notes on MA_I . countdown

and flight, Sept. 13, 1961; memo, Walter J.
Kapryan, Capsule Systems Monitor, to Flight
Dir., "Report on Test 1254," Sept. 29, 1961;
memo, Tecwyn Roberts to Flight Dir., "Re-
port on Test 1254," Sept. 25, 1961. Count-
down procedures for MA-4 resembled those of

the Mercury-Redstone missions. They were
conducted in a 500-minute split-count with a
12- to 14-hour hold at T minus 300 for per-
oxide and pyrotechnics servicing. When the
MA-4 count began Sept. 12 the operations
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crew feared that hurricane "Debbie" might ad-

versely affect the recovery area, but the count
proceeded to T minus 300. At 4 p.m. a
weather review found conditions improving, so
hydrogen peroxide servicing was begun. The
count resumed at 2 a.m., Sept. 13. Weather
reviews and a peroxide check, plus the prob-
lems described in the text, accounted for holds

totaling 2 hours and 4 minutes during count-
down.

1_"Postlaunch Report for MA-4"; Kapryan
memo.

u Memo, unsigned, to Flight Dir., "Verbal
Debriefing at End of Flight--Test 1254," Sept.
13, 1961; Purser notes; Schler memo. The

crewman simulator was a gray box, 24 by 12
by 8 inches, which took oxygen out of the
environmental control system, emitted carbon

dioxide, simulated minor suit leakage of oxygen,
and initiated dumping. NASA News Release
61-206, "News Conference, Mercury-Atlas
No. 4," Sept. 13, 1961.

l_Purser notes; "Project Mercury Status
Report No. 12 for Period Ending October 31,
1961," undated; Roberts memo; memo, Net-
work Control Group to Flight Dir., "Network

Control Group (NCG) Report on Test 1254,"
undated; memo, Alan B. Shepard to Flight
Dir., "Report on Test 1254," undated; "Post-
launch Report for MA-4." During the mis-
sion several Mercury astronauts deployed to
some of the remote tracking stations; Carpen-
ter to Muchea, Australia; Cooper to Point
ArguelIo, Calif.; Schirra to Guaymas, Mexico;
Slayton to Bermuda. Glenn, Grissom, and
Shepard were in the control center at Cape

Canaveral, with Shepard serving as Capsule
Communicator. (Message, STG to NASA
Hq., Sept. 9, 1961.) This was the first time
that the automatic stabilization and control

system, the reaction control system, and the
horizon scanner subsystem could be fully evalu-
ated for orbital missions. The mission proved
that the attitude control system was adequate
for reentry.

lOKapryan memo; Purser notes; memo,
George M. Low to NASA Administrator, "Pre-
liminary Results of MA-4 Flight," Sept. 15,

1961. R/A John L. Chew, commanding De-
stroyer Flotilla Four, said at the Cape press
conference following the flight that the seas
were running only about a foot high in the
recovery area--which meant that hurricane
Debbie was ineffective in those waters. Dur-

ing the spacecraft's descent, a C-54 aircraft
sighted its reentry contrails, shortly thereafter
noted deployment of the main parachute, and



FOOTNOTES

finally observed water impact. Pickup by the

destroyer Decatur was effected at 12:15 p.m.
The main chute and the antenna fairing were

retrieved about 1000 yards from the spacecraft.

All spacecraft recovery aids performed well

with the exception of the radar chaff. "Post-

launch Report for MA-4."

1, "Status Report No. 12."

_8 Kapryan memo; Purser notes; Low memo.

" "News Conference, Mercury-Atlas No. 4."

The principals at the news conference included

Gilruth, Williams, R/A Chew, Col. R. S.

Maloney, Col. Paul R. Wignall, Astronaut Vir-

gil I. Grissom, and John A. Powers.
"_Grimwood, Mercury Chronology, 147;

NASA News Release 61-207, "Manned Space

Flight Laboratory Location," undated; memo,

Gilruth to staff, "Location of New Site for

Space Task Group," Sept. 19, 1961. The team

had surveyed sites in Tampa and Jacksonville,

Fla. ; New Orleans, Baton Rouge, Bogalusa, and

Shreveport, La.; Houston, Beaumont, Corpus

Christi, Victoria, Liberty, and Harlingen, Tex. ;

St. Louis, Mo.; Los Angeles, Berkeley, San

Diego, Richmond, Moffett Field, and San Fran-

cisco, Calif.; and Boston, Mass. I. Edward

Campagna, interview, Houston, June 16, 1963;

"Manned Spacecraft Center," NASA/MSC

brochure, June 1964. The Humble Oil and

Refining Co. detached two tracts from acre-

age formerly operated as the Clear Lake Ranch

and donated them to Rice University. Tract

No. l, consisting of 600 acres, was bought by

the Government for $1,400,000. Tract No. 2,

of 1020 acres, was donated to the Government,

the tracts being transferred simultaneously.

J. Wallace Ould, Chief Legal Counsel, MSC,

interview, Houston, Sept. 24, 1964.

"Manned Space Flight Laboratory Loca-

tion"; Robert L. Rosholt, An Administrative

History o[ NASA, 1958-1963, NASA SP-4101

(Washington, 1966); Stephen B. Oates,

"NASA's Manned Spacecraft Center at Hous-

ton, Texas," Southwestern Historical Quarterly,

LXVII (Jan. 1964). An editorial, "A Long
View of What We Lost," in the Newport News

Daily Press, of Oct. 3, 1961, reflects the public

sentiment on the Virginia peninsula on the

announced departure of the Space Task Group.

= Houston Chronicle, Oct. 11, 1961.

Houston Chronicle, Houston Post, Hous-

ton Press, Sept. 21, 1961; "Manned Spacecraft

Center Has Moved to Houston," NASA/MSC

brochure, Aug. 1962. Activities of the new

spacecraft center were housed in temporary
facilities: Farnsworth and Chambers Build-

ing, Site 2, headquarters; Rich Building, Site

3, Spacecraft Research Division and Systems
Evaluation and Development Division; Lane-

Wells Building, Site 4, Life Systems Division;
Houston Petroleum Center and Stahl and

Meyers Building, Site 5, Project Mercury,

Gemini, ApoIlo, and Flight Operations Divi-

sion; East End State Bank Building, Site 6,

Personnel and Security Divisions; Office City,

Site 7, Flight Crew Operations Division; Elling-

ton Air Force Base, Site 8, Procurement, Finan-

cial Management, Photographic Services and

Supply; Minneapolis-Honeywell Building, Site

9, Public Affairs Office; Canada Dry Building,

Site I0, Technical Services Division; KHOU-

TV Building, Site 11, Data Computation and

Reduction Division; Peachy Building, Site 12,

Facilities Division. Later on: the center oc-

cupied additional temporary quarters in the

Franklin Development Center and in a build-

ing formerly occupied by the Veterans Ad-

ministration, and these became sites 13 and

14. The designation Site 1 was given to the

Clear Lake site. "Manned Spacecraft Cen-

ter Interim Facilities," NASA/MSC brochure,

Aug. 15, 1963.

_4 "Houston Relocation Office Opens,"

Newport News Times-Herald, Sept. 27, 1961;

memos, Wesley L. Hjornevlk to staff, "Relo-
cation Information Center," Oct. 5, 1961, and

"Procedure for a Permanent Change of Duty

Station," Nov. I, 1961; memo, W. Kemble

Johnson (Relocation Supervisor), to staff,

"Relocation Plans," Oct. 18, 1961; memo,

Purser to staff, " " "Designation of STG as

'Manned Spacecraft Center,' " Nov. 1, 1961;

memo, unsigned, "Manned Spacecraft Center

Building Facilities Requirements," Oct. 13,
1961.

_Purser, log for Gilruth, May 15, 1961;

Grimwood, Mercury Chronology, 129.

_Memo, G. Barry Graves to those con-

cerned, "May 16, 1961, Discussion of Pro-

posed Scout Orbital Launch from Cape
Canaveral," May 17, 1961. James T. Rose,

interview, St. Louis, April 13, 1966.

•r Memo, Purser to Gilruth, "Meeting on

Proposed Scout Range Test," May 18, 1961.

Those attending the meeting, held May 17,

decided the flight should be scheduled for

August.

_Purser, log for Gilruth, June 1, 1961;

memo, Abe Silverstein to Robert C. Seamans,

Jr., "Use of Blue Scout for Checkout of

Mercury Network," May 24, 1961. Because

of technical difficulties, the Mercury-Scout cost

was about three times the $130,000 estimated
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by Silverstein. William M. Bland, Jr., inter-
view, Houston, Sept. 3, 1964.

Memo, Purser to Warren J. North, "De-
tails of the Mercury-Scout Instrumentation and
Communication System," June 13, 1961;

memo, Low to Gilruth and Williams, "Mercury
Scout Test," June 22, 1961; memo, North to
Deputy Dir., Space Flight Programs, NASA,
"Mercury Status Items for Project Review
Meeting--June 27, 1961," June 27, 1961.

"Project Mercury, Summary of Calculated

Preflight Trajectory Data for the Mercury Net-
work Test Vehicle, MNTV-I," NASA Project

Mercury working paper No. 200, July 12,
1961; "Project Mercury Mission Directive for
Mercury-Scout Mission No. 1 (MS-1) ," NASA
Project Mercury working paper No. 201, July
21, 1961. The formal objectives of the
Mercury-Scout mission were: (1) test real-
time orbital computing capability at Goddard;
(2) check out radar digital system and flow
of digital data to the computer; (3) tailor
the computation to the quality of data re-

ceived by radar; (4) determine any inter-
ference that might exist between communica-

tions and data traffic; (5) determine the extent
of system errors at radar sites, e.g., antenna
misalignment, possible errors of surveyed posi-
tion; (6) evaluate the updated radar proce-
dures and revise as necessary; and (7) evaluate
telemetry signal reception and operation of

acquisition aids. "Status Report No. 11," 20.
"Preflight Trajectory Data for the Mer-

cury Test Vehicle, MNTV-I"; "Mission Direc-
tive for Mercury-Scout Mission No. 1."

"Status Report No. 12," 21-22; "Status

Report No. 1 I," 21; memo, Williams to Low,
"Qualification Tests on Mercury-Scout Pay-
load," July 24, 1961; memo, Low to D.
Brainerd Holmes, "Dynamic Checkout of the
Mercury Ground Network with Mercury-

Scout," Nov. 8, 1961.
"Project Mercury Status Report No. 13

for Period Ending Jan. 31, 1962," NASA/STG.

According to the agreement with the Air Force,
a launch team from that service was to be used.

Letter, Williams to Air Force Systems Com-
mand, "Mercury Network Test Vehicle," July
7, 1961 ; Williams interview.

_ Low memo. Some nine days after the

failure of the Mercury-Scout-l, a one-and-a-
half-pound squirrel monkey named Goliath
was lost in an Air Force Atlas launching mis-
hap. Thirty-five seconds after the rocket
roared skyward, an explosion destroyed the
tiny occupant of a small aluminum cylinder in
the nose cone. Some newsmen, questioning

the wisdom of the upcoming Mercury-Atlas
chimpanzee launch, felt that this was a bad
augury. But the Air Force Atlas had been an
advanced E model, with modifications whose
reliability was unproved, while the D model
used in Project Mercury had been through its
reliability program. So, Goliath notwith-
standing, there was no change of plans.
Baytown (Texas) Sun, Nov. 10, 1961;Houston
Chronicle, Nov. 17, 1961.

Washington Post, Nov. i9, 1961 ; Houston
Chronicle, Nov. 12, 1961. Even members of
Congress began publicly speculating on the

date of the manned flight. Rep. Olin E.
Teague told an audience at Texas Agricultural
and Mechanical College that he understood
the tentative date was Dec. 6. Rep. Victor L.
Anfuso predicted the flight would go on Dec.
20. Newport News Daily Press, Oct. 25, 1961 ;
Washington Post, Dec. 3, 1961.

_Purser, log for Gilruth, Sept. 13, 1961;
Washington Evening Star, Nov. 19 and 28,
1961.

_David S. Akens et al., History o[ the
George C. Marshall Space Flight Center
(Huntsville, Ala., 1960-1962), I, 25-26;

Houston Post, Oct. 22, 1961.
m"Status Report No. 9"; memo, Low

to Assoc. Administrator, "MA-5 Launch
Schedule," Oct. 18, 1961.

"Status Report No. 11" ; Low memo.
_°"Postlaunch Memorandum Report for

Mercury-Arias No. 5 (MA-5)," NASA/MSC,
Dec. 6, 1961; "Project Mercury Mission Di-
rective for Mercury-Atlas 5 (Capsule 9),"
Project Mercury working paper No. 208, Oct.
20, 1961.

_t Ibid.; "Project Mercury, Mercury-Atlas
No. 5 Recovery Requirements," NASA/STG,
Oct. 5, 1961; "Detailed Test Objectives for
NASA Mission MA-5," Aerospace Corp., Aug.
31, 196t. Objectives of MA-5 were (1) dem-
onstrate spacecraft structural integrity, includ-
ing that of ablation shield and afterbody shin-
gles, (2) evaluate spacecraft systems perform-
ance during flight, (3) determine reentry
motion, (4) determine vibration levels, (5)
demonstrate launch vehicle and spacecraft

compatibility, (6) demonstrate life-support ca-
pability in a three-orbit mission, (7) evaluate
abort sensing and implementation system, (8)
demonstrate capability of ground command
control equipment, (9) evaluate network ac-

quisition aids, and (10) evaluate telemetry

performance. "Mission Directive for MA-5."

,2 "Mercury-Atlas No. 5 Recovery Require-
ments."
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_"Status Report No. 11"; Low memo;
"Detailed Test Objectives for MA-5."

""Project Mercury Calculated Preflight
Trajectory Data for Mercury-Atlas Mission 5
(MA-5) (Capsule 9--Atlas 93-D)," Project
Mercury working paper No. 207, Oct. 19, 1961.
The Atlas rocket was tracked through five or-
bits. On the fourth the perigee was 93 miles

and the apogee 118 miles. "Postlaunch Memo-
randum Report for Mercury-Atlas No. 5."

"Mission Directive for MA-5." Before
his arrival at the Cape, Enos had received 1263
hours of training over a 16-month period, in-
cluding 343 hours under restraint. Results o[
the Project Mercury Ballistic and Orbital

Chimpanzee Flights, NASA SP-39 (Washing-
ton, 1963), 39.

'_ Norman E. Stingely and John D. Mosely,

"MA-5 Operations," in Results of the Mercury
Chimpanzee Flights, 35; Jerry Fineg, inter-
view, Holloman AFB, Sept. 15 and 25, 1964;
Huntsville (Ala.) Times, Nov. 29, 1961; Wash-
ington Evening Star, Dec. 1, 1961; New York
Times, Nov. 30, 1961; Houston Chronicle,
Nov. 12, 1961. The intelligence of these chim-
panzees was remarkable. One of their training
tasks was to pull a lever exactly 50 times, and
for his accuracy the animal received a reward
of a banana pellet. More or less than 50
pull.s caused the training unit to recycle with-
out giving any reward. Stanley C. White
of MSC medical operations told a reporter
that the chimps would pull the lever "bangity-
bangity-bang" about 45 times, then carefully
pull Nos. 46, 47, 48, and 49, and finally
make pull No. 50 with one hand cupped _
under the dispenser to receive the reward.
(Washington Evening Star, Nov. 28, 1961.)
In a training test at Holloman a chimp work-
ing on a flashing-light problem pulled levers
7000 times in 70 minutes, making only 28
errors. Kenneth F. Weaver, "School for Space
Monkeys," in "Countdown for Space," Na-
tional Geographic, reprinted from the May
1961 magazine, 727. Also see article in Aero-

space, XXXIV (March 1963).
'7"Postlaunch Memorandum Report for

Mercury-Atlas No. 5."
,s "MA-5 Data Acquisition Plan," NASA/

STG, Oct. 20, 1961.
""Mercury Personnel Man Worldwide

Tracking Sites During MA-5 Mission," anon.,

NASA/STG, undated; "Status Report No.

12"; "MA-5 Plan," anon., undated.
5°"Postlaunch Memorandum Report for

Mercury-Atlas No. 5."
*' William Hines in the Washington Eve-

ning Star for Nov. 19, 1961, said it would be
virtually impossible for the United States to
make a manned orbital flight in 1961. On the
other side, presenting an optimistic view, see
Edward H. Kolcum, "Chimp Shot Raises Hope
that U.S. Can Orbit Man Before Year's End,"

Aviation Week, LXXV (Dec. 4, 1961).
_ "Postlaunch Memorandum Report for

Mercury-Atlas No. 5."
Memo, Roberts to Flight Dir., "Report

on Test 1810 (MA-5)," Dec. 5, 1961; memo,
Schler to Flight Dir., "Report on Test 1810

(MA-5)," Dec. 4, 1961.
6*"Postlaunch Memorandum Report for

Mercury-Atlas No. 5." Communications with
the tracking stations were very good during
countdown, and there was little interference.
Curiously, however, there was a brief period of
interference from Radio Moscow just before
liftoff. "Debriefing--Test 1810," anon., Nov.

29, 1961.
Roberts memo.

Memo, Christopher C. Kraft, Jr., "Flight
Director's Report on Test 1810 (MA-5),"
Nov. 30, 1961; "Postlaunch Memorandum Re-

port for Mercury-Atlas No. 5"; "Debriefing--
Test 1810." At his press conference in Wash-

ington, President Kennedy got a round of
laughter when he said, "This chimpanzee who
is flying in space took off at 10:08. He re-
ports that everything is perfect and working
well." Baltimore Sun, Nov. 30, 1961.

_' Ibid.; NASA News Release, "MA-5 News
Conference," Nov. 29, 1961. Williams, in in-
terview Aug. 23, 1965, recalled that communi-
cations with California had been disrupted

momentarily by a tractor somewhere in Ari-
zona that plowed up a telephone cable.

Stingely and Mosely, "MA-5 Operations,"

41-50; "Postlaunch Memorandum Report for
Mercury-Atlas No. 5." On the continuous-
avoidance, discrete-avoidance problem, Enos
received his first shock of the first sessions
about 15 minutes from launch and the second

at the 201-minute point (after he had been
weightless for 3 hours). He then pulled the
lever correctly for the last 3 presentations be-
fore the psychomotor device turned off 207
minutes after launch.

During the first orbit, in the range of the
Zanzibar tracking site, Mercury surgeon White
noted that Enos' ventricular contractions had

become more rapid. This White believed to
be normal for the postacceleration period.
The chimpanzee's respiration rate had risen
with the onset of flight and the increase in his

activity. His respiration rate was 21 and his
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pulse 122 during this phase, as compared with

preflight rates of 14 and 94.

_"Debriefing--Test 1810"; memo, Don-

ald D. Arabian to Flight Dir., "Report on Test

I810 (MA-5)," Dec. 6, 1961; Kraft memo.

eo Ibid.; "Postlaunch Memorandum Report

for Mercury-Atlas No. 5?'
_1Ibid.; Schler memo.

"-"Kraft memo; Arabian memo; "MA-5

News Conference." The spacecraft used 14.5

pounds of control fuel from retrofire to fuel

jettison. Thirty pounds of fuel were dumped

when the main parachute deployed.

Kraft memo; "Postlaunch Memorandum

Report for Mercury-Atlas No. 5"; "Unofficial

Record of Events--MA-5, November 28 [sic],

1961," anon. On Nov. 2, 1961, Low remarked

to Purser that MA-5 should be announced as

a one-orbit mission that might be allowed to

go three orbits. (Purser, log for Gilruth, Nov.

7, 1961.) MA-5's total recovery force, for

the support of aborts, primary, and contingency

landing areas consisted of 17 ships and 13

airplanes.

e_ "Postlaunch Memorandum Report for

Mercury-Atlas No. 5." The drogue and main

parachutes were not recovered, but the Earth-

sky camera confirmed that they had functioned

without damage. The drogue deployed at

21,000 feet and the main chute at 10,000.
_* "MA-5 News Conference."

** Washington Evening Star, Dec. 1, 1961 ;

New York Times, Dec. 1, 1961 ; Chicago Trib-

une, Dec. 1, 1961; Results of the Mercury

Chimpanzee Flights, 38, 54. A little less than

a year later, on Nov. 4, 1962, Enos died of

dysentery caused by shigellosis, which resists

antibiotics. He had been under night-and-day
observation for two months before his death.

Pathologists at Holloman reported that they

found no symptom that could be attributed

or related to his space flight a year before.

_New York Times, Dec. I, 1961; Kolcum,

"Chimp Shot Raises Hope that U.S. Can

Orbit Man Before Year's End"; Washington

EL_ening Star, Dec. 6, 1961. The fact that

Christmas leaves of absence for thousands of

naval personnel in the recovery forces might
have to be canceled without assurance that the

flight schedule would be kept also entered into

the decision to postpone MA-6, Williams said

in interview.

House Committee on Science and Astro-

nautics, 87 Cong., 2 sess. (1962), Aeronautical

and Astronautical Et'ents of 1961, 71; Balti-

more Sun, Dee. 7, 1961 ; Low memo.

Chapter XIII

1 Washington Post, Jan. 4 and Feb. 3, 1962;

Walter C. Williams, interview, Houston, Aug.

23, 1965; House Committee on Science and

Astronautics, 88 Cong., 1 sess. (1963), Astro-

nautical and Aeronautical Events of 1962,
15-16.

-"Washington Evening Star, Feb. 4, 1962;

New York Times, Feb. 4, 1962; Washington

Post, Feb. 6 and 19, 1962; Shirley Thomas,

Men of Space (Philadelphia, 1962), V, 29-30;

"MA-6 Advisory," 5 p.m., Feb. 15, 1962.

_Space News Roundup, MSC, I (Feb. 7,

1962); "Project Mercury Status Report No. 4
for Period Ending Oct. 31, 1959," STG, 41;

"Project Mercury Status Report No. 6 for

Period Ending ApriI 30, 1960," STG, 37;

"Project Mercury Status Report No. 8 for

Period Ending Oct. 31, 1960," STG, 41;

Project Mercury Status Report No. 10 for

Period Ending April 30, 1961," STG, 37;

"Project Mercury Status Report No. 11 for

Period Ending July 31, 1961," STG, 37 ; "Proj-

ect Mercury Status Report No. 12 for Period

Ending Oct. 31, 1961," STG, 34. The flight
schedule chart in October 1961 showed an

MA-6 alternate mission. This meant that if

the Enos (MA-5) flight had not succeeded

another chimpanzee mission, designated MA-6,
would have been flown.

4 Paul E. Purser, compilation of excerpts
from messages regarding spacecraft No. 13;

Ms., George F. Killmer et aI., "Project Mer-

cury Technical History--Preflight Operations,"

MSC Florida Operations, Dec. 30, 1963, 107-
Ill.

Memo, Robert B. Voas to Mercury astro-
nauts, "Suggested Activities for O rbi t al

Flights," Sept. 18, 1961.
Ibid.

' Interview, Jocelyn R. Gill, Houston, Oct.

11, 1965.

s NASA, "Summary Minutes: Astronomy

Subcommittee of the NASA Space Sciences

Steering Committee (Meeting No. 8)," Dec. 5,

1961, and App. I, "Suggested Astronomical

Tasks for the Mercury Astronauts," Nov. 3,
1961.

g Memo, Voas to Williams, "Astronauts'

Preparation ¢or Orbital Flight," Sept. 25,

1961 ; "Project Mercury Astronaut Preparation

for Orbital Flight," NASA Project Mercury

working paper No. 206, Oct. 13, 1961.
_° Ibid.

_XIbid. In the event of slow pitch up-

thrust, the astronaut was to assume manual
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control of pitch. In retrosequence failure, he
was to use manual override. If the main elec-

tric power supply failed, he was to select a

standby source and determine whether reentry

was possible at the end of the first orbit or

whether earlier entry was necessary.

12 "Project Mercury Astronaut Preparation

and Activities Manual for Mercury-Atlas Mis-

sion 6 (MA-6, Spacecraft 13)," NASA Proj-

ect Mercury working paper No. 215, Dec. 1,

1961.

a_NASA, "Summary Minutes: Ad Hoc
Committee on Astronomical Tasks for the Mer-

cury Astronauts," Jan. 11, 1962.

11NASA, "Summary Minutes: Ad Hoc
Committee on Astronomical Tasks for the Mer-

cury Astronaut (Meeting No. 2)," Dec. 20,
1961.

15"Astronaut Preparation and Activities
Manual for MA-6."

16 "Project Mercury Status Report No. 13

for Period Ending Jan. 31, 1962," STG, 15, 23;

"Postlaunch Memorandum Report for Mer-

cury-Atlas No. 6 (MA-6), Part I, Mission

Analysis," March 5, 1962; memo, Richard M.

Dunham to Voas, "Personnel Survival Equip-

ment Exercise for 2/7/62," Feb. 8, 1962. The
life vest was fabricated as a solution for Gris-

som's swimming problem at the end of the
MR-4 mission. The inflated vest had a bulk

of less than 20 cubic inches and weighed Iess

than a pound. Results o[ the First United
States Manned Orbital Space Flight, February

20, 1962 (Washington, 1962), 39. Also John

H. Glenn, Jr., 'TI1 Have to Hit a Keyhole in

the Sky," Li[e, LI (Dec. 8, 1961).

*' "Status Report No. 13," 24; James M.

Grimwood, Project Mercury: A Chronology,

NASA SP-4001 (Washington, 1963), 157;

memo, Eugene F. Kranz to Christopher C.

Kraft, Jr., "Report on Test 5460 (MA-6),"

Feb. 20, 1962. The flotation collar men-

tioned in the swimmer-training program re-

suited partly from the loss of Grissom's space-
craft. It was also the product of two years'

work, and credit for its design must go to Don-
ald E. Stullken of the Pensacola Naval Air

Station. Early in the Mercury program the

engineers realized that their hope of adapting

a 20-man life raft to keep a spacecraft afloat

was not feasible. The "Stullken collar" passed

its final test on Jan. 3, 1962. At that time
50 collars had been made at Pensacola and

delivered to the recovery forces. In an earlier

test, off Wallops Island, one of the collars had

kept the MR-2 capsule afloat for 70 hours in

waves up to 7 feet high. The collar was made

of five-ply life-raft fabric, was attached to the

spacecraft by cables around the impact skirt,
and was inflated after attachment. Stullken

later became an employee of the Manned

Spacecraft Center. Space News Roundup,

MSC, I (Jan. 10, 1962), 23.

1_ "Project Mercury Mission Directive for

Mercury-Atlas Mission 6 (MA-6, Spacecraft

13)," NASA Project Mercury working paper

No. 216, Dec. 15, 1961; "Project Mercury,

Mercury-Atlas No. 6 Recovery Requirements,"

Dec. 2, 1961. The latter document said that

reentry (.05 g) would start about 60 miles west

of Florida's Atlantic coast. Recovery forces

were told that as a safety measure the ground

track was set to continue 1000 miles beyond the

third orbit landing area and that the explo-

sive egress hatch had been modified to keep

the cover from traveling more than two feet.

Several ships had their cranes or davits

fitted with a "shepherd's crook," consisting of

a 16-foot aluminum pole with a hardened stain-
less-steel hook at the cable end which was

capable of lifting 10,000 pounds. ("Techni-

cal Information Summary for Mercury-Atlas

Mission 6 (MA--6, Spacecraft 13)," NASA/

MSC, Dec. 19, 1961; "Detailed Test Objec-

tives, NASA Mission No. MA-6, Project Mer-

cury, Contract No. AF 04(647)-930," Aero-

space Corp., Nov. 10, 1961.) A planning
document for the MA-4 mission had indicated

that the Atlas hold-down time would be three

seconds, to assure that combustion would

smooth out; thereafter, beginning with MA-5,
the time would be reduced to two seconds. For

MA-6 the hold-down time still was listed for

three seconds duration.

1, "NASA Note to Editors," Dec. 5, 1961.

"_ "Public Information Operating Plan,

Project Mercury MA-6," NASA, undated;
NASA News Release 62-8, "Mercury-Atlas 6

at a Glance," Jan. 21, 1962. For a descrip-

tive impression of the MA-6 mission, see Ralph

O. Shankle, The Twins o] Space (Philadelphia,

1964), 77-100. During that mission, Shankle
was a member of the MSC Public Affairs Office.

In an interview, John A. "Shorty" Powers on

Nov. 12, 1965, said that in his opinion the

delays preceding the Glenn flight produced

some helpful effects in the way of news re-

porting. Stories about the "type of hats that

Annie [Glenn's wife] was wearing" began to

play out. The reporters were forced to be-

come more technically conversant if they were

to file stories that would keep their editors

happy as well as justify the Florida expense

accounts.
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Williams interview.
n"Postlaunch Memorandum Report for

MA-6"; "NASA News Briefing at the Starlite
Paladium," Feb. 13, 1962; Results o[ the First
United States Manned Orbital Spa_e Flight;
NASA News Release 62, "Mercury Recovery
Force," undated; Space News Roundup, I
(Feb. 7, 1962). On the morning of Jan.
27, Glenn's military service boss, Gen. David
M. Shoup, the Marine Corps Commandant,

joined him for breakfast. The name Glenn
chose for his spacecraft, Friendship 7, was

painted on No. 13 by artist Cecilia Bibby.
See DOD Representative for Project Mercury

Support Operations, Final Report to the Secre-
tary o/ De/ense on Department o[ De/ense
Support o[ Project Mercury: For the Period 1
July 1959 through I3 ]une 1963, approved
by Leighton I. Davis, Maj. Gen., USAF, 11
Sept. 1963, Chart 6, 15. Also see "Man
Marked to Do Great Things," Li[e, LII (Feb.
2, 1962).

Washington Evening Star, Jan. 31, Feb.
4, 1962; Washington Post, Feb. 6, 1962; Na-
tional Observer, Feb. 4, 1962; New York Times,
Feb. 6, 1962; Los Angeles Times, Jan. 31,
1962; New York Herald Tribune, Feb. 4,
1962; Washington Daily News, Feb. 7, 1962.

"NASA News Briefing at the Starlite
Paladium."

"MA-6 Advisory," NASA, 5 p.m., Feb.
15, 1962; "MA-6 Advisory," 5 p.m., Feb. 19,
1962; "Postlaunch Memorandum Report for
MA-6."

"MA-6 Advisory," Feb. 19, 1962; Rich-
ard Dunham, John J. Van Bockel, and Paul
W. Backer, "Continuation of MA-fi Debrief-
ing," March 7, 1962.

*r"Postlaunch Memorandum Report for
MA_5"; "Procedures Log," Mercury Control
Center, Feb. 20, 1962; Space News Roundup,
I (Feb. 21, 1962).

"Ibid.; Kranz memo; memo, Stanley C.
White to Kraft, "Summary Report on Test
5460 (MA-6)," Feb. 22, 1962>.

_,Procedures Log"; White memo.
J*On launch day cloud masses continued to

hover over the launch area, causing many of
the newsmen present to bet "no llftoff today."
A little after 7 a.m one of the Cape weather
men, Harlan G. Higgins, noticed that the wind
was shifting to drive the clouds away and that
the temperature was becoming cooler. He

quickly phoned Ernest A. Amman, the weather
support man in Mercury Control, and told
him that the chances for launch now looked

promising.

'_ "Procedures Log"; White memo; "Post-
launch Memorandum Report for MA-6."

_ Ibid.; "Transcript of Public Address An-
nouncements by Col. John Powers Beginning
at T Minus 22 Minutes, Describing MA-6
Launch," Feb. 20, 1962. For the story of the
people on the beaches, see New York Times,
Feb. 20, 1962. The impatience of some of the
news personnel was understandable. A New
York Times correspondent reported in mid-
February that the often-postponed Glenn flight

had already cost the broadcasters $2 million
and that each day of delay cost them another

$50,000. Newspaper and magazine costs were
estimated at about a third of those figures.

New York Times, Feb. 17, 1962. Also see
"Liftoff! for John Glenn and His Family,"
Li[e, LII (March 2, 1962) ; "Liftoff and Uplift
for the U.S.," Li[e, LII (March 2, 1962);
"He Hit That Keyhole in the Sky," Li[e, LII

(March 2, 1962) ; "At School All Systems Are
Go," Life, LII (March 9, 1962) ; D. J. Ham-

blin, "Applause, Tears and Laughter and the
Emotions of a Long-Ago Fourth of July," Li/e,

LII (March 9, 1962); "Hero's Words to
Cherish," Li/e, LII (March 9, 1962); John
Glenn, Jr., "If You're Shook Up You Shouldn't
Be There," Li[e, LII (March 9, 1962).

White memo; "Postlaunch Memorandum
Report for MA-6." The General Electric-
Burroughs booster-guidance system performed
an interesting operation. Aboard the Atlas
were three small black boxes, two of them

similar to two-way radios. A radar on the
ground automatically tracked signals emanating
from these boxes, determining range and posi-
tion. The operation for the MA-6 mission
progressed along the following pattern: A few
minutes before launch time Michael Michela,
the GE rate console operator, flipped a switch
that pointed the rate antennas in the same di-
rections as the precise tracking radar. This
was to obtain velocity data. Thomas Waid,
the track console operator, pushed a button

to place the guidance system in automatic oper-
ation. Guidance system signals were aimed
on a "cube in space" several hundred feet above
the booster. It was simply a matter of waiting
until the booster passed through this area,
when the signals locked onto a radio trans-

ponder and the system began steering the
launch vehicle after staging. This condition
was maintained until orbital conditions were

attained. The system had operated some 8000
hours before MA-6, and some members of the

guidance team, consisting of Rodney Borum,
John Savarie, Donald Wood, Waid, Robert
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Stanton, and Michela, had participated in as
many as 121 launches. (News release, "Radio

Guidance Functions of Mercury-Atlas 6," De-

fense Electronics Div., General Electric Co.,

undated; News release, no title, Defense Elec-

tronics Div., General Electric Co., undated.)

During the powered phase of the flight, Kraft

was notified that signals from a foreign C-band

radar transmitter had been intercepted, but

the operations team was unable to identify the

source. ("Procedures Log.") The guidance

equations were developed by C. L. Pitman,

Robert Page, and Duncan McPherson of the

Space Technology Laboratories. John P.

Mayer, comments, Sept. 8, 1965.

3'"Postlaunch Memorandum Report for

MA-6"; "Procedures Log." At sustainer cut-

off Glenn was not only aware of weightless-

ness but felt as though he were tumbling.

Shepard and Grissom reported the same sensa-

tion. The apogee of Glenn's flight was 162

miles; the perigee, 100 miles.
_"Postlaunch Memorandum Report for

MA-6", "Continuation of MA-6 Debriefing."

Glenn felt no angular acceleration during turn-
around.

3, Ibid.

"Test 5460, Composite Message Sum-

mary," Mercury Control Center, Feb. 20, 1962.

Over the Kano area on the first pass, Glenn

opened his faceplate and ate a xylose (sugar)

pill and his tube of applesauce without diffi-

culty. (Results o[ the First United States

Manned Orbital Space Flight, 153.) In the

Zanzibar area Glenn worked out briefly with

his exerciser, and the tracking station noted a

temporary increase in his pulse rate to 140.

The engineers later stated that these dis-

agreements were inherent and would crop up

whenever major yaw or roll attitudes deviated

from zero degrees for an extended period of

time. In other words, the gyro "readouts" on

the panel, which were reporting an attitude

change of about four degrees per minute, were

considerably behind Glenn's quickly slewing

yaw maneuver. Consequently the best pro-

cedure when executing such an operation was

to stop the revolving gyroscopes, an action

called "caging."

_"Postlaunch Memorandum Report for

MA-6"; "Test 5460, Composite Message Sum-

mary"; "Transcript of Announcements by

John Powers"; "Continuation of MA-6 De-

briefing." Upon meeting the mayor of Perth

later, Glenn remarked facetiously that he had

half-expected the mayor to hand him an elec-

tric bill. An attempt to observe the airport

lights at Woomera had failed because of cloudi-

ness. As for the heigllt of the haze layer,

Jocelyn R. Gill of NASA Headquarters said
this distance was later measured and found

to be about 2y2 degrees above the horizon.
For other comments on Glenn's observations

while in orbit see "National Aeronautics and

Space Administration," Astronomical ]ournal,
67, No. 9, Nov. 1962, 655.

_0 "Procedures Log" ; "Continuation of MA-

6 Debriefing." The particles appeared to be

about 1A6 inch in diameter and to be traveling

at about the same speed as the spacecraft.

_t"Postlaunch Memorandum Report for

MA-6." On Feb. 26, 1962, postflight inspec-

tors disassembled the thrust chamber systems

and found some loose particles upstream of the

fuel-metering orifices. These were found to

be pieces of the dutch-weave fuel-distribution

screens. Fuel consumption during the first

orbit was 4.2 pounds from the automatic tanks

and .6 pound from the manual tanks. Those

figures were nominal; control trouble did not

develop until the flight had been in progress
for an hour and 29 minutes.

o Ibid.; Space News Roundup, I (Feb. 21,

1962); William Hines, "Segment 51," Wash-

ington Evening Star, March 16, 1962 ; Maxlme

A. Faget, interview, Houston, April 19, 1962.

43 Postflight inspectors were unable to ex-

plain the secondary oxygen supply drop. For a

report on Glenn's observational efforts, see John

H. Glenn, Jr., "Summary Results of the First

United States Manned Orbital Space Fight,"

in Li[e Sciences and Space Research, "A Ses-

sion of the Third International Space Science

Symposium," Washington, D.C., April 30-
May 9, 1962 (North Holland Publishing Com-

pany, Amsterdam, Netherlands, 1962), 173-
183.

" "Procedures Log."

_; Ibld.; "Postlaunch Memorandum Report

for MA-6"; "Test 5460, Composite Message

Summary"; Results o[ the First United States

Manned Orbital Space Flight, 190; "Continua-

tion of MA-6 Debriefing."
Ibid.

,T "Postlaunch Memorandum Report for
MA_5."

""Postlaunch Memorandum Report for

MA-6." At the moment of Glenn's splash-

down, the Post Office issued a special 4-cent

stamp commemorating the MA-6 mission

("Transcript of Announcements by John

Powers"). For a popular account of the MA-6

mission, with excellent illustrations, see Robert

B. Voas, "John Glenn's Three Orbits in Friend-
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ship 7," National Geographic, reprinted from

the June 1962 magazine.

_Ibid.; Astronautics, VII (May 1962).

In a debriefing session a few days after the

MA-6 flight, Glenn said he wished he had

known of the supposed heatshield and land-

ing bag problem, so that he could have been

listening for sound clues. He seemed to be

making the point that the pilot, as the think-

ing part of the man-machine team, should be
allowed to participate in decision making.

Scott Crossfield, one of the X-15 pilots, ex-

pressed this view well in the immediate post-

MA-6 period: "Where else would you get a
non-linear computer weighing only 160 pounds,

having a billion binary decision elements, that
can be mass-produced by unskilled labor?"

"Continuation of MA-6 Debriefing"; Aviation

Week, LXXVI (March 5, 1962).

_o Astronautical and Aeronautical Events o[

1962, 18. See Senate Committee on Aero-

nautical and Space Sciences, 87 Cong., 2 sess.

(1962), Orbital Flight o[ ]ohn H. Glenn, ]r.,

for testimony of astronauts and NASA officials,

Feb. 28, 1962.
5t "Free World Media Treatment of First

U.S. Orbital Flight," a file of reports assembled

at NASA Hq., March 5, 1962.

_s Aviation Week, LXXVI (Feb. 26, 1962).
Robert R. Gilruth also was the cover subject

for Missiles and Rockets, X (March 19, 1962).

The same issue of the magazine said in an

editorial : "It is always a pleasure to sing about

an unsung hero .... While Astronaut John

Glenn was swinging around the earth in
Friendship 7 . . . Robert Gilruth had his feet

planted firmly on the ground in Mercury
Control." Gilruth had just been awarded the

Robert H. Goddard Memorial Trophy on

March 16, 1962, by the National Rocket Club.

Astronautical and Aeronautical Events o[

1962, 22, 27; Friendship 7 tour files, MSC

Hist. Archives; Grimwood, Mercury Chronol-

ogy, 184. The text of Glenn's address to the

joint session of Congress may be found in the

Washington Post for Feb. 27, 1962.

Reports and photographs concerning the

"Fourth Orbit of Friendship 7" are filed in the

MSC Hist. Archives.

Washington Post, Jan. 10, 1962; Wash-

ington Evening Star, Jan. 6, 1962; David S.

Akens, Paul K. Freiwirth, and Helen T. Wells,

History o[ the George C. Marshall Space Flight

Center (Huntsville, Ala., 1960-1962), I, 21;

"Saturn Illustrated Chronology: April 1957-

June 1964," NASA/MSFC, Aug. 10, 1964,

52-53; Newport News Daily Press, Jan. 4,
1962.

See Chap. X. House Committee on

Science and Astronautics, 87 Cong., 2 sess.

(1962), 1963 NASA Authorization, Hearings,

1,2.
_TIbid., 3-33; Senate Subcommittee of the

Committee on Appropriations, 87 Cong., 2

sess. (1962), Independent Offices Appropria-

tions, 1963, Hearings, II, 1503; Washington

Evening Star, Jan. 7, 1962.

MSC announcement No. 9, Ref. 2-2,

"Establishment of the Mercury Project Office,"

Jan. 15, 1962.

5*MSC announcement No. 12, Ref. 2-2,

"Personnel Assignments for Mercury and

Gemini Program Offices," Ja_. 31, 1962 ; Mag-

gie Taylor, Apollo Spacecraft Program Office,

MSC, interview, Houston, Jan. 12, 1965;

Grimwood, Mercury Chronology, 220.

00 Memo, Dir. of Personnel, MSC, to Philip

H. Whitbeck, "Status Report for the Personnel

Office," Jan. 26, 1962. At the time of the

personnel survey about 400 to 500 could have

been termed "old guard." The remainder,

being essentlaly "new hires," did not really care

whether they settled in Hampton or Houston.

The 84 who chose not to go were mainly of

the "old guard."

01MSC announcement No. 21, Ref. 2-1,

"Relocation of Manned Spacecraft Center

Headquarters," Feb. 26, 1962. In reality the

Mercury Project Office moved into the Farns-

worth-Chambers Building in Houston on April

16, 1962, a move that preceded the MA-7

flight by a little over a month.

Astronautical and Aeronautical Events o[

1962, 36; Donald K. Slayton, interview,

Houston, Dec. 16, 1964; letter, William

Douglas to L. S. S., Jr., Aug. 17, 1965.

_During the December 1964 interview

Slayton demurred at naming the civilian panel,

but newsmen had been less reticent. See

Washington Post, March 16, 1962; New York

Times, March 16, 1962. For other material on

the Slayton case, see Mae M. Link, Space

Medicine in Project Mercury, NASA SP-4003

(Washington, 1965). Slayton was not ex-

amined personally by Paul Dudley White until

June 15, 1962. At that time speculation was

revived about Slayton's possible selection for a

space flight. Washington Evening Star, June

15, 1962.

_Washington Evening Star, March 21,

1962 ;Slayton interview; Paul E. Purser, inter-

view, Houston, Jan. 4, 1965.
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FOOTNOTES

_Slayton, interview, Houston, Jan. 14,

1965; "Postlaunch Memorandum Report for

Mercury-Atlas No. 7 (MA-7), Part I, Mission

Analysis," NASA/MSC, June 15, 1962. After

MA-7 each backup pilot became the flight

astronaut of the succeeding mission in Project

Mercury. Also see Loudon Wainwright,

"Comes a Quiet Man to Ride Aurora," Li]e,

LII (May 18, 1962).

"Technical Information Summary for

Mercury-Atlas Mission 7 (MA-7, Spacecraft

18)," MSC, undated.

_' Gill interview; NASA, "Summary

Minutes: Ad Hoc Committee on Scientific

Tasks and Training for Man-in-Space (Meet-

ing Nos. 1, 2, 3)," March 16, 26, and April 18,
1962.

_* NASA News Release 62-113, "MA-7

Press Kit," May 13, 1962.

*'"Project Mercury Mission Directive for

Mercury-Atlas Mission 7 (MA-7, Spacecraft

18)," NASA Project Mercury _orking paper

No. 222, April 9, 1962; "Postlaunch Memo-

randum Report for MA-7" ; Results o[ the Sec-

ond United States Manned Orbital Space

Flight, May 24, I962, NASA SP-6 (Washing-

ton, 1962), 11-13. In the order listed in the

text, the experiments were proposed by the

Langley Research Center, Lewis Research

Center, Massachusetts Institute of Technology

Instrumentation Laboratory, the Weather

Bureau, and Goddard Space Flight Center.

r, Ibld. Airglow is an emission of light re-

suiting from chemical reactions in the upper

atmosphere. Various reactions produce light

of different colors. In many cases, molecules

of atmospheric gas are split by ultraviolet rays

of sunshine. Then, when darkness comes, the

gas molecules recombine, emitting light. The

illumination of the sky at night usually comes

from airglow instead of starlight. New York

Times, June 3, 1962. Lawrence Dunkelman

of Goddard provided Carpenter with the air-

glow device to make observations. Jocelyn
Gill said this was the filter that had been

planned for MA-6, but time did not permit

Glenn to use it.

"Ibid., "Project Mercury Quarterly Status

Report No. 14 for Period Ending April 30,

1962," NASA/MSC, May 25, 1962. John

Mayer of MSC commented in September 1965,

"that photos of the Russian spacecraft indi-

cated that they had an almost identical earth-

path indicator." Mayer went on to say that

the indicator "was deleted from Mercury flights

because it was of little use in the missions."

"Project Mercury Mission Directive for

Mercury-Atlas Mission 7" ; message, G. Merritt

Preston to Gilruth, May 21, 1962; "Weekly

Activity Report 'to the Office of the Director

for Manned Space Flight," MSC, May 5, 1962.

_ "Project Mercury Quarterly Status Re-

port No. 14"; "Weekly Activity Report,"

MSC/Mercury Project Office, March 17, 1962 ;

"Postlaunch Memorandum Report for MA-7."

r_ Memo, Kraft to Williams et al., "MA-7

Test Flight Reports," June 12, 1962; "Proj-

ect Mercury Mission Directive for Mercury-

Atlas Mission 7"; Final Report to the Secretary

o/ De[ense on Support o[ Project Mercury,

Chart 6, 15. The Indian Ocean picket ship

Coastal Sentry (call name "Coastal Sentry

Quebec") was stationed at the entrance to the

Mozambique Channel off the southeastern
coast of Africa for MA-7. "MA-7 Press Kit."

_"Project Mercury Quarterly Status Re-

port No. 14." The decision to add a barostat

in the recovery arming circuit was a primary

reason for delaying the MA-7 launch. After

a review meeting on May 16, the engineers

had decided that this action was necessary.

Late that night the newsmen already at the

Cape were advised.

re Kraft memo; memo, Harold I. Johnson

et al., to those concerned, "MA-7 Remote Site

Operations Debriefing," June I, 1962; "Post-

launch Memorandum Report for MA-7."

Johnson memo.

Ta"Postlaunch Memorandum Report for

MA-7." The New York Times for May 26,

1962, reported the estimated number of tele-

vision viewers. Cecilia Bibby was again se-

lected as the artist to paint the name chosen

by the astronaut. New York Times, May 28,

1962.

Kraft memo; "Posflaunch Memorandum

Report for MA-7."

Orbital insertion of Aurora 7 was almost

ideal, the flight path angle and velocity being

only .004 degree and 2 feet per second low,

respectively. This provided an orbital tra-

jectory of 89.96 miles (perigee) and 144.4

miles (apogee). There was only one anomaly

during the powered phase of the flight. The

primary auxiliary cutoff signal for the sustainer

engine was transmitted by the General EIectrlc-

Burroughs guidance system simultaneously with

sustainer engine cutoff. The backup auxiliary

sustainer cutoff signal had preceded this trans-

mission by .44 second. But the abort enabling
switch in the Control Center was in the normal

position; since both signals did not lock, an

improper signal was prevented. If the launch
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vehicle had accepted the erroneous signal, a

velocity decrement of about 110 feet per sec-

ond might have resulted, causing marginal con-

ditions in the go-for-mission decision. ("Post-

launch Memorandum Report for MA-7";

"Project Mercury Quarterly Status Report No.

15 for Period Ending July 31, 1962," NASA/
MSC.) Carpenter said the sensations of

weightlessness were similar to those of skin-

diving.

Kraft memo; "Postlaunch Memorandum

Report for MA-7"; Results o[ the Second

United States Manned Orbital Space Flight,

78-79. Postflight inspection convinced several

engineers that the malfunction of the horizon

scanner circuit was a random component fail-

ure. Plans were made to try to recover the

antenna canister on the next flight for post-

flight analysis of the scanner unit located in

that component. ("Project Mercury Quarterly

Status Report No. 15.") Concerning the un-

desirable suit temperatures, Frank H. Samonski,

Jr., capsule environmental monitor, believed a

partial freezing in the suit circuit caused an

obstruction in the heat exchanger. Carpenter

was comfortable once again by the end of the

first orbit; he was hot again during the second;

and he finally got the suit temperature down
to a comfortable level on the third. Suit inlet

temperatures ranged between 62 degrees to

about 86 degrees during the flight. In all,

Carpenter made 13 attempts to adjust the

setting to a comfortable range.

S_ lbid.; Washington Sunday Star, March

27, 1962. Carpenter later said that the peri-

scope was not worth the weight and space it

occupied in the spacecraft. This certainly

would be true, he felt, when longer Mercury

missions required more oxygen, water, and con-

trol fuel. On other aspects of the flight, Car-
penter reported that he even saw a dirt road

so clearly that he had the impression that if
a vehicle had come along he could have seen

it, too. In general, he found the daylight view

from orbit similar to a view from a high-flying

aircraft. He said that navigation at night

might be accomplished by using a known star
on the horizon.

"Postlaunch Memorandum Report for
MA-7."

Ibid.

Ibid.; Kraft memo.

Ibid.; Newport News Times-Herald,

June 7, 1962; Johnson memo. Carpenter also

consumed a xylose tablet without difficulty.

At about midway of the second orbit, the flight

controller recommended that the pilot drink

water freely to compensate for sweating. Car-

penter drank about 1213 cc of water--60 per-

cent while in flight and the remainder while

on the life raft awaiting recovery. During the

postflight debriefings, Carpenter suggested that

henceforth food bags should be transparent
and that something should be done about the

chocolate items, which had melted in the

fluctuating warmth of the cabin.

"Postlaunch Memorandum Report for

MA-7." Shortly after retrofire the baIloon

disappeared, and about seven minutes later,

Carpenter lost sight of the tether.

"Slbld.; Johnson memo; Grimwood, Mer-

cury Chronology, 164-165.

_"Postlaunch Memorandum Report for

MA-7." Also see Winifred SawteU Cameron,

Lt. Col. John H. Glenn, Lt. Cdr. M. Scott

Carpenter, and John A. O'Keefe, "Effect of

Refraction on the Setting Sun as Seen from

Space in Theory and Observation," in the

Astronomical journal, 68, No. 5, June 1962,
348-351.

_ Results o[ the Second United States

Manned Orbital Space Flight, 92, 102-103;

New York Times, June 3, 1962. Later, Law-

rence Dunkelman at Goddard, using Carpen-

ter's "Voasmeter" readings , judged the airglow

layer to be about two degrees in width. Also,

after the Carpenter mission, the Naval Research

Laboratory began a study of the night airglow

from pictures taken during rocket flights. For

the findings of this study see M. J. Koomen,

Irene S. Gulledge, D. M. Packer, and R.

Tousey, "Night Airglow Observations from

Orbiting Spacecraft Compared with Measure-

ments from Rockets," Science, Vol. 140, No.

3571, June 7, 1963, 1087-1089.

gl "Postlaunch Memorandum Report for

MA-7." Out of 19 exposed frames, Carpenter

was able to get two pictures of the "fireflies."

Evidence appeared in other photographs, but

these pictures were not in focus.

D, Kraft memo.

Ibid.; Johnson memo; "Postlaunch

Memorandum Report for MA-7." Joe Dod-

son, in an interview, reported that about 18_

pounds of fuel were depleted during the first

10 minutes of reentry. Newport News Daily

Press, June 6, 1962. When Carpenter switched

on the ASCS, the spacecraft had a tendency to

pitch down. Fuel conservation during the

third orbit had prevented an adequate check-

out of the ASCS before retrofire.

Kraft memo; Johnson memo. The inte-

rior smoke resulted not from the retrorockets
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themselves, but from two fuses that had blown
because of the retros' kick.

_Memo, Carl R. Huss, et al., to Chief,
Flight Operations Div., "Postflight Analysis of
MA-7 Trajectory Data to Determine Cause
of the Erroneous Landing Point," June 13,

1962; New York Times, June 6, 1962. Al-
most immediately the tracking crews across the
nation, beginning in California, confirmed that
there would be about a 250-mile overshoot.

,5Johnson memo.
p7Ibid.; "Postlaunch Memorandum Report

for MA-7."

**Johnson memo. After the MA--6 flight
the Life Systems Division had conducted a
manned test to investigate the reentry heating
that had occurred. Results showed that closing

the helmet visor before reentry and letting the
suit circuit operate separately provided a more
comfortable environment. At the same time

it was decided to lengthen the suit inlet hose.
("Activity Report, Life Systems Division,"

MSC, April 30, 1962.) After .05 g had been
passed on Carpenter's flight, the liquid in the
capillary tube began to drain. Thus the re-
suits tended to confirm capilIary action theory.
The ability to maintain a stable fluid position
during angular acceleration imposed by the
reaction control system indicated that this
method of ullage control was valid. The re-

suits obtained during MA-7 could be extrap-
olated for propellants in accordance with laws
governing each, namely, surface tension s fluid
temperature, and known capillary tube diam-
eter. "Postlaunch Memorandum Report for
MA-7."

_"Postlaunch Memorandum Report for
MA-7."

a_ "Postlaunch Memorandum Report for
MA-7"; Kraft memo. During the MA-6

ionization period an erroneous command signal

had been received. Engineers believed that
this was caused by a mixing of radio-frequency

signals, which generated sufficient strength to

energize one relay in the command system.

This anomaly had been corrected by exchang-
ing the low-frequency telemetry components
for others operating on a higher frequency.
("Weekly Activities Report," March 17, 1962 ;
"Highlights, Activities Report, MSC," April
30, 1962.) Ionization during MA-7 was 40
seconds late, furnishing another clue to the

overshoot. The behavior of the drogue and

main chutes remained unexplained. Tests in

early May 1962, at El Centro, Calif., using
the exact MA-7 weight had all been successful.

Memo, Aleck C. Bond to Faget, "Weekly
Activity Report," May 4, 1962.

10_"Postlaunch Memorandum Report for
MA-7" ; Kraft memo.

1°°-Ibid.; Washington Sunday Star, May
27, 1962; "Project Mercury Quarterly Status
Report No. 15."

t_s Johnson memo; New York Times, May
26, 1962. Carpenter later learned that the
Apache pilot's film was confiscated When he

returned to Puerto Rico. The pilot had vio-
lated the airway zones.

l*4"Postlaunch Memorandum Report for
MA-7"; Johnson memo; New York Times,
May 26, 1962; Washington Sunday Star, May
27, 1962. Sergeant Ray McClure, a veteran of
137 jumps, had received the Air Medal for his
part in the first successful recovery of a Dis-
coverer capsule in the Pacific north of Hawaii.

i_ Johnson memo.

l_Kraft memo. A rather complete dis-
cussion of the Carpenter recovery matter is
contained in Senate Committee on Aeronauti-

cal and Space Sciences, 87 Cong., 2 sess.
(1962), NASA Authorization [or Fiscal Year
I963: Hearing, s, 495-504. Senator Spessard L.
Holland (D. Fla.) and D. Brainerd Holmes of
NASA, the latter having been present in the
Mercury Control Center during the complete

recovery, were the principals in this discussion.
Holmes stated that he was with R/A John L.
Chew and that it did not seem to make a par-
ticle of difference to the admiral which service

recovered the astronaut. The NASA official in-

terpreted that Chew based his decision on past
experiences; Holmes added that he could de-
tect no feeling of interservice rivalry.

z_r"Postlaunch Memorandum Report for
MA-7"; Johnson memo; Washington Evening
Star, May 26, 1962; Astronautical and Aero-
nautical Events o[ 1962, 86. See also Rene
Carpenter, "Scott Carpenter and His Son and
His Wife Living Through the Time That

Grew Too Long," Li[e, LII (June 1, 1962);
and M. Scott Carpenter, "I Got Let in on the
Great Secret," Li[e, LII (June 8, 1962).

1_s"Postlaunch Memorandum Report for
MA-7."

1® New York Times, May 28, 1962; Astro-
nautical and Aeronautical Events o[ I962, 89;
Washington Post, May 30, 1962; Washington

Evening Star, May 31, 1962. Carpenter, his
family, and the Williams family paid a visit to

the White House on June 5, 1962. Washing-
ton Post, June 5, 1962.

_l°Kraft memo; Johnson memo; "Post-

tauneh Memorandum Report for MA-7" ; John
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W. Finney, "Astronaut Says His Errors Will

Benefit Space Project," New York Times,

May 28, 1962. Carpenter's contentions were

borne out by the changes that were effected.

For one thing a drive was made to have a

flight plan specifying fewer activities ready

well before the next flight. Also, a switch was

integrated in the spacecraft by which the pilot

could switch off and switch on the high thrust-

ers. If the pilot forgot to reactivate the thrust-

ers, an automatic override ensured their avail-

ability just before retrofire. "Project Mer-

cury Quarterly Status Report No. 15"; Results

o[ the Second United States Manned Orbital

Space Flight, 6.

m Newport News Daily Press, June 6 and 8,

1962; New York Times, June 14, 1962; Wash-

ington Post, June 28, 1962; Washington Eve-

ning Star, June 14, 1962. On the subject of

pilot selection, the month of June was another

milestone in the manned space flight program.

On June 1 the deadline closed for applications

by astronaut candidates for the second incre-
ment to be added to the Mercury seven for the

(3emini and Apollo missions. Astronautical

and Aeronautical Events o] 1962, 93.

Chapter XIV

1 Memo, Richard E. Day, to Management

Analysis Office, "Monthly Activity Report,

Flight Crew Operations Division," July 30,

1962; memo, Warren J. North [to Management

Analysis Division], "Activity Report, Fllght

Crew Operations Division," Aug. 28, 1962;

"Flight Plan for MA-8/16," NASA/MSC,

Aug. 7, 1962; "Postlaunch Memorandum Re-

port for Mercury-Atlas No. 8 (MA-8),"

NASA/MSC, Oct. 23, 1962, Part I, "Mercury

Scientific Experiment Panel: Abstract of the

Proceedings at the MA-8 Meeting," MSC,

July 19, 1962.

' House Committee on Science and Astro-

nautics, 88 Cong., 1 sess. (1963), Astronautical

and Aeronautical Events o[ 1962 (Washing-

ton, 1963), 148, 153; "A Space Gap? And
How!" Washington Daily News, Aug. 13, 1962;

"Orbiting Reds Nearing Each Other, Western

Ground Observers Report," Washington Post,

Aug. 14, 1962; "Soviet Prestige in Space,"

Washington Evening Star, Aug. 19, 1962; Sey-

mour Topping, "Russian Astronauts Only 3

Miles Apart on Closest Paths," New York

Times, Aug. 22, 1962.

"Minutes of the Senior Staff Meeting,"

MSC, Aug. 24, 1962; memo, North [to Man-

agement Analysis Division], "Activity Report,

Flight Crew Operations Division," Sept. 23,

1962. A rather complete series of proposals for

the maneuvering MercuD" spacecraft, including

pictures of possible configurations, is contained

in "Mercury Maneuvering Proposal," NASA/

MSC, Aug. 29, 1962,

Kenneth S. Kleinknecht, interview, Hous-

ton, May 3, 1965; "Mercury Seven-Orbit Mis-

sion Capability," memorandum report, Mer-

cury Project Office, March 5, 1962.

"Mercury Seven-Orbit Mission Capabil-

ity."

""MA-8 Mission Rules--Prelimlnary,"

Aug. 3, 1962; Revision A, Aug. 20, 1962; Re-

vision B, Sept. 24, 1962; "MA-8 Data Acquisi-

tion Plan," Aug. 21, 1962; "MA-8 Technical

Information Summary" [Aug. 20, 1962];
"Flight Plan for MA-8/16, Revision A," Sept.

10, 1962; "Mission Directive for Mercury-

Atlas Mission No. 8 (MA-8--Spacecraft 16),"

NASA Project Mercury working paper No.

228, Aug. 31, 1962 ; "Calculated Preflight Tra-

jectory Data for Mercury-Atlas Mission 8

(MA-8) (Spacecraft No. 16--Atlas I13-D),"

NASA Project Mercury working paper No. 229,

Sept. 7, 1962; "MA-8 Recovery Require-

ments," Aug. 15, 1962; "MA-8 Recovery Pro-

cedures," Aug. 30, 1962.

7 Ms., George F. Killmer, Jr., et al., "Mer-

cury Technical History--Preflight Operations,"

MSC Florida Operations, Dec. 30, 1963, Chart

126; "Weekly Activities Report," Mercury

Project Office, April 20, 1962; "Weekly Activi-

ties Report," Mercury Project Office, April 13,

1962; "Project Mercury Quarterly Status Re-

port No. 14 for the Period Ending April 30,

1962," NASA/MSC, May 25, 1962; "Weekly

Activity Report to the Office of the Director for

Manned Space Flight," MSC, May 5, 1962;

memo, (3. Merritt Preston to Dir., MSC,

"Monthly Activities Report No. 6," April 26,
1962.

Memo, James P. Henry to Asst. Dir. for

Research and Development, MSC, "Weekly

Activity Report for the Life Systems Division,"

April 20, 1962; "Monthly Activities Report,"

Life Systems Div., April 30, 1962; memo, Rich-

ard S. Johnston to Asst. Dir. for Research and

Development, MSC, "Weekly Activities Re-

port," June 15, 1962; memo, Edward L. Hays

to Asst. Dir. for Research and Development,

"Weekly Activity Report," May 18, 1962;

"Activities Report to the Office of the Director

for Manned Space Flight," MSC, May 19,
1962.

u "Activity Report to the Office of the Di-
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rector for Manned Space Flight," MSC, May

12, 1962; "Activity Report to Director for

Manned Space Flight," MSC, June 2, 1962.

10 Robert T. Everline, interview, Houston,

April 15, 1965; "Minutes of the Senior Staff

Meeting," MSC, Aug. 3, 1962.

u "Weekly Activities Report for the Direc-

tor of Manned Space Flight," MSC, Aug. 11,

1962; "Weekly Activities Report for the Di-

rector of Manned Space Flight," MSC, Sept. 1,

1962; Kenneth J. Vogel, interview, Houston,

May 6, 1965; Fred T. Pearce, interview, Hous-

ton, Feb. 12, 1964.
l_,,Postlaunch Memorandum Report for

Mercury-Atlas No. 7 (MA-7)," NASA/MSC,

June 15, 1962; "Postlaunch Memorandum Re-

port for Mercury-Atlas No. 8 (MA-8)."

13 Ibid.; "Project Mercury Quarterly Status

Report No. 15 for Period Ending July 31,

1962," NASA/MSC.
li"Postlaunch Memorandum Report for

MA-8," Part I.
1,,,Minutes of the Senior Staff Meeting,"

MSC, July 13, 20, Aug. 3, 1962.

_ Astronautical and Aeronautical Events o[

1962, 158; "Project Mercury Quarterly Status

Report No. 16 for Period Ending October 31,

1962," NASA/MSC; "Minutes of the Senior

Staff Meeting," MSC, Aug. 31, 1962.

lr "Activity Report," MSC Preflight Opera-

tions Div., July 27, 1962 ; James M. Grimwood,

Project Mercury: A Chronology, NASA SP-
4001 (Washington, 1963), 214; "Minutes of

the Senior Staff Meeting," MSC, Aug. 17,

1962; "Project Mercury Minutes of Meeting of

Mercury Atlas Launch Operations Committee,"

NASA/MSC, Sept. 6, 1962; "Minutes of the

Senior Staff Meeting," MSC, Sept. 28, 1962.

J. F. Wambolt on July 26, 1962, prepared a

"Missile 113 D History" that provides excel-

lent details on the steps taken to man-rate

a missile into a Mercury launch vehicle.

is Letter, Maj. Gen. Leighton I. Davis, Hq.,

Air Force Missile Test Center, to Secretary of

Defense Robert S. McNamara, "Status of DOD

Support of Project Mercury for July 1962,"

with enclosure, Aug. 13, 1962; memo, North

to Management Analysis Div., "Weekly Activity

Report, Flight Crew Operations Division,"

July 2, 1962.

I_DOD Representative for Project Mer-

cury Support Operations, Final Report to the

Secretary o[ De[ense on Department o[ De-

[ense Support o[ Project Mercury: For the

Period 1 ]uly 1959 through 13 June 1963, ap-

proved by Leighton I, Davis, Maj. Gen.,

USAF, II Sept. 1963, t5, 28; "Status Report

No. 15"; "Status Report No. 16"; memo,

Christopher C. Kraft, Jr. [to Management

Analysis Div.], "Activities Report, Flight Oper-

ations Division," Aug. 27, 1962; "Minutes of
the Senior Staff Meeting," July 27 and Aug.

10, 1962; Department of Defense press kit for
MA-8.

_o Final Report to the Secretary o[ De[ense,

28; letter, Davis to McNamara, "Postlaunch

Memorandum Report for MA-8."

_Text, "Address by President John F.

Kennedy," Rice University Stadium, Sept. 12,
1962.

"Astronaut's Flight Report," in "Post-

launch Memorandum Report for MA-8," Part

I, 7-49.
Robert Young, "Squalls Give Schirra

Orbit 50-50 Chance," Chicago Tribune, Oct.

2, 1962; "Schirra Ready for Countdown,"

Washington Post, Oct. 3, 1962; NASA News

Release, "MA-8 Advisory," 5 p.m., Oct. 2,

1962.

"_"Postlaunch Memorandum Report for

MA-8," Part I; Alvin B. Webb, United Press

International, "Hangar S Pool Copy," Oct. 3,

1962. Also see "High Dreams for a Man and

His Son," Lqe, LII (June 8, 1962).

The description and all quotations in the

following account of the MA-8 flight are taken

directly from the extensive "Postlaunch Memo-

randum Report for Mercury-Atlas No. 8 (MA-

8): Part I, Mission Analysis; Part II, Data;

Part III, Air-Ground Voice and Debriefing?'

MSC, Oct. 23, 1962.

Results o[ the Third United States

Manned Orbital Space Flight October 3, 1962,

NASA SP-12 (Washington, 1962), 49. The

contents of the ditty bag included a camera,

two film magazines, an exposure meter, a

camera strap, a photometer, a dosimeter, food

containers, and an emergency container for

motion sickness. See also Grimwood, Mer-

cury Chronology, 172.

"Flight Operations Debriefing of MA-8

Mission [aboard the carrier Kearsarge]," MSC,

transcribed Oct. 23, 1962. Like Glenn and

Carpenter before him, Schirra said he definitely
sensed deceleration at BECO. On the other

hand, he did not sense the acceleration tailoff

that they had reported when the sustainer

engine died. Max-q proved to be consider-

ably noisier than Schirra had been led to ex-
pect. During the launch phase he heard

many audible clues telling him what was taking

place. These he described onomatopoeically,

speaking of the jettisoning tower as "a rocket

zapping off," of the clamp ring's release of the
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spacecraft with a "pung" sound, and of the

posigrades' separating spacecraft from booster
with a noise that sounded like "khuee."

Fuel usage for the turnaround was only

about a tenth of the amount required in previ-

ous flights.

For the public dialogue, see "Postlaunch

Memorandum Report for MA-8," Part III,

Air-Ground Voice and Debriefing, 2-129,
2-130.

_0 Cf. "Postlaunch Memorandum Report for

Mercury-Atlas No. 8 (MA-8)," Part I,

7-I-49; Part III, pp. 3-1-18; and "Flight

Operations Debriefing of MA-8 Mission,'1
1-38. See also Results o[ the Third United

States Manned Orbital Flight; and messages

filed by news pool aboard the Kearsarge, Oct.

3, 1962. The fact that Schirra had landed

so close to the carrier prompted the engineer

who had calculated the retrofiring so precisely

to quip that "the carrier must have been 4.5
miles off course."

SINotes, John Barbour, Associated Press,

"Mercury Control Center Postffight News

Conference," Oct. 3, 1962.

"Schirra Flying to Houston after 3-Hour

Honolulu Visit," Washington Evening Star,

Oct. 7, 1962; "MA-8 Press Conference, Hous-

ton, Texas," transcript, Oct. 7, 1962; New

York Herald Tribune, Oct. 9, t962. Also

see John Dille, "At the End of a Great Flight,

Big Bull's-Eye," Li]e, LIII (Oct. 12, 1962);

and "Bull's Eye from a Front-Row Seat," Life,

LIII (Oct. 26, 1962) ; and the special issue of

Newsweekj LX (Oct. 8, 1962), "The Space

Age," passim.

James M. Grimwood, who came to work

for STG/MSC in August 1962, remembers
dearly this contrast in attitudes.

_* Letter, A. H. Smith, McDonnell Aircraft

Corp., to NASA Procurement and Supply

Offico, "Mercury Capsule Contract NAS 5-59,

Contract Change Proposal No. 340, Eighteen-

Orbit Mark I Spacecraft," Sept. 29, 1961;

"Project Development Plan for Research

Development Utilizing the Mark II Manned

Spacecraft," MSC, Langley Air Force Base,

Va., Dec. 8, 1961; "Operational Plan for 18-

Orbit Manned Mission," STG, Oct. 5, 1961.

_On "newspeak," cf. "Project Mercury

Status Report No. 12 for Period Ending Jan.

31, 1962," STG. On reorganization, see

Grimwood, Mercury Chronology, 152, 219;

and NASA Sixth Semiannual Report to Con-

gress, July I through December 21, 1961

(Washington, 1962), 137, 139. On the state

of the art of physiological research before
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MA-9, see J. C. Simons and W. N. Kama, "A

Review of the Effects of Weightlessness on

Selected Human Motions and Sensations,"

AMRL memorandum P-36, Wright-Patter-

son Air Force Base, Ohio, May 1963; James

P. Henry, "Physiological and Performance

Aspects of Weightlessness," MSC fact sheet
No. 73, 1962.

_For 1961 feasibility studies, see "Mer-

cury Spacecraft Advanced Versions," AD 61,

224B, control No. C-57978, McDonnell Air-

craft Corp., 1961; NASA briefing charts, un-

dated, A-28358, Ames Research Center, 1-31.

For MODM evolution, see Robert T. Ever-

line, Edward B. Hamblett, Jr., and William R.

Humphrey, "Preliminary Mercury 18-Orbit

Spacecraft Information Document," MSC
memorandum report, Jan. 11, i962; Lewis R.

Fisher, "Mercury 18-Orbit Information Docu-

ment (Minimum Weight Spacecraft)," MSC

memo report, Jan. t9, 1962. For the basic

specification for MODM, see Everline et al.,

"Manned One-Day Mission Mercury Space-
craft Specification Document," NASA Project

Mercury working paper No. 223, April 23,
1962. On concurrent progress with Gemini,

see Astronautical and Aeronautical Events o[
1962, 43, 199.

"Project Mercury Quarterly Status Re-

port No. 16," 1 ; "Minutes of the Senior Staff

Meeting," MSC, Nov. 9, 1962. MSC learned

of NASA's formal approval of a 22-orbit flight
five weeks later. "Minutes of the Senior Staff

Meeting," MSC, Dec. 14, 1962. Orbit 21

would duplicate orbit 6, but MSC decided on

22 orbits to optimize the recovery location

near Midway Island again and the margins for

error in spacecraft systems and supplies.

Letter, J. Y. Brown, McDonnell Aircraft

Corp., to NASA/MSC Mercury Procurement

Office, with enclosure, "Financial Status Sum-

mary, Mercury One-Day Mission Contract

NAS 5-59," Oct. 11, 1962. The major mis-

sion-planning meeting for MA-9 was held at

Patrick Air Force Base on Dec. 3 and 4, 1962.

See Davis, "Minutes of Pre-Operational Con-

ference for Project Mercury One-Day Mission
(MA-9)," Dec. 18, 1962.

aDMss, for Project Mercury Tech. Hist.

Program, Robert B. Merrifield, "Organiza-

tion," July 1963, Part I, B, 14; and Marvin F.

Matthews, "Patents," Oct. 22, 1963, Part I, H.

See also Grimwood, Mercury Chronology, 178.

Two of the "Mercury inventors" were no

longer with MSC: Alan B. Kehlet had left

government service to work on Apollo for

North American Aviation, and Willard S.

Blanchard had remained at Langley, saying
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"It was hot enough for me right here."

Kehlet, interview, Downey, Calif., Aug. 27,
1964; Blanchard, inter_'iew, Langley Field,

Va., Jan. 6, 1964. Problems in the sociology

of invention, particularly that of simultaneity

in discovery or innovation, were compounded
many times by the teamwork developmental

approach in Mercury. Simplistic views of
these matters were embodied in the Mercury

capsule contract as well as in certain NASA

presentations to Congress which tended to be-

come policy. Some indication of the extent
to which credit for innovations ought to be

diffused may be gained from the letter, Glenn

F. Bailey to J. M. Carson, Jr., "Contract NAS

5-59 Inventions," Sept. 8, 1961.

_o Jocelyn R. Gill, interview, Houston, Oct.

1I, 1965; letter, Gill to members of POISE,

Jan. 7, 1963. For a critique of Mercury ex-

perimental planning, see letter, Edward P.
Ney, Professor of Physics, University of Min-

nesota, to Gill, Aug. 27, 1962.

,a "Minutes of the Senior Staff Meeting,"

MSC, Jan. 4, 1963; "Mercury/Atlas (MA-9)
Launch Information and Notebook," General

Dynamics/Astronautics, San Diego, undated;

C. L. Gandy, Jr., and I. B. Hanson, "Mer-

cury-Atlas Launch Vehicle Development and

Performance," in Mercury Project Summary

Including Results o[ the Fourth Manned Or-

bital Flight May 15 and 16, 1963, SP-45

(Washington, 1963), 102.

"Gordon Cooper Press Conference,"

transcript, MSC, Feb. 8, 1963, 1, 3, 11 ; Charles

M. Vaughn, "Differences Between Spacecraft

16 (MA-8) and Spacecraft 20 (MA-9) as of
January 11, 1963," McDonnell Aircraft Corp.

Cooper himself had been fully briefed on the
MA-9 experiments only four days earlier. See

memo, Vaughn to Mercury Project Office,
"Minutes... of the Mercury Experiments

Briefing, MA-9/20," Feb. 13, 1963.
_3 "Manned One-Day Mission--Mission Di-

rective for Mercury/Atlas Mission 9 (MA-9)

(Spacecraft No. 20--Atlas 130-D)," NASA

Project Mercury working paper No. 232, Feb.

12, 1963, rev. April 25, 1963 ; Boynton, Edison

M. Fields, and Donald F. Hughes, "Spacecraft

Systems Development and Performance," in

Mercury Project Summary, 52. For daily

diaries of the technical modifications to each

MODM spacecraft at the Cape, see Wilbur

Allaback's series of weekly reports to Vogel, of

MSC Atlantic Missile Range Engineering Op-

erations, Oct. 1962 to May 1963. For an in-

teresting sidelight on the ECS instrumentation,

see William H. Bush, Jr., "CO_ Partial Pressure

Measuring System Development," for Mercury

Technical History Program, July 23, 1963.

" Norman B. Foster, collected documents

for Mercury Technical History, "Experiments"

folder, Part III, F, May 27, 1963, passim; and

Gill interview.

_'_See "Consolidated Activity Report for the

Director of Manned Space Flight," MSC, Feb.

23, 1963; Grimwood, Mercury Chronology,

158, 167, 180, 183; Ms., Karl F. Greil for Proj-

ect Mercury Technical History Program, "His-

tory of Reaction Control System," July 1963,

12-27; Joe W. Dodson, interview, Houston,

March 2, 1965. See also Minutes, "Inflight

Scientific Experiments Coordination Panel,"

Robert B. Voas, secretary, Dec. 17, 1962 ; Jan.
29, Feb. 25, and March 26, 1963.

4_ "Proceedings of the Mercury-Atlas

Booster Reliability Workshop," San Diego, July

12, 1963, 1-56 ; News release, "Important Mer-

cury-Atlas Refinements," Aerospace Corp.,

May 6, i963; "MODM Project Quarterly

Status Report No. 18 for Period Ending April

30, 1963," MSC.

_"Flight Plan for MA-9/20," March 4,

1963, Rev. A, April 15, 1963; Rev. B, May

10, 1963; "Preparation and Activities Plan
for MA-9--Postlaunch Memorandum Report,"

April 1963; "Public Information Directive,"

NASA, May 1963; "MA-9 Experiments,"

SEDR 236, McDonnell Aircraft Corp., April 1,

1963 ; Final Report to the Secretary o[ De[ense,

37, 70, 75. Cf. William K. Douglas, com-

ments, Aug. 17, 1965.

_s See Philip H. Abelson's editorials in Sci-
ence, CXXXIX (Feb. 1, 1963) and CXL

(April 19, 1963). See also John W. Finney,
"Astronauts' Camera to Provide TV View of

Earth from Space," New York Times, April 2,

1963; Howard Simons, "Webb Defends U.S.

Men-on-Moon Plan," Washington Post, April

21, 1963; Joseph Kraft, "Professors 'Boycott'

of Space," Washington Evening Star, May 10,

1963; Senate Committee on Aeronautical and

Space Sciences, 88 Cong., 1 sess., Scientists"

Testimony on Space Goals, June 10 and 11,

1963, passim.

*g "Atlas Repair May Delay Cooper's 22-

Orbit Flight," Washington Post, April 19,

1963. A Navy physician and NASA official,

Frank B. Voris, gave the usual preflight warn-

ing for the record: "We can't guarantee 100

percent success, and eventually the odds will

catch up with us." Quoted in Allen J. Mor-

rison, "NASA Official Warns of Inevitable

Space Tragedy," Salem (Oreg.) Statesman,

April 25, 1963.
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aoThe new contingent of astronauts intro-
duced in a televised press conference on Sept.
17, 1962, were assigned specialty areas on Jan.
26, 1963, as follows: Nell A. Armstrong,
trainers; Frank Borman, boosters; Charles Con-
rad, Jr., cockpit; James A. Lovell, Jr., recovery;
James A. McDivitt, guidance; Elliot M. See,
Jr., electronics; Thomas P. Stafford, commu-
nications; Edward H. White II, flight controls;
and John W. Young, environmental control.
For more details on other allusions in this para-
graph, see Astronautics and Aeronautics, 1963:
Chronology on Science, Technology, and
Policy, NASA SP-4004 (Washington, 1964),
28, 69, 184, 190, 192.

• n Quoted in William Hines, "Cooper to be
Out of Contact for Most of 22-Orbit FHght,"
Washington Sunday Star, May 12, 1963. "3-
Day Mercury Flight Considered by NASA,"

Washington Post, April 4, 1963. An historical
novel based on the plot of what might have

happened to MA-10 was written by Martin
Caidin, dedicated to Tom Heinsheimer, and

published by E. P. Dutton and Co., Inc., in
February 1964 under the title Marooned.

Much authentic flavor of Mercury flight opera-
tions may be gleaned from this fictional drama.

u See "Astronaut Insured for $I00,000,"
New York Herald Tribune, May 9, 1963; S.
Oliver Goodman, "Aetna Writes First Astro-
naut Policies," Washington Post, May 9, 1963;
"DeOrsey Has Son Write Astronauts' Insur-
ance," Washington Evening Star, May 13,
1963; "Cooper Prepares for 22-Orbit Trip,"
New York Times, May 10, 1963; Howard
Simons, "Cooper Ready to Take Off; Weather
Remains Problem," Washington Post, May 14,
1963. Simons also published in the Post an
excellent series of three articles analyzing the
late debate over manned space flight: "Moon
Madness? Scientists Divided on Apollo," May
12; "Scientists Now on Sidelines Discontented
with Project," May 13 ; "President Backs Lunar

Race Opposed by Some Scientists," May 14,
1963.

n Richard Witkin, "Astronaut Flight is Set
for Today," New York Times, May 15, 1963;
Earl Ubell, "The Long and Tense Wait for
Astronaut Cooper," New York Herald Tribune,
May 15, 1963.

_Marvin Miles, "Cooper Well on Way
to 22 Orbits," Los Angeles Times, May 16,

1963; Simons, "Launching Definitely Sched-
uled: Cooper Set for Another Try," Washing-
ton Post, May 15, 1963; Hines, "Atlas Boosts
Faith-7 Flight As Planned," Washington Eve-
ning Star, May 15, 1963.
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The description and all quotations in the
following account of the MA-9 flight are taken
directly from the elaborate "Postlaunch Memo-
randum Report for Mercury-Atlas No. 9 (MA-
9): Part I, Mission Analysis; Part II, Data;
Part III, Mission Transcripts," MSC, June
24, 1963. For color parallel to the voice
transcript, the unedited Mercury Control
transcript of John A. Powers' broadcast com-
mentary, "MA-9 Transcript," May 15, 1963,
has been followed.

u The text of the prayer (taped at time
21 : 49 : 38) is as follows :

"I would like to take this time to say a
little prayer for all the people, including myself,
involved in this launch and this operation.
Father, thank You for the success we have had
flying this flight. Thank You for the privilege
of being able to be in this position, to be up
in this wondrous place, seeing all these many
startling, wondrous things that You've created.
Help guide and direct all of us, that we may
shape our lives to be good, that we may be
much better Christians, learn to help one an-
other, to work with one another, rather than
to fight. Help us to complete this mission
successfully. Help us in our future space en-
deavors, that we may show the world that a
democracy really can compete, and still are
able to do things in a big way, are able to
do research, development, and can conduct
various scientific, very technical programs in
a completely peaceful environment. Be with
all our families. Give them guidance and en-
couragement, and let them know that every-

thing will be okay. We ask in Thy name.
Amen."

See L. Gordon Cooper, Jr., "Everyone
Was in a Sweat, I Was Secretly Pleased," Li/e,
LIV (June 7, 1963); see also other contract
articles: "His Mission Is the Longest U.S.
Orbit," Li[e, LIV (May 17, 1963) ; "He Brings
It Right in on the Old Gazoo," Li[e, LIV (May
24, 1963); and "Gordo Gets a Great Hello
from the Kids and Kin," Li[e, LIV (May 31,
1963).

"Status Report on Postlaunch Evalua-
tion of Mercury-Atlas Mission No. 9," MSC,
May 28, 1963. Quotations are from "MA-9
Press Conference," transcript, May 19, 1963,
7a, 10, 10b.

"MA-9 Scientific Debriefing," transcript,
June 26, 1963, 47. Cf. 15. On the skepticism
regarding Cooper's vision, see Aviation Week,

LXXIX (June 17, 1963), 34; (July 1, 1963),
31; and (July 15, 1963), 98. For one of the
more important comparative studies of the
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astronautical experiences of Glenn, Carpenter,

Schirra, and Cooper, see A. Goldberg, L.

Hromes, C. E. McLain, and J. Menkes, com-

pilers, "Observations of the Near Wake Re-

entry Phenomena by the Mercury Astronauts,"

ARPA TN-64-2, Feb. 1965.

_0j. C. Jackson, "Manned Space Flight

Network Performance Analysis for MA-9,"

Goddard Space Flight Center publication

X-551-63-108, Greenbelt, Md., June 6, 1963,
44. For other details on the results of the

fourth manned orbital flight, see Mercury Proj-

ect Summary, 231,242, and passim.

Webb, interview, Washington, Sept. 3,

1965; Seamans, interview, Washington, Sept.

1, 1965; Senate Committee on Aeronautical

and Space Sciences, 88 Cong., 1 sess. (1963),

NASA Authorization [or Fiscal Year 1964,

Hearings, Part 2, 772. See also Scientists'

Testimony on Space Goals; and "Mercury

Flights Off, Gemini Comes Next: Astronauts

Overruled by NASA," Houston Chronicle,

June 12, 1963.

Epilogue

McDonnell Aircraft Corp., NASA

Pro)ect GeminiFamiliarization Manual (pre-

liminary), SEDK 300, June 1, 1962, passim.

See also Ralph O. Shankle, The Twins o]

Space (Philadelphia, 1964); and Charles W.

Mathews, 'Troject Gemini--Status and

Plans," paper, 25th annual Aerospace Writers'

Assn. Convention, Dallas, Tex., May 24, 1963.

2 E.g., North American Aviation, Inc., The

Apollo Spacecra/t, Space and Information

Systems Division, May 15, 1964 ; NASA Project

Apollo working paper No. 1015, Project

Apollo: Space Task Group Study Report,

February 15, 1961, edited by H. Kurt Strass;

NASA MSC fact sheet No. 292, "Apollo Pro-

gram," June 1965; Walter Sullivan, ed.,
America's Race [or the Moon: The New York

Times Story o[ Project Apollo (New York,
1962).

Robert C. Seamans, Jr., Hugh L. Dryden,
and James E. Webb, interviews, Washington,

D.C., Aug. 31, Sept. 3, 1965.
' See Astronautics and Aeronautics, 1963:

Chronology on Science, Technology, and
Policy, NASA SP-4004 (Washington, 1964),

241, 244, 376, 417, 505, 506; and Astronau-

tics and Aeronautics, I964: Chronology on

Science, Technology, and Policy, NASA SP-

4005 (WasI_ington, 1965), 209, 248.

_lbid., 348, 458; Oscar Theodore Barck,

Jr., and Nelson Manfred Blake, Since 1900:

A History o[ the United States in Our Times

(4th ed., New York, 1965), 877; NASA Office

of Educational Programs and Services,
pamphlet, "Gemini 4 Extravehicular Activ-

ity: A Walk in Space," July 1965.

6Mercury Project Summary, Including

Results o[ the Fourth Manned Orbital Flight,

May 15 and 16, 1963, NASA SP--45 (Wash-

ington, 1963).

lbid., 247-249, part of the paper by J. C.

Moser, G. M. Preston, J. J. Williams, and

A. E. Morse, Jr.
S lbid., 248. For a similar discussion of

quality control for the launch vehicle, see

"Manufacturing and Process Controls" in

Proceedings o[ the Mercury-Atlas Booster

Reliability Workshops, General Dynamics/

Astronautics, San Diego, July 12, 1963, 1-56.
'See House Committee on Science and

Astronautics, 88 Cong., 1 sess. (1963), Brie[-

ing on NASA Reorganization: Project Mer-

cury Summary, 18-36. See also John W.

Finney, "Contractors Cited for an Average of

I0 Failures on Each Space Trip," New York

Times, Oct. 4, 1963; and Edwin Diamond,

The Rise and Fall o] the Space Age (Garden

City, N.Y., 1964), 32-46.

s0 Warren Burkett, "NASA Brass Pays

Tribute to Industry," Houston Chronicle, Oct.

4, 1963; and New York Times, Washington

Post, and Washington Evening Star, Oct. 5,
1963.

_1 See William M. Bland, Jr., and Lewis

R. Fisher, "Project Mercury Experience,"

paper, Aerospace Writers' Assn., Dallas, May

24, 1963; Walter C. Williams, "The Mercury

Textbook," paper, American Institute of

Aeronautics and Astronautics, Los Angeles,

June 17, 1963, MSC fact sheet No. 197;
Christopher C. Kraft, Jr., "A Review of

Knowledge Acquired from the First Manned

Satellite Program," MSC fact sheet No. 206;

and Wesley L. Hjornevik, "NASA Programs

and Their Management," paper, Harvard

Business School Club of Houston, Jan. 28,

1964, MSC fact sheet No. 235.

USee Mercury Project Summary, 24-26;

cf. MSC, "Briefing Materials," prepared for

Dr. Robert C. Seamans and Dr. George E.

Mueller, Sept. 20-21, 1963 (2 vols., conf.).

_albid.j See also Senate Committee on

Aeronautical and Space Sciences, 87 Cong., 2

sess. (1962), Staff Report, Manned Space

Flight Program o[ the National Aeronautics

and Space Administration: Project Mercury,

Gemini, and Apollo, 7.

i, "Briefing Materials"; Bland and Fisher,

and Hjornevik papers.
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"Fact sheet No. 206, 9. Cf. Robert B.
Voas, "The Case History of a Spacecraft
(Mercury Project)," MSC fact sheet No. 117,
Feb. 5, 1963.

_ For a few intimations of these questions,
see "Our Gamble in Space," special issue of
The Atlantic, CCXII (August 1963); Lewis
Mumford, "Authoritarian and Democratic

Technics," Technology and Culture, V (Win-
ter 1964), 1-8; Melvin Kranzberg, "The
Inner Challenge of Outer Space," paper,
University of Houston Lecture-Artist Series,

March 3, 1965.
17See Alvin M. Weinberg, quoted in James

THIS NEW OCEAN

L. Penick, et al., eds., The Politics o[ Ameri-
can Science: 1939 to the Present (Chicago,
1965), 221. See also Weinberg, "Criteria for
Scientific Choice," Minerva (Winter, 1963),
159-171.

See, for example, Joseph Wood Krutch,
"Why I Am Not Going to the Moon," Satur-
day Review, XLVIII (Nov. 20, 1965), 29-31 ;
and Philip H. Abelson, Saturday Review,
idem.

a' Hugh L. Dryden, "The Nation's Manned
Space Flight," address, Governor's Conference

on Oceanography and Astronautics, Kauai,
Hawaii, Oct. 1, 1965, 3-4.
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Note on Sources

and

Selected Bibliography

ATE IN 1962 AND EARLY IN 1963, while Project Mercury was phasing into
the Manned One-Day Mission and evolving also toward Projects Gemini and

Apollo, the managers of Mercury conceived the need for a monumental tech-
nical history to preserve the engineering "experience gained through the develop-
ment of the Mercury spacecraft, its systems and components." The Director of

the Manned Spacecraft Center, Robert R. Gilruth, expressed the hope that an
elaborate, topically organized record in 10 or 12 volumes might "provide a ready
reference and guide for present and future MSC space programs and to that end

[should] increase the economy and effectiveness of MSC operations." Established
in February 1963 as the Project Mercury Technical History Program (PMTHP),
this effort produced about 40 retrospective manuscripts prepared by participants
in Project Mercury. Although more than 130 authors were assigned sections to
prepare and only one third of these ever completed their first drafts before re-
assignment, these manuscripts, located in the archives of the MSC Historian, fur-
nished much of the basis for this technological history of Mercury.

Concurrently in 1963, Eugene M. Emme, the NASA Historian, was prompting

the preservation and collection of documentary materials and encouraging all
NASA centers and especially the Mercury Project Office of MSC to proceed with
the writing of the historical accounts of the technological, managerial, and ad-
ministrative development of NASA's major programs. Documentary archives
for manned space flight, therefore, began first in Washington and then in Houston
while Mercury was still alive. The papers and correspondence of Robert R.
Gilruth, George M. Low, Paul E. Purser, John A. Powers, and the astronauts'
files constitute the bulk of the material presently contained in these two essentially

duplicated archives, but innumerable smaller collections on specific technical and
operational matters complement and amplify their usefulness.

In May 1963 a contract was arranged between the Manned Spacecraft Cen-
ter and the University of Houston to provide for professional help to assimilate
and synthesize the massive documentary remains from Mercury in several forms
suitable for wide distribution as historical literature. The two academic authors

of this volume began full-time work immediately after the termination of Mercury,

605



THIS NEW OCEAN

helping the MSC Historian to complete his Project Mercury: A Chronology,
NASA SP-4001 (Washington, 1963). Shortly thereafter, an abbreviated and

considerably sterilized "PMTHP" was published in one volume as Mercury Proj-
ect Summary: Including Results o[ the Fourth Manned Orbital Flight, May 15

and 16, 1963, NASA SP-45 (Washington, 1963). These two works are basic ref-
erence tools; they are essential to, but not representative of, historical handicraft.

The authors studied Congressional documents; periodicals; secondary litera-

ture on space science, technology, and public policy; unclassified governmental,
industrial, and military reports; and the artifacts, including audio tapes and
photographic records of the program. To orient [hemselves, they watched se-

quentially a nlajor portion of more than one million feet of motion picture film,
which preserved virtually every significant event and flight operation in Project
Mercury.

To maintain some historiographical balance, they sought to subject the widest
variety of documents to external (or contextual) and internal scrutiny. Competi-
tive industrial and governmental claims to priorities were weighed. Wherever
possible the people who made up the Mercury team were interviewed and each
location of Mercury activities visited. Finally the authors concluded that research
could proceed most profitably by writing. Concurrent writing and research went
on for more than a year, before a "comment edition" was distributed to some
200 critical readers, most of whom found time to offer indispensable suggestions

for its improvement.
Footnote readers will have noticed the somewhat different documentary

bases of the three parts of this work. Part One rests largely on open (but little
used for historical purposes) channels of scientific communication. Part Two
is hewn out of a jungle of unpublished technical letters, messages, memoranda,
telecon notes, informal reports, and working papers. Part Three is based pro-
gresslvely more on official project documentation, which had improved consid-
erably by that relatively late date.

Unless otherwise specified, all these materials, in original or facsimile form,
have been gathered together in the MSC archives. Very few items among those
cited in the footnotes are still classified; the vast majority are no longer sensitive
and may be examined by students of the early history of manned space flight.

More than 200 personal interviews, 134 Project Mercury working papers, and
most of the 4500 typical control and report documents listed in Appendix A of the
Mercury Project Summary ha_,'e served as the foundation for this history. The

superstructure, however, is selective, as the bibliographical listing also must be.
There are many other true tales that need to be placed in survivable form about
the technology, administration, public relations, and human side of Project Mer-
cury and the men who worked its wonders. But we authors hope that This New

Ocean will map the temporal shoreline from which the United States of America
cast off on its voyage into space.
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NOTE ON SOURCES AND SELECTED BIBLIOGRAPHY

Persons Interviewed*

1. Aldrich, Arnold D. 39. Coler, Charles

2. Algranti, Joseph S. 40. Coston, Charles L.
3. Allaback, Wilbur 41. Critzos, O. Constance

4. Allen, H. Julian 42. Day, Richard E.
5. Armstrong, Stephen A. 43. Dembling, Paul C.
6. Atcheson, Kenneth L. 44. DeVore, Phoncille

7. Bailey, F. John, Jr. 45. Dietlein, Lawrence F.
8. Bailey, Glenn F. 46. Disher, John H.
9. Battey, Robert V. 47. Dodson, Joe W.

10. Berry, Charles A. 48. Donegan, James J., Jr.
11. Billingham, John 49. Donlan, Charles J.
12. Bingman, Charles F. 50. Dryden, Hugh L.
13. Blanchard, Willard S., Jr. 51. Dubusker, William
14. Bland, William M., Jr. 52. Dunham, Richard M.
15. Bond, Aleck C. 53. Eppley, Charles V.
16. Bost, James E. 54. Erb, R. Bryan
17. Bothmer, Clyde B. 55. Ertel, Ivan
18. Boyer, William J. 56. Everline, Robert T.
19. Boynton, .]'ohn H. 57. Faget, Maxime A.

20. Briggs, Thomas 58. Fields, Edison M.
21. Brown, B. Porter 59. Fineg, Jerry
22. Burke, Walter F. 60. Fisher, Lewis R.
23. Butler, Earl 61. Flesh, E. M.

24. Byrnes, Martin A., Jr. 62. Foster, Norman G.
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LAUNCH OPERATIONS BRANCH

I_st r_enlatlon Seatlon

Capsule Syst_s Section

Technlcof Service1 Section
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Flight Data Summary

The information in this revised flight data summary is taken from various

sources according to the authors' best estimate of reliability. The basic format

was made by Jack C. Heberlig for the NASA-MSC newspaper issue of "Mercury

Program Summary," October 34, 1963, then republished as MSC Fact Sheet

Mission Pilot

LJ-l.. ......................

Big Joe .....................

LJ-6 .......................

LJ-IA ......................

LJ-2 ........ "Sam" mon-

key

LJ-1B ....... "Miss Sam".

Beach abort .................

MA-I ......................

L J-5 ......................

MR-I ......................

MR-IA ....................

MR-2 ........ "Ham" chimp

MA-2 ........

LS-5a......... ii;iiiiiiiiiii

iMR-BD....................

MA-3 ........ Robot ........

Date

8121159

91 9]59

101 4159

111 4159

121 4159

1/21 I60

5/ 9/60

7129160

111 8/'60

11121160

12119160

1131161

2121161
3/18/61

3/24/61

4/'25161

s/c
No.

BP

BP

BP

BP

BP

BP

!

4

3

2

2A

5

6

14

BP

L/V
No.

10-D

50- D

MR-I

MR-3

MR-2

67-1:)

MR-5

IO0-D

"Orig " I

sched-i
uled in I

January
1959

7159

8]59

Insert

Insert

9/59

I 1159

Insert

I 1159

12159

1o159

Insert

12159

116o
Insert

Insert

2/6ol

Orbits/period, Weightless
n'tin : sec time,

hr : rain : sec

.......... 3:13

.......... 0:28

.......... 5:30

.......... 6:40
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APPENDIX D

No. 201 and in Mercury Project Summary, NASA SP 45, pages 50-51. But
in expanding this chart, converting it to commonly understood units, and judging
each mission's success or failure in the light of the overall program objectives, the
authors have returned to the primary classified postlaunch memorandum reports
for most of the figures herein.

The sixth column of the table shows the originally scheduled (January 1959)
launch date. This early schedule represented optimistic planning in that it
assumed a trouble-free preparation and flight program. As the program pro-

gressed, some flights were eliminated, others added, and objectives expanded,
based on experience gained.

Flight
duration,

hr : rain : sec

0:00:20

0:13:00

0:05:10

0:08:11

0:11:06

0:08:35

0:01:16

0:03:18

0:02:22

Apogee/
perigee,
st. miles

0.4

95

37

9

53

9

.5

8.1

10.1

Velocity
Range, max.- Max. Max. Re-
max., spa., q, psf g Primary objective sults

st. miles fix. mph SC/LV

0.5

1,496 14,857 675 12

79 3, 075 3, 400 5.9

11 2,022 168 16. 9

194 _ 466 2,150 14.8

12 2,022 1,070 4.5

1 976 ...............

6 1,701 ...............

14 !,785 1,420 6

0:00:02

0:15:45

0:16:39

0:17:56

0:23:48

0:08:23

0:07:19

0

130. 7

157

114

7.7

113.5

4.5

235 4,909 560 12.4

422 5,857 575 14.7

1,432 13,227 991 15.9

18 1,783 1,580 8

307 5,123 580 11

0 1,177 880 II

Max. q abort and F

escape
Ablation heatshield S/F

Capsule aerodynam- i P
its and integrity

Max. q abort and P

escape

Primate escape at S

high altitude

Max. q abort and S

escape
Off-the-pad escape S

Qualify S/C--Atlas F
combination

Qualify MAC S/Cat F

max. q ]
i

Qualify S/C--Red- iF
stone combination

Qualify systems for S
suborbital

Primate suborbital , S/P

and auto abort

Qualify MA interface S

Max. q escape and P

impact
Perfect MR booster S

Quick test of S/C-- F
Atlas orbit
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THIS NEW OCEAN

Mission Pilot

LJ-5B ........................

Shepard:

MR-3 ........ Freedom 7..

Gri_som:

VIR-4 ........ Liberty Bell 7.

dA-4 ........ Robot ........

MS-I ........................

JA-5 ........ "Enos" chimp.

Glenn:

VIA-6 ........ Friendship 7.

Carpenter:

VIA-7 ........ Aurora 7...

Schirra:

VIA-8 ........ Sigma 7 .....

Cooper:
VIA-9 ........ Faith 7 .....

Date

4[28/61

51 5/61

7/21/61

9/13/6z

ii/ 1/61
11/29/61

2120162

5/24/62

10/ 3/62

5]15/63

s/c
No.

14A

11

8A

NA

9

13

18

16

2O

L/V
No.

"Orig."
sched-
ules in

January
1959

Orbits/period, Weightless
rain: see. time,

hr: rain: sec.

Insert l .......................

1/60

2/60

3/60

Insert

3/60

4/60

5/60

6160

............ 5:16

............ 5:18

1/88:19 1:32:28

2/88:26 3:04:38

3]88:29 4:48:27

3/88:32 4:39:32

6]88:55 8:56:22

22.5]88:45 34:03:308/6o

L$= Little Joe

MA = Mercury-Atlas
MR = Mereury-Redstone
MS = Mereury-geou t

Beach Abort = Capsule escape rocket test
Big Joe=MA development flight
M!_-BD =MR booster development
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APPENDIX D

Flight
duration,

hr: rain : sec

0:05:25

0:15:28

0: 15:37

1:49:20

0:00:43

3: 20:59

4: 55:23

4:56:05

9:13:11

34:19:49

Apogee/
perigee,
st. miles

2.8

116.5

i18.3

142.1/98.9

147.4/99. 5

162.2/100

166.8/99. 9

175. 8/100

165. 9/100. 3

Velocity _
Range, max,-

max., spa.,
st. miles fix. mph

9 1,780

303 5,134

302 5,168

26,047 17,526

75,679 17,544

76,021 17,549

143,983 17,558

546,167 17,547

Max. Max.

q, psf g Primary objective

92( 10 Max. q escape and

sequence

58C 11 Evaluate man-in-

space

61G 11. 1 Corroborate man-in-

space

975 7. 7 S/C environmental

control in orbit

012" 7. 7 Primate test of ECS

in orbit

982 7. 7 Evaluate man-in-

orbit

967 7. 8 Corroborate man-in-

orbit

964 8. 1 Man-machine in

orbit for 9 hours

974 7. 6 Manned l-day mis-

sion in orbit

Re-

! sults

[SC/L_

S/P

S

P/S

P

F

P/S

S

S

S

S

S = Success

P = Partial

FfFallure
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Appendix E

Personnel Growth

Date Scientists and Total

engineers

October 1958 .........................................

December 1958 .......................................

June 1959 ............................................

December 1959 ......................................

June 1960 ...........................................
December 1960 ......................................

June 1961 ...........................................
December 1961 ......................................

June 1962 ...........................................
December 1962 ......................................

June 1963 ...........................................

35

(175)

(225)
266

(3oo)
329

354

470

799

1254

1514

45

200

(370)

508

(580)

668

794

1152

1786

2392

3345

• Based on figures supplied by Mary K. Wood of NASA Headquarters Manpower Analysis Division.
( ) Interpolated figures.

Date Mercury Program
(NASA personnel)

Space Task Croup:

January 1959 ................................................

july 1959 ....................................................

January 1960 ................................................

July 1960 ....................................................

January 1961 ................................................

July 1961 ....................................................

Manned Spa_craftCent_:

January 1962 ................................................

July 1962 ....................................................

January 1963 ................................................

July 1963 ....................................................

150

350

500

550

680

77O

850

670

5OO

400

* Based on figures supplied by Robert B. Merrifleld of NASA-MSC Office of Long-Range PIanning.
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Appendix F

Mercury Cost Summaries

Precise costs directly attributable to any research and development program

are very difficult to determine, and Project Mercury is no exception in this regard.

Overhead and support costs accrued for several projects must be allocated and

thus estimates rather than specifics are required. The total summary costs are

official agency estimates as of February 28, 1966. Costs within the spacecraft

manufacturer's contract are broken down in a second table, and a third details

costs incurred by the Department of Defense in support of Project Mercury.

Summary Estimates o[ Costs

Project Mercury

[As of Feb. 28, 1966]

Mercury/I-Day Mission Projects:

Spacecraft ......................................................

Launch vehicle procurement ......................................

Operations and support ..........................................

Total project costs .............................................

Tracking and Data Acquisition:

Operations and equipment ........................................
Facilities .......................................................

Total TDA costs ...............................................

Grand total costs ...............................................

$143, 413, 000

82, 847, 000

49, 298, 000

$275, 558, 000

$71,900, 000

53, 200, 000

$125, 100, 000

$400, 658, 000
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Contract NAS 5-59 With McDonnell Aircraft

Mercury Cost Breakdown

[As of Oct. 14, 1965]

Corp.

Structure and Systems:

Nonrecurring development .......................................

Recurring cost (20 units) ........................................

Models and mockups ...............................................

Ground-test program ...............................................

Trainers ..........................................................

Thermal balance test program .......................................

Publications, specifications, and data ................................

Launch support:

St. Louis .....................................................

Cape Kennedy ................................................

Spare parts ......................................................

Aerospace ground equipment .......................................

Repairs and modification .........................................

l-day mission changes .............................................

Total .......................................................

$40,

49,

1,

3,

5,

219, 000

354, 000

489, 000

887, 000

088, 000

712,000

345, 000

I, 187, 000

14, 750, 000

5, 432, 000

9, 95 l, 000

1,049, 000

9, 337, 000

$142, 800, 000

Summary o[ DOD Support o[ Project Mercury

[through June 1963]

[Extracted from: "Final Report to the Secretary of Defense on Department of Defense Support of

Project Mercury," approved by Maj. Gen. L. I. Davis, USAF, Sept. 11, 1963]

Actual costs (in thousand
dollars)

Agency

AIR FORCE:

Space Systems Division

(SSD).

Type/level of support

Atlas boosters, launch crews and

facilities, engineering, aircraft

suppoet. 23 people plus con-

tractors. 216 aircraft-hours.

Operation of 3 network stations,

launch support, assist in re-

covery. 173 people, 2,722 air-

craft-hours.

AF Missile Test Center

(AFMTC).

NASA

reim-
bursed

73,862

6, 569

DOD
absorbe

1,351

5,652

Total

75, 213

12,221

= Average number of full-time people.
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APPENDIX F

Summary of DOD Support of Project Mercury--Continued

(through June 1963)

Agency

Air Proving Ground Center

(APGC).

Air Force Communications

Service (AFCS).

Military Air Transport Serv-

ice (MATS).

Air Rescue Service (ARS).

Aeronautical Chart and In-

formation Center (ACIC).

Tactical Air Command

(TAC).
Air Defense Command

(ADC).

U.S. Air Force Europe

(USAFE).

Pacific Air Force (PACAF).

Other.

Total Air Force costs.

,N'A V I":

Fleet Operations.

Pacific Missile Range (PMR).

Total Navy costs.

Type/level of support ,

Operation of 1 network station,

assist in network training. 21

people, 551 aircraft-hours.

Communications engineering

and installation; communica-

tor deployment to contin-

gency cites. 8 people.

Airlift people and cargo.

Aircraft support to theater com-

manders; deploy forces for

contingency recovery. 6,426

aircraft-hours.

Cartographic Service. 10

people.

Aircraft support for contingency

recovery. 546 aircraft-hours.

Radar aircraft support. 245

aircraft-hours.

Deployment to remote sites for

contingency recovery. 2,091

aircraft-hours.

Deployment to remote sites for

contingency recovery. 331
aircraft-hours.

Air Weather Service: weather

surveillance and forecasting.
AEDC and AFFTC: test fa-

ci]ities,

Astronaut and capsule recovery

in planned areas. 1,441 ship-

days, 4,044 aircraft-hours.

Operation of 3 network stations;

aircraft and tracking ship sup-

port. 144 people, 347 air-

craft-hours, 170 ship-days.

Actual costs (in thousand
dollars)

NASA

relm-
bursed

22

140

1,040

1,063

5

42

3

720

362;

8

83,836

8,934

3, 321

12,255

DOD

absorbed Total

956 978

201 341

69 l, 109

260 I, 323

190 195

87 129

271 274

279 999

189 i 551

911 919

I0, 416 94, 252

I5,110[ 24,044

4,720 8,041

19,830 ! 32,085
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Summary of DOD Support of Project Mercuo_-Continued

(through June 1963)

Agency

ARMT:

White Sands Missile Range

Type/level of support i

Operate 2 network stations, 39

(WSMR).
U.S. Army Europe

(USAREUR).

Other.

Total Army costs.

people.

Helicopter and pararescuemen

support for contingency recov-

ery. 107 Helo-hours.

LARC support, communica-

tions, test facilities, tracking-

ship support.

BIOASTROWAUTICS (Arm),,

Wavy, Air Force):

Operational.

Research and develcpment.

Aeromedical monitors, recovery

medical specialists, medical

supplies, hospitals. 159 peo-

ple average per mission.

Astronaut selection and train-

ing; laboratories.

Actual costs (in thousand
dollars)

NASA

reim-
bursed

962

117

1,221

2, 300

4971

981_

Total bioastronautic costs. I, 478 1

Air Force .................................................... 83, 836 !

Navy ........................................................ 12, 255

Army ....................................................... 2, 300 1

Bioastronautics ............................................... 1,478

Total. 99, 869

DOD
absorbed

247

78

405

730

1,070

1,320

2,390

10,416

19,830
730

2,390

33,366

Total

l, 209

195

1,626

3,030

1,567

2,301

3,868

94,252

32,085

3,030

3,868

133,235
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Index

A-4, 16, 17,519 fn 45
A-7, 181,294
A-9, 519 fn 45
AASCS. See under Alternate Attitude Space-

craft Control System
AASS. See under Automatic Abort Sensing

System
Abbott, Ira II. A., 81, 90, 114
Abbot Committee, 99

Abelson, Philip H., 491
Ablating materials, 63, 64, 87, 126, 127, 461
Ablation (see also Heating, aerodynamic), 63-

66, 80, 93, 95, 127, 128, 139, 140, 157, 204,
322, 324, 389, 407

Able (monkey) (see also Animals in space

pro_ramt, 156
ABMA. See under U.S. Army Ballistic Missile

Agency
Abort, 92
Abort Sensing and Implementation System

(ASIS), 176, 188, 189, 265, 320, 321,331, 384
Abort systems (see also under Spacecraft), 338
Acceleration stress (see also under Centri-

fuges), 36-46 passim, 80, 81, 96, 97, 120,
143, 168, 204, 231, 253, 369, 378, 404, 405

Air Force "ground rule," 97, 120
Acceptance checkout equipment (ACE), 508
ACS. See under Attitude control system
Adam, Project, 100, 101,105, 123, 171,172, 177,

263, 537 fn 82
Advanced Research Projects Agency (ARPA),

79, 82, 90 93, 97-100, 106, 111, 116, 117, 120,
122, 126, 136, 148, 156, 265, 542 fn 49, 548

fn 7
Advisory Committee on Government Organiza-

tion, 82, 89
Aerobee, 19, 20, 29, 37-40, 49
Aerobee-tti, 20
Aerodynamic heating. See under Heating,

aerodynamic
Aerodynamic stresses, 60
Aerojet-General Corp., 395
Aeromedical Field Laboratory. See under

U.S. Air Force

Aeromedical Laboratory, Wright Air De_'elop-
ment Center. See under U.S. Air Force

"Aeronauts," 160

Aeronautics and Astronautics Coordinating

Board, 284
Aeronutronic DMsion. See under Ford Motor

Co.

Aerospace Corp., 255, 272, 278, 299, 300, 491,
539 fn 18, 585 fn 6, 588 fn 41,591 fn 18

Aerospace Medlcal I.aboratory, Wright Air
Development Center. See under U.S. Air
Force

Aerospace medicine (see also U.S. Air Force:
AeromedicaI Field Laboratory, Air Force
School of Aviation Medicine, Wright Air

Development Center: Aeromedical Labora-
tory, Aerospace Medical Laboratory; U.S.
Navy: Aviation Medical Acceleration Lab-
oratory, Naval School of Aviation Medi-
cine), 34, 41, 524 fn 4

acceleration stress, 37-43 passim, 46, 315,

316, 369, 378, 447
aeroembolism, 351
aeropause concept, 34, 116
anoxia, 35
"bends," 231,351
bioinstrumentation, 416
blackout, 39, 40, 46
bladder function, 38, 39
blood pressure, 39, 416, 434, 484, 496
coordination loss, 39

dehydration, 433
disorientation, 37, 38, 39, 357,414, 443, 478

dysbarism, 228, 231
eating and drinking in flight, 38, 39, 449, 478,

500

exercise in flight, 480
fatigue, 484
hyperventilation, 228
hypoxia, 228, 231
impact forces, 40
isolation studies, 48
medical monitoring, 80, 216, 449, 469
medication in flight, 418
noise, 231
nausea, 39, 378, 414, 427,433
oeulo-agravie illusion, 38
orthostatic hypotension, 501,508
post flight examinations, 484
reaction to space flight, 39, 427

redout, 39, 40

research rockets, 19, 29

temperature, 47, 433, 434, 449, 496
timed urine collection, 433

vibration, 231,447

water immersion research, 42, 43

weightlessness, 36-42 passim, 52, 315, 316,

414, 448, 478

Africa, 220, 331,335, 339,399,426,435, 445,474,

480, 495, 497

African, 499

Agena, 79, 462
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Air Commerce Act, 516
Aircraft (see also under names o] each), 56

Apache, 597 fn 103
B-29, 10, 11
B-52, 12 illus
B-70, 177
C-54, 586 fn 16
CF-105 Arrow, 153
C-119, 279, 280
C-130, 128, 469
C 131, 39, 239, 243 illus
D-558-1I, 11, 12 illus, 517 fn 28
Electra, 573 fn 17
F4H-1 Phantom, 190
1:-89, 38
F-94C, 38
F-100, 239, 518 fn 30
F-100F, 243 illus, 358
17-104, 198
F-106, 352
Hypersonic, 166
Langley Aerodrome, 55, 515 fn 5
P2V, 203, 297, 312, 316, 456
P5M, 406
Ramjet, 21, 86
SA-16, 346, 456, 457
Supersonic, 57, 114
T-33, 38
Wright Flyer, 6

X-l, 11, 35, 517 fn 27, 567 fn 38
X-1A, 11, 12 illus, 35, 58
X-1B, 87, 529 fn 10
X2, 36, 57, 58, 63, 87, 529 In 10
X-3, 12 illus
X-15, 11, 12 illus, 36, 40, 57, 58, 59, 63, 66,

69, 71, 78, 87, 89, 94, 101, 150, 348
XB-70, 121
XF-92A, 12 illus
XF-108, 121

Air Crew Equipment Laboratory (USN). See
under U.S. Navy

Air Force. See under U.S. Air Force
Air Force Ballistic Missile Division. See

under U.S. Air Force
Air Force Missile Test Center. See under

U.S. Air Force
Air Force School of Aviation Medicine. See

under U.S. Air Force
Air Force Scientific Advisory Board, See

under U.S. Air Force
Air Force Space Systems Division. See under

U.S. Air Force
Air Force Surgeon General. See under U.S.

Air Force
Air Materiel Command. See under U.S. Air

Force
Air Rescue Service. See under U.S. Air Force

Air Research and Development Command
(ARDC). See under U.S. Air Force

AiResearch Manufacturing Co., 157, 225. 226.
227, 228, 235, 241, 260, 484, 557 fn 8, 568
fn 46

Airglow, 415, 450, 476, 480, 499, 595 fn 70, 596
fn 90

650
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Akens, David S., xv
Akron, Ohio, 228, 235, 241,336
Albuquerque, N. Mex., 34, 161,162
Aldrich, Arnold, 406,607
ALFA trainer, 240, 242 illus, 355, 365, 416,

583 In 41
Algol (see also under Motors), 395
Algranti, Joseph S., 244, 607
Allaback, Wilbur, 607
Allegheny Ballistic Laboratories, 395
Allen, H. Julian, 59, 60, 61, 62, 63, 65, 66, 68,

69, 72, 87, 142, 176 illus, 530 fn 17, 20; 607
Altair (see also under Motors), 395
Alternate Attitude Spacecraft Control System

(AASCS), 196
Altitude chambers, 343, 365, 416
American Association for the Advancement of

Science, 491
American Astronautical Society, 326
American Bosch Arma Corp., 522 fn 75
American Meteorite Museum, 61
American Rocket Society, 14, 68, 70, 77,194
American Society for Quality Control, 266
American Telephone and Telegraph Co., 217
Ames Aeronautical Laboratory (see also under

Ames Research Center), 56, 57, 58, 59, 61,
65, 66, 71, 81, 83, 84, 85, 86, 89, 94, 95,
102, 106, 113

becomes Ames Research Center, 142
opens, 9, 57, 59
research, 56, 59, 60, 66
ballistic ranges, 63, 65, 83
Iligh Speed Research Division, 59
Round Three Conference, 71, 72, 78
Vehicle Environment Division, 95
wind tunnels, 58, 65, 83, 94

supersonic free-flight, 58, 59, 60 illus, 63
Ames, Charles S., 118, 320
Ames, Joseph S., 9
Ames, M. B., Jr., 529 fn 6
Ames Research Center (see also under Ames

Aeronautical Laboratory), 142, 157, 167,
218, 287, 308, 364, 390

becomes Ames Research Center, 142
Amman, Ernest A., 345, 492, 592 fn 30
Anderson, Clinton B., 437 illus
Anderson, Frank W., xiv
Anderson, Orvil A., 47
Anderson, Samuel E., 92, 97
Andros Island, 355
Anfuso, Victor L., 332, 588 fn 35
Animals in space program (see also under

names o/each), 19, 37, 38, 40, 42, 49, 50,
53

chimpanzees, 40, 42, 210, 306, 310-318, 331,
335,397-409

dogs, 28, 33, 37, 303, 325, 330
hamsters, 34, 50
mice, 34, 37, 42, 43, 50, 53
monkeys, 19, 33, 37, 50, 53, 156, 210, 212, 213

pigs, 143
rabbits, 43, 50
rats, 42, 50

Antarctica Treaty, 214, 285



INDEX

Antares(seealso under Motors), 395
Antenna canister, 295 illus, 386
A OK, 314, 575 fn 37
Apache. See under Aircraft
Apalachicola, Fla., 371
Apollo (Greek god), 132
Apollo, Project, 254, 279, 283, 362, 364, 379,

392, 436, 444, 487, 489, 492, 503, 505, 507,
509, 510, 510 illus, 566 fn 30, 598 fn 111,
600 fn 39

budget, 335, 362, 438
project office established, 363

Applied Materials and Physics Division. See
under Langley Research Center

Applied Physics Laboratory. 19
Appropriations. See under National Advisory

Committee for Aeronautics, National Aero-
nautics and Space Administration

Arabian, Donald D., 246, 388 illus
Aral Sea, 334
Arbic, Richard G., 273, 275
Archibald, David R., 491,563 fn 83
ARDC. See under U.S. Air Force, Air Re-

search and Development Command
Area rule, 86
"Argonauts," 160
Ariel I, 467
Aristotle, 225
Arkansas, 349
Arlington, Va., 421
Armitage, Peter J., 287, 318, 349
Armstrong, HarD" G., 34
Armstrong, G. L., 307
Armstrong, Neil A., 601 fn 50
Armstrong, Steven A., 543 fn 13, 607
Army. See under U.S. Army
Army Air Corps. See under U.S. Army
Army Air Forces. See under U.S. Army
Army Ballistic Missile Agency. See under U.S.
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